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Abstract
BACKGROUND 
Pancreatic cancer is one of the most lethal malignancies, characterized by poor 
prognosis and low survival rates. Traditional prognostic factors for pancreatic 
cancer offer inadequate predictive accuracy, often failing to capture the com-
plexity of the disease. The hypoxic tumor microenvironment has been recognized 
as a significant factor influencing cancer progression and resistance to treatment. 
This study aims to develop a prognostic model based on key hypoxia-related mo-
lecules to enhance prediction accuracy for patient outcomes and to guide more 
effective treatment strategies in pancreatic cancer.

AIM 
To develop and validate a prognostic model for predicting outcomes in patients 
with pancreatic cancer using key hypoxia-related molecules.

METHODS 
This pancreatic cancer prognostic model was developed based on the expression 
levels of the hypoxia-associated genes CAPN2, PLAU, and CCNA2. The results 
were validated in an independent dataset. This study also examined the corre-
lations between the model risk score and various clinical features, components of 
the immune microenvironment, chemotherapeutic drug sensitivity, and metabo-
lism-related pathways. Real-time quantitative PCR verification was conducted to 
confirm the differential expression of the target genes in hypoxic and normal 
pancreatic cancer cell lines.

RESULTS 
The prognostic model demonstrated significant predictive value, with the risk 
score showing a strong correlation with clinical features: It was significantly 
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associated with tumor grade (G) (bP < 0.01), moderately associated with tumor stage (T) (aP < 0.05), and signi-
ficantly correlated with residual tumor (R) status (bP < 0.01). There was also a significant negative correlation 
between the risk score and the half-maximal inhibitory concentration of some chemotherapeutic drugs. Further-
more, the risk score was linked to the enrichment of metabolism-related pathways in pancreatic cancer.

CONCLUSION 
The prognostic model based on hypoxia-related genes effectively predicts pancreatic cancer outcomes with 
improved accuracy over traditional factors and can guide treatment selection based on risk assessment.

Key Words: Pancreatic cancer; Hypoxia; Prognostic model; Immune microenvironment; Metabolism pathway
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Core Tip: In this study, a prognostic model based on the expression levels of the hypoxia-related genes CAPN2, PLAU, and 
CCNA2 was developed for pancreatic cancer. Compared with traditional methods, the model demonstrated superior 
predictive accuracy, and the model risk score was strongly correlated with clinical features such as cancer stage and tumor 
size. The risk score was also significantly associated with chemotherapy drug sensitivity and metabolic pathway activity. 
These findings highlight the model's potential to enhance personalized treatment selection and improve prognosis.
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INTRODUCTION
Among cancers, pancreatic cancer has a highly unsatisfactory prognosis worldwide and has the third-highest mortality 
rate in the United States; it has a very high degree of malignancy[1]. According to statistics, the 5-year survival rate of 
patients with pancreatic cancer is less than 5%[2]. It is very aggressive and characterized by dense interstitial tissue, 
severe hypoxia, and an immunosuppressive microenvironment[3], and its rapid progression, late onset of symptoms, and 
lack of specific diagnostic methods are the main reasons for its poor prognosis[4]. Past studies have investigated some of 
the regulatory mechanisms and signalling pathways involved in pancreatic cancer. In recent years, diagnostic and the-
rapeutic methods have been partially improved with the development of related research, but the low 5-year survival rate 
still indicates the need for a new model[5].

The tumor microenvironment, which encompasses the cellular milieu in which tumors subsist, proliferate, and 
infiltrate, has garnered increasing amounts of scholarly interest due to the expanding recognition of its pivotal role in 
facilitating intricate interactions between tumors and adjacent microenvironments[6]. Within the context of pancreatic 
cancer, the microenvironment comprises a minor subset of malignant cells, while fibroblasts, extracellular matrix, 
endothelial cells, and haematopoietic cells are highly abundant; these components collectively form the intricate pan-
creatic cancer microenvironment[7]. The formation of an anoxic microenvironment in tumors is mainly due to the high 
and rapid oxygen consumption of tumors, and the growth of new capillaries is not yet possible, resulting in an anoxic 
state in the interior of tumors[8]. Moreover, pancreatic cancer highly promotes hyperplasia of connective tissue, which is 
also an important reason for the formation of an anoxic tumor microenvironment in pancreatic cancer patients. For many 
patients, intratumoral hypoxia has an adverse effect on prognosis because it is associated with tumor aggressiveness and 
distant metastasis[9].

The interaction between tumors and the immune system plays a crucial role in the initiation, progression, and treat-
ment of cancer[10]. tumor-associated immune cells may have antitumor or protumor functions[11]. While antitumor 
immune cells frequently exhibit efficacy in targeting and eliminating tumor cells during the initial phases of tumor 
development, certain cancer cells eventually manage to evade immune surveillance and actively inhibit the cytotoxic 
functions of antitumor immune cells through a variety of mechanisms[12]. These findings suggest that the tumor immune 
microenvironment plays a role in tumor regulation.

