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Pure laparoscopic donor hepatectomy (PLDH) has become a standard practice for living donor liver 
transplantation in expert centers. Accurate understanding of biliary structures is crucial during PLDH 
to minimize the risk of complications. This study aims to develop a deep learning-based segmentation 
model for real-time identification of biliary structures, assisting surgeons in determining the optimal 
transection site during PLDH. A single-institution retrospective feasibility analysis was conducted on 
30 intraoperative videos of PLDH. All videos were selected for their use of the indocyanine green near-
infrared fluorescence technique to identify biliary structure. From the analysis, 10 representative frames 
were extracted from each video specifically during the bile duct division phase, resulting in 300 frames. 
These frames underwent pixel-wise annotation to identify biliary structures and the transection site. 
A segmentation task was then performed using a DeepLabV3+ algorithm, equipped with a ResNet50 
encoder, focusing on the bile duct (BD) and anterior wall (AW) for transection. The model’s performance 
was evaluated using the dice similarity coefficient (DSC). The model predicted biliary structures with a 
mean DSC of 0.728 ± 0.01 for BD and 0.429 ± 0.06 for AW. Inference was performed at a speed of 15.3 
frames per second, demonstrating the feasibility of real-time recognition of anatomical structures during 
surgery. The deep learning-based semantic segmentation model exhibited promising performance in 
identifying biliary structures during PLDH. Future studies should focus on validating the clinical utility 
and generalizability of the model and comparing its efficacy with current gold standard practices to 
better evaluate its potential clinical applications.
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Abbreviations
CV  Computer vision
PLDH  Pure laparoscopic donor hepatectomy
LDLT  Living donor liver transplantation
ICG  Indocyanine green
AW  Anterior wall
BD  Bile duct
DSC  Dice similarity coefficient
FPS  Frame per second
SDS  Surgical data science

Pure laparoscopic donor hepatectomy (PLDH) has emerged as the standard procurement practice for living donor 
liver transplantation (LDLT) in expert centers1–4. Given that PLDH influences both the donor and recipient’s 
postoperative outcomes, the procedure demands a refined technical approach, resulting in a prolonged learning 
curve5,6. A thorough anatomical understanding of donor bile duct division is critical during PLDH to prevent 
biliary complications, notably biliary leakage (3.3%) or stricture (1.6%) for donors7–9. To enhance comprehension 
of biliary structures, preoperative magnetic resonance cholangiopancreatography (MRCP) is deemed essential, 
while intraoperative image guidance techniques such as cholangiography or indocyanine green (ICG) near-infrared 
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fluorescence method are strongly advised2,10. However, intraoperative cholangiography (IOC) requires exposure to 
radiation, and ICG method entails infra-red (IR) camera and a device capable of processing IR images11.

Surgical data science (SDS) is an emerging field in data science that seeks to improve surgical outcomes by 
extracting valuable insights from various digitalized data generated throughout the entire process of surgical care 
process12,13. In particular, computer vision (CV), a subfield of artificial intelligence (AI), employs digital images 
or videos to train computers to understand and automate tasks typically performed by human visual system14. 
Recent studies have demonstrated impressive results, with CV models accurately interpreting anatomical 
structures, surgical instruments, and surgical procedures15–19.

With the potential of SDS and CV analysis to enhance clinical outcomes, we proposed the utilization of these 
technologies for providing intraoperative image guidance for better understanding of biliary structure during 
PLDH. This study aims to develop a deep learning-based semantic segmentation model capable of identifying 
biliary structures, thereby assisting in determining the optimal transection site.

