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Abstract
Objective  To date, therapies for endothelial dysfunction have primarily focused on ameliorating identified atherosclerosis 
(AS) risk factors rather than explicitly addressing endothelium-based mechanism. An in-depth exploration of the pathologi-
cal mechanisms of endothelial injury was performed herein.
Methods  Aortic caveolin 1 (Cav1) knockdown was achieved in mice using lentivirus, and AS was induced using a high-fat 
diet. Mouse body weight, blood glucose, insulin, lipid parameters, aortic plaque, endothelial injury, vascular nitric oxide 
synthase (eNOS), injury marker, and oxidative stress were examined. The effect of Cav1 knockdown on the content of PKC-
zeta and PI3K/Akt/eNOS pathway–related protein levels, as well as PKCzeta binding to Akt, was studied. ZIP, a PKCzeta 
inhibitor, was utilized to treat HUVECs in vitro, and the effect of ZIP on cell viability, inflammatory response, oxidative 
stress, and Akt activation was evaluated.
Results  Cav1 knockdown had no significant effect on body weight or blood glucose in mice over an 8-week period, whereas 
drastically reduced insulin, lipid parameters, endothelial damage, E-selectin, and oxidative stress and elevated eNOS levels. 
Moreover, Cav1 knockdown triggered decreased PKCzeta enrichment and the activation of the PI3K/Akt/eNOS pathway. 
PKCzeta has a positive effect on cells without being coupled by Cav1, and ZIP had no marked influence on PKCzeta-Akt 
binding following Cav1/PKCzeta coupling.
Conclusion  Cav1/PKCzeta coupling antagonizes the activation of PI3K on Akt, leading to eNOS dysfunction, insulin resist-
ance, and endothelial cell damage.
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Introduction

The accumulation of hepatic glucose production in response to 
insulin resistance (IR) and impaired glucagon signaling inhibi-
tion is a major contributor to type 2 diabetes and its complica-
tions [1, 2]. Defects in insulin signaling, a major feature of IR 
in obesity [3], disable pathways that normally inhibit hepatic 
glucose production; the resulting systemic hyperinsulinemia 
overstimulates hepatic lipid synthesis and storage [4]. In addition 
to the metabolic derangements of type 2 diabetes, patients have a 
2- to 4-fold increased lifetime risk of cardiovascular disease [5], 
owing largely atherogenic dyslipidemia induced by deranged 
hepatic lipid metabolism [6]. The endothelium is located on the 
inner surface of blood vessels and lymphatic vessels [7]. It can 
sense the chemical stimulation of cytokines in the blood and 
regulate vasomotor, inflammatory response, and coagulation 
activation [8, 9]. When IR occurs, the phosphorylation path-
way of phosphatidylinositol kinase/protein kinase B (PI3K/
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AKT) is drastically blocked [10], and endothelial cells become 
dysfunctional due to the lack of endothelial nitric oxide synthase 
(eNOS), thereby promoting the occurrence of atherosclerosis 
(AS) [11–13]. IR-mediated inflammatory responses and oxida-
tive stress jointly promote endothelial cell damage, which is an 
important pathological basis for the initiation of AS [14].

As a state of cell membrane invagination, plasma membrane 
microvesicles, also referred as caveolae, play an indispensable 
role in the physiology or pathology of various cells, such as 
cell proliferation, apoptosis, differentiation, angiogenesis, and 
migrate [15, 16]. Caveolin 1 (Cav1) is an essential protein com-
ponent of caveolins that is involved in caveolae stability, inter-
cellular material transport and signal transduction, endocytosis, 
and mitochondrial function control [17]. In addition to playing 
an important regulatory role in inflammation, Cav1 is a key mol-
ecule that regulates the insulin signaling pathway and affects IR 
[18–20]. Its mechanism is primarily through PKCzeta adsorp-
tion and activation of PKCzeta-PKB/Akt coupling, inducing 
insulin receptor substrate (IRS)/PI3k to activate PKCzeta and 
PKB/Akt signaling, and its downstream normal glucose trans-
port and glycogen synthesis [21]. Although vascular endothelial 
cells do not have biological functions such as glycogen synthe-
sis, glucose transport–related mechanisms do exist in endothelial 
cells [22]. PI3k/Akt is the upstream key signal that regulates the 
production of eNOS [23, 24]. Hence, combining the aforemen-
tioned mechanisms, we hypothesized that Cav1/PKCzeta may 
antagonize the activation of IRS1/PI3k on Akt, leading to eNOS 
dysfunction and endothelial cell damage.