Hypoxia and the immune microenvironment play important roles in the tumor microenvironment of pancreatic cancer 
and in the progression of pancreatic cancer. Through bioinformatics analysis, we conducted screening to identify genes 
associated with hypoxia in pancreatic cancer and constructed a prognostic model linked to hypoxia, aiming to elucidate 
the influence of the prognostic model risk score on the immune microenvironment. This study provides new insights into 
the prognosis and treatment of pancreatic cancer.

https://www.wjgnet.com/1007-9327/full/v30/i36/4057.htm
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MATERIALS AND METHODS
Cell culture and reagents
The human pancreatic cancer cell line (PANC-1) human pancreatic cancer cell line and the human telomerase reverse 
transcriptase-immortalized human pancreatic nestin-expressing (hTERT-HPNE) normal pancreatic ductal cell line were 
stored in the repository of the Department of Hepatobiliary and Pancreatic Medicine at the Affiliated Hospital of Qingdao 
University (originally obtained from Procell Life Science & Technology). PANC-1 and hTERT-HPNE cells were cultured 
in DMEM supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin (P/S) (Meilunbio) in a humidified 
incubator at 37 °C with 5% carbon dioxide. To induce a hypoxic environment, PANC-1 cells were subjected to 24 hours of 
culture in an anoxic setting using the Ruskinn Invivo 2400 Hypoxia Workstation.

Search for genes involved in hypoxia
Using gene expression profiling interactive analysis 2 (GEPIA2)[13], we systematically explored the unique gene 
expression patterns in pancreatic cancer utilizing the log2FoldChange (logFC) and P value as criteria for screening differ-
entially expressed genes (DEGs). Genes with P < 0.05 were considered to be differentially expressed, with log2 fold 
change (log2FC) > 2 denoting upregulation and log2FC < -2 indicating downregulation. Next, the top ranked genes were 
visualized using volcano plots.

Identification of prognostic genes
We used the clusterProfiler package (for enrichment analysis), the msigdbr package (reference gene set sources), and 
molecular signatures database (MSigDB) gene sets for Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis of DEGs. The genes enriched in pathways and gene sets related to hypoxia were further 
investigated.

We constructed a protein-protein interaction (PPI) network composed of genes related to the above hypoxia pathways 
via search tool for the retrieval of interacting genes/proteins (STRING)[14].

We used the “betweenness” algorithm to calculate the scores of hypoxia-related genes in the PPI network. Using the 
"survival" package, we performed univariate Cox regression analysis of the top 30 genes.

Construction of a prognostic model
We used the "betweenness" algorithm to assess the betweenness among "30 genes related to hypoxia and performed 
univariate Cox regression analysis to assess the betweenness among prognostic genes with P < 0.05. We then used 
prognostic least absolute shrinkage and selection operator (LASSO) coefficients to screen these hypoxia- and prognosis-
related genes to construct a prognostic model. Specifically, we constructed a LASSO prognostic model, calculated the 
lambda value of the model, calculated the coefficient of the variable according to the lambda value, and identified 
variables with coefficients of 0 by screening and excluded them. In the prognostic model, a coefficient of 0 indicates that 
there is no correlation between the variables; therefore, these variables have no real significance in the prognostic model.

Relevant RNAseq data and clinical information for pancreatic adenocarcinoma (PAAD) patients were obtained from 
the cancer genome atlas (TCGA) database (https://portal.gdc.cancer.gov). Employing the "glmnet" package, we inte-
grated survival time, survival status, and gene expression data (Supplementary Table 1). The LASSO coefficient screening 
process was used to assess the statistics corresponding to each lambda value, facilitating variable selection for the 
construction of the prognostic model. Analysis of overall survival (OS) was performed for PAAD patients into high-risk 
and low-risk groups based on the median risk score. Utilizing the "time-dependent receiver operating characteristic 
(ROC)" software package, we generated a ROC curve to assess the prognostic efficacy of the model.

Validation of the prognostic model
To validate our model, we conducted cross-validation using the GSE62452 dataset (Supplementary Table 2). Simultan-
eously, we employed the "rms" and "survival" packages to compare the model's predictions with against actual outcomes, 
graphically representing the model's actual and predicted probabilities under diverse conditions. To assess the prognostic 
superiority of the model over conventional clinical scoring systems, ROC curves were generated for risk scores and 
relevant clinical variables using the "pROC" software package. Univariate Cox analyses were also conducted for cli-
nicopathological characteristics, including histological grade and T stage, to evaluate the factors with predictive po-tential 
for inclusion in the risk score model.

Correlation of clinical prognostic factors with the risk score based on the model
In addition, we analysed the correlation between the risk score derived from our prognostic model and the clinical 
characteristics of TCGA-PAAD patients. Patients were stratified based on clinical features, and the associations between 
the risk score and these features in the TCGA-PAAD cohort were thoroughly examined.