Methods
Patients
This study is a single-institution retrospective feasibility analysis which includes 30 intraoperative videos of 
PLDH from Samsung Medical Center, utilizing the intraoperative ICG near-infrared fluorescence method 
between January 2021 and April 2022. Our center has extensive experience in PLDH, having performed over 
600 cases20. The surgical team consists of four experienced donor surgeons, although the videos included 
in this study were all from procedures performed by a single surgeon (GS. Choi). All donors were injected 
0.1 mg/kg of indocyanine green (Dianogreen, Daiichi Sankyo Co, Tokyo, Japan) intraoperatively about 30 min 
before exposure of the hilar plate21. The biliary structures were clearly visualized by using infra-red endoscopic 
camera (IR Telescopes 10 mm, Olympus, Tokyo, Japan). The types of bile ducts were classified according to 
the modified classification system proposed by Huang et al.: type I, normal type; type II, trifurcation of right 
anterior, right posterior, and left hepatic duct; type III, right posterior duct draining into left hepatic duct; type 
IV, early branching of right posterior duct from the common hepatic duct; type V, right posterior duct draining 
into cystic duct; type VI, other types of variation in bile duct anatomy22. For detailed information regarding our 
bile duct division technique, we refer readers to our previously published paper23. The study was conducted in 
accordance with the Declaration of Helsinki and the Istanbul Declaration, and was reviewed and approved by 
the Institutional Review Board (IRB, SMC-2022-07-149-001). Due to the retrospective nature of the study, IRB 
of Samsung Medical Center waived the need of obtaining informed consent.

Video segmentation and training dataset
The videos were recorded in MP4 format with a display resolution of 1920 × 1080 pixels and a frame rate of 30 
frames per second (fps). Frames were extracted at a rate of 10 fps from each video, capturing the period from bile 
duct isolation to the opening of anterior wall of right hepatic duct. This was achieved using ffmpeg 4.1 software 
(www.ffmpeg.org). Frames with obscured fields due to smoke, completely obscured biliary structures by surgical 
instruments, or camera positioned outside the surgical field were excluded. Finally, 300 images (10 images from 
each of the 30 intraoperative videos) were selected for the model training and validation. The five-fold cross-
validation was performed on 30 videos. For each validation cycle, four out of five groups (24 videos) were used 
to train the model, while the remaining group (6 videos) was reserved for validation. This process was repeated 
five times, with each group serving as the validation set once and as part of training set four times (Fig. 1).

Annotation of biliary structure
In every intraoperative video included in this study, biliary structures were confirmed using the indocyanine 
green (ICG) near-infrared fluorescence method (Fig.  2a,b). Pixel-wise labeling of biliary structure and 
transection site was performed with reference to the ICG fluorescence images from each intraoperative video. 
Annotations were completed using the Computer Vision Annotation Tool (www.cvat.org, Intel). The proposed 
model is designed to perform segmentation in two distinct ways. First, segmentation was carried out to mask 
the entire biliary structure, as predicted with reference to the ICG image (annotated as BD; bile duct, Fig. 2b,e). 
Second, annotation was performed to mask the anterior wall of the junction of common and right hepatic duct, 
which represents the area of interest for the operator when opening the bile duct (annotated as AW; anterior 
wall, Fig. 2c,f). Annotation was performed by fellow surgeon (N. Oh) and confirmed by senior surgeon who 
experienced more than 300 cases of PLDH (GS. Choi).

Deep learning model
The model architecture employed DeepLabv3+ as its foundation, with ResNet50 pre-trained on the ImageNet 
dataset serving as the encoder24–26. To address the limitation of a small dataset, data augmentation techniques 
such as geometric transformations (flips, rotations, etc.), color transformations (contrast, saturation, hue, etc.), 
and Gaussian noise and patch-based zero masking were applied. These augmentation techniques increased the 
DSC by 1.4% points compared to not using them (Supplementary Table 1). All data were normalized according 
to the mean and standard deviation of each RGB channel and resized to a pixel size of 256 by 256. The model’s 
hyperparameter details are provided in Supplementary Table 2.

Computing
We utilized Python as our programming language and Pytorch, an open-source machine learning framework, 
for segmentation AI modeling. The computational resources employed included an Nvidia GeForce RTXTM 
3060 with 12GB of VRAM as the GPU, and an AMD RyzenTM 5 5600X 6-Core Processor @ 3.7 GHz with 32GB 
of RAM as the CPU.
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Evaluation metrics
The model’s performance was assessed using the Dice Similarity Coefficient (DSC) between the manually 
segmentation and prediction by deep learning model, which calculates the harmonic mean of precision and 
recall. This metric demonstrates the extent to which the model’s predicted region overlaps with the ground truth 
image (Fig. 2d). The DSC ranges from 0 to 1, with higher values indicating a closer match between the predicted 
and ground truth images. In this study, the average DSC was calculated for two classes (BD and AW). The DSC 
is defined as follows:

DSC (Dice Similarity Coefficient) = 2×TP/(2×TP + FP + FN), precision = TP/(TP + FP), and recall = TP/
(TP + FN), where TP (True Positive) denotes cases where both the predicted and ground truth values are positive. 
FP (False Positive) refers to cases where the predicted value is positive, but the ground truth value is negative. FN 
(False Negative) represents cases where the predicted value is negative, but the ground truth value is positive.