Endothelial dysfunction appears to be a reversible process 
[25]. Nevertheless, to date, therapies for endothelial dys-
function have primarily focused on ameliorating identified 
AS risk factors rather than explicitly addressing endothe-
lium-based mechanism [26]. As a consequence, a thorough 
exploration of the pathological mechanisms of endothelial 
injury will facilitate the development of therapeutic strate-
gies targeting these pathways. Drugs that act on endothelial 
cells in AS-prone areas to reprogram the expression of their 
protective phenotype would be beneficial in slowing the pro-
gression of atherosclerotic lesions.

Methods and Materials

Rodent Modeling

Forty male C57BL/6J mice (aged 8 weeks, 15–20 g; Gem-
Pharmatech, Nanjing) were raised in the vivarium with a 
12-h light/dark cycle and ad libitum access to food and 
water. The ambient temperature was controlled at 18~26°C 
and the humidity was ~55%. The mice were randomly 
divided into four groups: control, AS model, Sh-NC + 
model, and Sh-Cav1 + model groups. The mouse tail vein 
was congested by wiping 75% alcohol, and 100 μL of 

Cav1 lentivirus or control lentivirus (Hlkbio, Wuhan) was 
injected to infect the aorta. High-fat diet (HFD) induced AS 
in mice, and the body weights of the mice were recorded. 
Thereafter, 8 weeks later, mice were euthanized and aortic 
tissue was collected.

Cell Culture and Handling

Human umbilical vein endothelial cells (HUVECs; 
ATCC) were cultured in an incubator (37°C, 95% air, and 
5% CO2). Dulbecco’s modified eagle medium (DMEM) 
with 10% inactivated calf serum was applied for culture. 
Cells were transfected with shRNAs to knock down 
Cav1. HUVECs were treated with ox-LDL (Yeasen, 
Shanghai) to induce oxidative stress, followed by ZIP 
(PKCzeta inhibitor, 1 μM; ab120993, Abcam) treatment 
for 40 min [27].

Blood Glucose and Insulin Testing

Tail vein puncture blood of mice induced by high-fat diet 
for 8 weeks was used as samples to detect blood glucose 
and insulin levels. Blood glucose was immediately meas-
ured using a glucometer. The remaining blood samples were 
centrifuged at 5000 rpm (4°C, 15 min), and the supernatant 
was harvested and stored at −80°C, and serum insulin levels 
were measured by ELISA. Homeostasis model assessment-
IR (HOMA-IR) index = blood glucose × insulin / 22.5.

Blood Lipid Parameters

Triglyceride (TG), total cholesterol (TC), high-density lipo-
protein (HDL-C), and low-density lipoprotein (LDL-C) in 
serum of mice were detected using a biochemical analyzer.

Oil Red O Staining

Frozen sections of aorta were stained with Oil Red O (Solar-
bio, Beijing) to assess the lipid deposition. Sections were 
rinsed with 60% isopropanol, stained with Oil Red O for 
10 min, differentiated with 60% isopropanol, and washed 
with water for 1–2 min. After counterstaining with hema-
toxylin for 3 min, microscopic examination (Olympus) was 
performed.

H&E Staining

Frozen sections of aorta were stained with hematoxylin 
solution for 5 min, differentiated with 1% hydrochloric acid 
alcohol for 2 s, and then stained with eosin for 2 min at room 
temperature. Sections were dehydrated with gradient alco-
hol and became transparent using xylene. Specimens were 
observed under a microscope.
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Immunofluorescence (IF)

The deparaffinized aortic slices were permeabilized in 0.1% 
Triton x-100 and antigen retrieved. After serum block-
ing, the aorta tissue sections were incubated with primary 
antibodies against eNOS (Servicebio, Wuhan, China) or 
E-selectin (Proteintech, Wuhan, China) and CD34 (Inv-
itrogen) overnight at 4°C, followed by FITC anti-rabbit 
(Proteintech) and FRITC anti-mouse secondary antibodies 
(Abcam). Slides were then counterstained with DAPI and 
results were examined with a fluorescence microscope.