Results
Patient characteristics in the entire cohort and each validation set are summarized in Table 1. Median age of the 
patients is 40.5 [29.5, 47.5, IQR], male patients were 16 (53.5%), female patients were 14 (46.7%). Type I bile duct 
was most common (23/30, 76.7%), type III (3/30, 10%) and IV (3/30, 10%) followed.

Table 2 represents the DSC values obtained during each validation of the semantic segmentation task for 
the BD and AW. The mean DSC of the five-fold cross-validation for BD was 0.728 ± 0.01, with the highest DSC 
of 0.758 achieved on the 1st validation set. The mean precision of BD was 0.713 ± 0.2 and the mean recall was 
0.746 ± 0.02. The mean DSC of AW was 0.429 ± 0.06, with the highest DSC of 0.513 in the 1st validation set. The 
mean precision of AW was 0.366 ± 0.07 and the mean recall was 0.528 ± 0.05. The proposed deep learning model 

Fig. 1. Schematic representation of five-fold cross-validation. Each row represents one of the five ‘folds’ used in 
the validation process, with a total of 30 patient videos divided into training and validation sets. The columns 
represent individual patient videos, each containing 10 images, as indicated by the numbers 1 through 30. 
Shaded boxes within each fold indicate the videos selected as the validation set for that particular cycle, with 
the remaining videos used as the training set. Each video serves as part of the validation set once throughout 
the five cycles, ensuring that every video contributes to the validation of the model, while being used four 
times in the training set.
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Patient characteristics Total (N = 30) 1st val set (n = 6) 2nd val set (n = 6) 3rd val set (n = 6) 4th val set (n = 6) 5th val set (n = 6)

Age (median, IQR) 40.5 [29.5, 47.5] 42.5 [36.8, 45.2] 41.0 [30.8, 53.5] 27.0 [26.0, 33.2] 47.0 [43.0, 49.5] 40.5 [35.5, 48.5]

Sex (%)

 M 16 (53.3) 2 (33.3) 5 (83.3) 6 (100.0) 1 (16.7) 2 (33.3)

 F 14 (46.7) 4 (66.7) 1 (16.7) 0 (0.0) 5 (83.3) 4 (66.7)

BMI (median, IQR) 23.8 [23.0, 27.1] 23.9 [23.4, 27.6] 23.2 [22.0, 23.8] 24.6 [22.3, 26.2] 26.8 [24.4, 27.4] 24.9 [21.9, 27.0]

Type of bile duct (%)

 I 23 (76.7) 5 (83.3) 5 (83.3) 6 (100.0) 4 (66.7) 3 (50.0)

 II 0 0 0 0 0 0

 III 3 (10.0) 1 (16.7) 1 (16.7) 0 (0.0) 1 (16.7) 0 (0.0)

 IV 3 (10.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (16.7) 2 (33.3)

 V 0 0 0 0 0 0

 VI 1 (3.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (16.7)

Number of duct opening (%)

 1 24 (80) 5 (83.3) 5 (83.3) 6 (100.0) 4 (66.7) 4 (66.7)

 2 6 (20) 1 (16.7) 1 (16.7) 0 (0.0) 2 (33.3) 2 (33.3)

Hospitaled day (median, IQR) 7.0 [6.0, 8.0] 7.5 [7.0, 8.0] 7.0 [6.2, 8.5] 6.5 [5.2, 7.8] 7.5 [5.5, 8.0] 6.0 [6.0, 6.0]

Table 1. Baseline characteristics of entire cohort and each validation set. The types of bile ducts: type I, normal 
type; type II, trifurcation of right anterior, right posterior, and left hepatic duct; type III, right posterior duct 
draining into left hepatic duct; type IV, early branching of right posterior duct from the common hepatic duct; 
type V, right posterior duct draining into cystic duct; type VI, other types of variation in bile duct anatomy. Val 
validation, IQR interquartile ratio, M male, F female.