Indicators of Oxidative Stress

Aorta tissues and HUVECs were lysed and then centrifuged 
to obtain the supernatant. Following the protein concentra-
tion determination with a Nano-300, the supernatant was 
regarded as sample for the measurement of ROS, MDA, and 
GSH levels using commercial kits (Beyotime, Shanghai). 
The values were calculated according to the absorbance 
obtained from the microplate reader (MD).

Western Blotting

Proteins were harvested from the tissue homogenate and 
HUVEC lysate, quantified by Nano-300 and denatured by 
boiling. After the separation and stacking gels were set up, 

samples were added to lanes, and electrophoresis was per-
formed to separate the proteins. PVDF membranes (Roche) 
with blots were obtained by electrotransfer system. The 
membranes were blocked in skimmed milk and hybridized 
with primary antibodies (against Cav1, PKCzeta, and PI3k/
Akt/NOS pathway–related proteins) and HRP-conjugated 
antibody (Abcam). Blots were visualized with the ECL rea-
gent (Millipore) and gray values were analyzed with ImageJ 
software.

Co‑IP

According to the same operation as above, tissue homogen-
ate and cell lysate were obtained. A total of 2.5 μg of PKC-
zeta or IgG antibody (Abcam) was added to 500 μg of lysate 
along with 10 μL of protein A+G magnetic beads (GenScript, 
Nanjing). The whole system was then swirled gently for 2 h to 
ensure adequate contact. Prior to routine western blot analysis, 
the supernatant was removed magnetically and the beads were 
boiled with SDS sample buffer at 95°C for 5 min.

GSH Pull‑Down

This assay was performed using the GST Pull-down Kit 
(K0077, Dia-an, Wuhan, China) according to the oper-
ating instruction. Purified GST-tagged PKCzeta pro-
tein (Proteintech Group) was used as a bait protein for 

Fig. 1   Cav1 on AS symptoms in mice. A The knockdown efficiency 
of lentivirus on Cav1 was evaluated by RT-qPCR. B The mouse 
body weights were recorded over an 8-week period. C Blood glucose 
and insulin were measured and HOMA-IR index was calculated. D 

Triglyceride (TG), total cholesterol (TC), high-density lipoprotein 
(HDL-C), and low-density lipoprotein (LDL-C) levels in the serum 
were detected using a biochemical analyzer. *P < 0.05, **P < 0.01, 
***P < 0.001
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binding to tissue or cell extracts. The bait protein was 
added to the prewashed gel and incubated on a shaker 
for 3 h. The extracts were added to the spin column and 
allowed to bind for 4 h. Protein complexes were washed 
4 times in buffer, dissociated by boiling in loading buffer 
prior to western blot analysis.

CCK8

HUVECs were treated with ox-LDL and ZIP as abovemen-
tioned, and then incubated with WST-8 reagent (GlpBio) for 
2 h. The absorbance (450 nm) was measured with a microplate 
reader.

ELISA

The supernatant of the HUVECs was centrifuged at 500 × 
g at 4°C for 5 min and then collected. The levels of IL-6, 
IL-1beta, and TNF-alpha were measured with the corre-
sponding ELISA kits (X-Y Biotechnology, Shanghai). The 
absorbance (450 nm) was recorded with a microplate reader.

Statistics Analysis

Data were presented and analyzed in the form of mean ± 
standard deviation in Prism 8.0. The Shapiro-Wilk test 
confirmed that the data were normally distributed, and 

Fig. 2   Cav1 on endothelial injury. A The degree of lipid deposi-
tion was revealed using Oil Red O staining. B Pathological damage 
of aorta was assessed using H&E staining. C The enrichment of 
eNOS in the aortic tissue was assessed using immunofluorescence, 

CD34 as an endothelial-specific marker, and DAPI to label nuclei. D 
The enrichment of E-selectin in the aortic tissue was assessed using 
immunofluorescence. E The levels of oxidative stress indicators were 
detected using kits. ***P < 0.001
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differences were analyzed by one-way or two-way ANOVA 
and Tukey’s test. P<0.05 means significance.

Results

Cav1 on AS Symptoms

The knockdown efficiency of lentivirus on Cav1 was evalu-
ated by RT-qPCR, and the result in the sh-Cav1#1 group was 
better than that in the #2 group; thus, sh-Cav1#1 was used 
in subsequent assays (Fig. 1A). Before and after 8 weeks of 

HFD induction, the body weights of the 4 groups of mice 
were recorded. The average body weight of mice in the nor-
mal group ranged from 21.2 to 29.5 g; the AS model group 
was from 21.4 to 32.4 g; the Sh-NC + Model group was 
from 21.3 to 32.1 g; and the Sh-Cav1 + Model group was 
from 20.9 to 30.8 g. Although there was a slight difference 
in body weight between the groups, the difference was not 
significant (Fig. 1B). However, the blood glucose, insulin, 
and calculated HOMA-IR index of mice in the model group 
were significantly higher than those in the control group. 
Compared with the Sh-NC + model, the Sh-Cav1 + model 
group exhibited no significant difference in blood glucose, 

Fig. 3   Two signaling pathways that regulate Akt. A The contents of 
Cav1, PKCzeta, and IRS1/PI3k/Akt/NOS pathway–related proteins in 
tissues were measured using western blotting. B Co-IP and C Pull-

down experiments were applied to evaluate the binding between 
PKCzeta and Akt. *P<0.05, **P<0.01, ***P<0.001
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whereas the insulin level and HOMA-IR decreased signifi-
cantly (Fig. 1C). Serum TG, TC, and LDL-C in the model 
group were all elevated, and those in the Sh-Cav1 + model 
group dropped compared with those in the Sh-NC + model 
group, whereas HDL-C was opposite (Fig. 1D).

Cav1 on Endothelial Injury

Oil Red O staining revealed that there was obvious lipid 
deposition in the aorta of the AS group, and the degree of 
lipid deposition in the Sh-Cav1 + model group was weaker 
than that in the Sh-NC + model group (Fig. 2A). H&E 
staining showed that the aortic wall in the AS group was 
obviously thickened, and the arrangement of cells was dis-
ordered, and Sh-Cav1 could reduce such endothelial injury 
(Fig. 2B). IF demonstrated that AS induced a decrease in 
the eNOS in the aortic tissue, and Sh-Cav1 could alleviate 
this to some extent (Fig. 2C). Whereas, endothelial injury 
marker E-selectin increased in the model group, and reduced 
in response to Sh-Cav1 compared with the Sh-NC + model 
group (Fig. 2D). In addition, ROS and MDA increased and 

SOD decreased in the AS group tissues, and Sh-Cav1 could 
alleviate the alterations of these oxidative stress indicators 
(Fig. 2E).

Signaling Pathways

The contents of Cav1, PKCzeta, and PI3k/Akt/NOS path-
way–related proteins in tissues were measured using west-
ern blotting. Cav1 and PKCzeta increased in the AS group, 
while p/t-IRS1, PI3K, p/t-Akt, and eNOS decreased in the 
AS group. Sh-Cav1 could significantly hinder the changes in 
these protein levels, indicating that this pathway was blocked 
(Fig. 3A). The results of Co-IP and Pull-down experiments 
displayed that PKCzeta could bind to Akt, AS promoted the 
Akt/PKCzeta ratio, and Sh-Cav1 reduced the Akt/PKCzeta 
ratio, which might be due to the reduced PKCzeta failing to 
produce sufficient antagonistic effect on Akt (Fig. 3B, C).

Validation of Functional Phenotypes

Treatment of ox-LDL induced HUVEC injury and gave ZIP 
treatment, and CCK8 assay revealed that ZIP increased the 

Fig. 4   Cav1 and ZIP on cellular phenotypes. A The viability of 
HUVECs was measured using the CCK8 assay. B Inflammatory fac-
tors IL-6, IL-1β, and TNF-α in cell supernatants were measured. C 

The levels of oxidative stress in HUVECs were detected using kits. 
*P<0.05, **P<0.01, ***P<0.001
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viability of untransfected cells; however, compared with the 
Sh-Cav1 + model group, ZIP decreased cell viability in the 
Sh-Cav1 + model + ZIP group (Fig. 4A). This was due to the 
fact that PKCzeta had a positive effect without being coupled 
by Cav1. Inflammatory factors IL-6, IL-1β, and TNF-α in cell 
supernatants were decreased by ZIP, and ZIP abolished the 
attenuation of inflammatory responses by Cav1 knockdown in 
HUVECs (Fig. 4B). Similarly, the degree of oxidative stress 
in HUVECs was attenuated by ZIP, which also abolished the 
suppression of oxidative stress by Cav1 knockdown (Fig. 4C). 