 

Fig. 2. Ground truth annotation process. This figure illustrates the step-by-step process of creating 
ground truth annotations for the biliary structure segmentation by referencing indocyanine green (ICG) 
cholangiography. (a) Actual surgical images extracted from the procedure, (b) Structures of the bile duct 
extracted from ICG cholangiography, (c) The actual site where the bile duct was transected during surgery, (d) 
Demonstrates the Dice Similarity Coefficient (DSC), quantitatively showing the level of agreement between the 
ground truth and the AI-inferred regions, (e) Manual segmentation of the bile duct structure, generated with 
reference to (b), (f) Segmentation of the anterior wall, representing the proposed area for bile duct transection, 
created with reference to (c).
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operated at a speed of over 15.3 FPS. Representative images of the semantic segmentation results are presented 
in Fig. 3 and supplementary Fig. 1.

Our model was subsequently tested on five new PLDH cases, using videos that the deep learning model had 
never encountered previously. The outcomes of these test sets are presented in Fig. 4. The BD and AW prediction 
made by the proposed model for all five test sets are visualized in Fig. 4b. The actual transection sites during 
operations are shown in Fig. 4d. In all cases, the actual transection sites were located within the AW proposed 
by the model. The corresponding five test videos are available for the following links (Test_01, https://youtu.
be/Wu7--pndgho; Test_02, https://youtu.be/oNjOpZCZp-M; Test_03, https://youtu.be/ccZogB_H_0k; Test_04, 
https://youtu.be/wx3Ya9ubQ9I; Test_05, https://youtu.be/JbOzNiDkusc).

Discussion
This study was conducted to assess the feasibility of employing an AI model for the delineation of biliary 
structures and the identification of optimal transection site during PLDH. The proposed AI model predicted 
biliary structures with a mean DSC of 0.728 ± 0.01 and transection sites with a DSC of 0.429 ± 0.06. Notably, the 
model performed real-time inference at a speed of 15.3 FPS, demonstrating that deep learning-based real-time 
recognition of anatomical structures during surgery is feasible approach. To further the research in this field and 
allow for external validation, we have made the AI model’s codebase available in a public repository (https://
github.com/SMC-SSISO/Bile-Duct-Segmentation), inviting collaborators and researchers to engage with our 
work and contribute to its ongoing development and refinement.

Recent advancements in computer vision analysis for surgical imaging have demonstrated significant 
progress, particularly in the application of segmentation to guide intraoperative anatomy across various surgical 
procedures27. The DSC (Dice similarity coefficient) measures the extent to which the predictions made by AI 
match the actual structures, with values ranging from 0 to 1, as a value closer to 1 signifies a greater performance 
of the AI’s prediction. Within the realm of surgical imaging segmentation, studies have reported a spectrum of 
DSC values from 0.58 to 0.79. For instances, research on prostate segmentation during transanal total mesorectal 
excision (TaTME) reported an average DSC of 0.71 ± 0.04, while studies focusing on the masking of the inferior 
mesenteric artery (IMA) during colorectal resection yielded a mean DSC of 0.798 ± 0.016119,28. Furthermore, 
investigations into masking the recurrent laryngeal nerve (RLN) in esophagectomy achieved an average DSC 
of 0.5815. All these studies utilized the DeepLabV3+ model, as did our study. Our AI model achieved a DSC of 
0.728 ± 0.01 for bile duct segmentation, reflecting a comparable level of accuracy to those previously reported 
researches, despite the constraints of a limited sample size.

The primary goal of employing computer-aided anatomy recognition, as explored in this study, is to 
augment surgical precision by enabling surgeons to more accurately identify critical anatomical structures. 
This technological advancement aims to decrease the incidence of adverse events and complications, ultimately 
improving overall surgical outcomes29. To establish the clinical efficacy of this kind of intraoperative decision 
support tool, it is crucial to demonstrate that it not only comparable but potentially surpasses the safety and 
effectiveness of existing techniques. In the context of PLDH, the conventional standard involves using ICG 
or intraoperative cholangiography (IOC) for bile duct division7. On the other hands, the implementation of a 
computer vision-based cholangiography system may hold significant potential benefits. If further validated, this 
approach may eliminate the need for administrating ICG to patients and using IR cameras for its visualization. 

Validation set DSC Precision Recall

1st

 BD 0.758 0.735 0.782

 AW 0.513 0.482 0.579

2nd

 BD 0.728 0.737 0.719

 AW 0.424 0.355 0.525

3rd

 BD 0.726 0.734 0.719

 AW 0.397 0.302 0.575

4th

 BD 0.723 0.677 0.777

 AW 0.339 0.282 0.423

5th

 BD 0.706 0.683 0.731

 AW 0.475 0.409 0.568

Mean (SD)

 BD 0.728 (0.01) 0.713 (0.2) 0.746 (0.02)

 AW 0.429 (0.06) 0.366 (0.07) 0.528 (0.05)

Table 2. The performance of the AI model for each validation according to the annotation type AI, artificial 
intelligence; DSC, Dice similarity coefficient; BD, bile duct; AW, anterior wall; SD, standard deviation.
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Currently, IOC requires the use of a C-arm, leading to unwanted radiation exposure for patients. In contrast, a 
computer vision-based system for cholangiography identification offers the distinct advantage of not subjecting 
patients to additional radiation or IV ICG. By interfacing the laparoscopic image hub system with a computer, 
real-time inference results can be visualized directly during surgery. Therefore, future research should focus on 
comparing the new deep learning-based method of bile duct recognition with these established techniques to 
justify the integration of new technology into routine surgical practice30.

In this study, a supervised learning approach was utilized to train a computer vision model to segment biliary 
structure. This approach necessitates the use of precise and consistent ground-truth labels, which are created 
by human annotators. Particularly in computer vision application, this process involves manual, pixel-by-pixel 
annotation of regions of interest within raw images. The performance of the computer vision model is heavily 
reliant on this input data. However, due to inherent human biases, annotations may vary among annotators, and 
even within the work of a single annotator, inconsistencies may arise from individual errors31. Consequently, it 
is important to recognize that models trained on these data may also exhibit biases and errors32. To reduce the 
effects of human bias and error in the data, alternative approaches like unsupervised or self-supervised learning 
can be considered. These methods enable the model to discern and learn from the intrinsic structure of the data 
without relying extensively on human-generated labels. This approach can diminish the influence of potential 
biases and errors, enhancing the model’s objectivity and reliability33.

The limitations of this study include its experimental feasibility nature, which primarily focuses on 
determining whether a deep learning model can effectively recognize biliary structures, without demonstrating 
its actual clinical utility. To establish the model’s clinical value, a comparison with the current gold standard 
practice is necessary. Additionally, the DSC of AW was relatively low compared to BD. This can be attributed to 
AW’s smaller area and elongated shape, which result in a significantly lower DSC value, even with minor errors. 

Fig. 3. Results of segmentation for bile duct (BD) and anterior wall (AW) in the validation set. From left, the 
first images are original images of the validation set, the second are the ground truth of the target area (BD, 
AW) corresponding to the original images, the third are the predicted image by the deep learning model after 
receiving the original image as an input. The fourth images are the predicted images overlaid onto the original 
images. Black corresponds to the background, blue to BD, and green to AW. For further insights into the 
interpretability of these results, please refer to supplementary Fig. 1, which provides heatmap visualizations to 
enhance the understanding of the segmentation outcomes.
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Furthermore, the variability in bile duct anatomy types may affect the model’s performance. It is important to 
note that surgery is a dynamic procedure with bleeding or bile leaks, which can affect the surgical field and, 
consequently, the AI model’s performance. The model was trained on 30 surgical videos from a single surgeon in 
a retrospective study, lacking external validation, which restricts the generalizability of the model. To overcome 
this limitation and to validate the applicability of this approach, there is a need for a multicenter, multisurgeon 
international study group. Such a collaborative effort would facilitate the collection of a more diverse and 
extensive dataset, reflecting a wider range of surgical techniques and patient anatomies.

Conclusion
The deep learning-based semantic segmentation model exhibited promising performance in identifying biliary 
structure during PLDH. Further study should focus on validating the clinical utility and generalizability of 
the model and comparing its efficacy with current standard practices to better evaluate its potential clinical 
applications.

Data availability
The data that support the findings of this study are not openly available due to reasons of sensitivity and are 
available from the corresponding author upon reasonable request.
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