Western blot results revealed that ZIP did not significantly 
affect Cav1 enrichment, but significantly increased PI3k, p/t-
IRS1, and eNOS protein enrichment. In Cav1-knockdown 
HUVECs, ZIP significantly decreased p/t-IRS1 and p/t-Akt 
ratios, and slightly decreased PI3k and eNOS protein enrich-
ment (Fig. 5A). In addition, ZIP reduced Akt/PKCzeta ratio 
in the untransfected cells, but not significantly in sh-Cav1 
knockdown cells (Fig. 5B, C). This indicated that ZIP itself 
did not affect the binding of PKCzeta to Akt under Cav-1/
PKCzeta coupling.

Fig. 5   Cav1 and ZIP on signaling pathways. A The contents of 
Cav1, PKCzeta, and IRS1/PI3k/Akt/eNOS pathway–related proteins 
in HUVECs were measured using western blotting. B Co-IP and C 

Pull-down experiments were applied to evaluate the binding between 
PKCzeta and Akt in HUVECs. *P<0.05, **P<0.01, ***P<0.001
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Discussion

The sharp rise in AS cases poses a great threat to human 
health worldwide, and the risk of developing AS in people 
with metabolic diseases has increased significantly over 
the past few decades [28, 29]. IR has been identified as 
a pivotal mediator between metabolic diseases and AS. 
A growing number of investigators have proposed that 
regulation of IR is even closer to the pathogenesis of AS 
than lipid disturbances [30]. Pathologically, the decline 
of β-cell function and insulin action induces hyposensi-
tivity, which exacerbates lipid disorders, hyperglycemia, 
and abnormal fibrinolysis [31]. Abnormal adipocytes acti-
vate inflammatory responses by releasing pro-inflamma-
tory factors, and this subclinical systemic inflammatory 
response not only mediates IR, but also participates in 
plaque rupture and thrombosis during AS [32, 33]. Mean-
while, the persistent inflammatory response induced by 
increased circulating triglycerides, free fatty acids, and 
cholesterol drives endothelial cell dysfunction, which fur-
ther mediates alterations in insulin signaling pathways in 
muscle and liver tissue and disrupts glucose homeostasis 
[34].

An exogenous rise or an endogenous rise in blood glu-
cose in response to abnormalities in cellular receptors such 
as GLUT4 that regulate glucose energy metabolism can 
lead to a feedback rise in insulin [35, 36]. Long-term high 
insulin leads to impairment of insulin signaling pathway at 
the level of IRS-1, resulting in decreased glucose transport/
phosphorylation/metabolism, abnormal NO metabolism 
mechanism of vascular endothelial cells and smooth muscle 
cells, and inhibition of eNOS [37]. The down-regulation of 
eNOS leads to the reduction of NO biological activity, and 
its biological effects such as anti-infection, anti-oxidative 
stress, and inhibition of smooth muscle proliferation and 
migration are correspondingly weakened [38]; the reduc-
tion of NO bioavailability is accompanied by elevation in 
angiotensin II and free fatty acids, exacerbating levels of 
oxidative stress that can further worsen endothelial function 
[39–41]. In addition, the accumulated free radicals gener-
ated by lipid peroxidation in turn inhibit the bio-utilization 
of NO and promote the release of inflammatory factors and 
adhesion molecules [42]. This work delves further into the 
regulatory mechanisms that lead to IR, eNOS malfunction, 
and endothelial cell damage. That is, from the perspective 
of the IRS-1 signaling pathway, it displays the competitive 
antagonism between Cav1/PKCzeta and IRS1/PI3K. Their 
opposing effects on Akt activation destabilize NO produc-
tion and are of note in the development of therapeutics 
that rely on regulatory mechanisms. Nevertheless, further 
study is required before this insight may be converted into 
outcomes.

Although existing therapy choices are effective for AS 
and some of its consequences, novel therapeutic techniques 
are still desperately needed. Drug design and kinetic simu-
lations targeting Cav-1 appear to be a potentially fruitful 
strategy. Going forward, drugs acting on endothelial cells 
in AS-prone areas to reprogram the vasoprotective pheno-
type could counteract the effects of systemic risk factors 
(e.g., hypercholesterolemia). To sum up, Cav-1/PKCzeta 
influences insulin signaling and is directly linked to intrin-
sic vessel wall processes, emphasizing potential prospects 
for the development of selective therapeutics for endothelial 
dysfunction in the development of AS.
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