Analysis of the infiltration level of immune cells
Using the Single-sample Gene Set Enrichment Analysis algorithm from the "Gene Set Variation Analysis (GSVA)" 
package[15], we evaluated the association of infiltrating immune cells with the risk score based on the prognostic model 
by employing the 24 immune cell markers detailed in the Immunity article[16]. Moreover, the expression levels of im-
mune checkpoint molecules in TCGA-PAAD patients were assessed.

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://f6publishing.blob.core.windows.net/2e23001b-3226-4b65-a2a6-6e76417ca513/99136-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2e23001b-3226-4b65-a2a6-6e76417ca513/99136-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2e23001b-3226-4b65-a2a6-6e76417ca513/99136-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2e23001b-3226-4b65-a2a6-6e76417ca513/99136-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2e23001b-3226-4b65-a2a6-6e76417ca513/99136-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2e23001b-3226-4b65-a2a6-6e76417ca513/99136-supplementary-material.pdf
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Figure 1 Identification and enrichment analysis of differentially expressed genes in the GEPIA2 dataset. A: Genes differentially expressed in 
pancreatic cancer according to GEPIA2; upregulated in red (2457 upregulated genes) and downregulated in blue (2457 upregulated genes (158 downregulated 
genes); B: Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of the differentially expressed genes in the GEPIA2 pancreatic 
cancer dataset.

Using the TCGA-PAAD matrix, the linear ridge function of the ridge package was used for ridge regression analysis to 
predict the sensitivity of patients to specific drugs. When risk group was considered, the groups displayed differences in 
drug sensitivity.

Differential enrichment of signalling pathways between hypoxia-related risk groups
The "limma" package was used to analyse the difference between the high- and low-risk groups for hypoxia. After the 
analysis, the DEGs between risk groups were extracted for gene set enrichment analysis (GSEA). The "KEGG representa-
tional state transfer (KEGGREST)" package was used to extract metabolism-related pathways and their related genes from 
the KEGG database. The enrichment levels of metabolism-related pathways in different hypoxia risk groups were 
analysed via GSVA.

Real-time quantitative PCR
Total RNA was extracted from PANC-1, hypoxic-treated PANC-1, and hTERT-HPNE cells via incubation in Tri-Reagent 
(TRIzol) (Invitrogen); reverse transcription was performed using the PrimeScript RT-PCR Kit (Takara, Japan), and RT-
qPCR was conducted on an Agilent AriaMX (Agilent) employing SYBR Green (SYBR) (Takara, Japan). Supplementary 
Table 3 contains the sequences of primers used in this study.

Statistical analysis
A paired t test or unpaired t test was used to compare experimental data between groups, and one-way analysis of 
variance was used to compare multiple groups. The figures were generated using GraphPad Prism 7 (GraphPad Soft-
ware, Inc., La Jolla, CA, United States) and Photoshop software (Adobe, Version CS5.1).

RESULTS
Search for genes associated with hypoxia
Through gene expression analysis, a comprehensive screening process identified 9221 DEGs, consisting of 2457 upre-
gulated genes and 158 downregulated genes (Figure 1A). We analyzed the enrichment of the 9211 DEGs in hypoxia-
related pathways via GO and KEGG analyses (Figure 1B). The DEGs were enriched in the response to hypoxia pathway 
(GO: 0001666, 81 genes identified in total) (Figure 2A).

We identified 30 genes involved in the hypoxia pathway via screening with the STRING database (Figure 2B). Genes 
with P < 0.05 were identified by screening via univariate Cox regression analysis of key hypoxia-related genes (Supple-
mentary Table 4).

Construction of a prognostic model
A prognostic model was developed for all cancer samples in the training set, and the risk score was calculated as follows: 
Risk score = 0.00701516690012852 × CAPN2 + 0.163284368708758 × PLAU + 0.317555399984732 × CCNA2 (Figure 3A and 
B). To assess the ability of our model to predict pancreatic cancer prognosis, 178 patients were categorized into high-risk 
(n = 89) and low-risk (n = 89) groups (Figure 3C). Cox regression analysis demonstrated a statistically significant dif-
ference in the distribution of survival time between the risk groups (P = 0.005) (Figure 3D) and indicated a poorer 
prognosis in the high-risk group. Additionally, CAPN2, PLAU, and CCNA2 exhibited higher expression levels in the high-

https://f6publishing.blob.core.windows.net/2e23001b-3226-4b65-a2a6-6e76417ca513/99136-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2e23001b-3226-4b65-a2a6-6e76417ca513/99136-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2e23001b-3226-4b65-a2a6-6e76417ca513/99136-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2e23001b-3226-4b65-a2a6-6e76417ca513/99136-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2e23001b-3226-4b65-a2a6-6e76417ca513/99136-supplementary-material.pdf
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Figure 2 Visualization of genes associated with hypoxia pathways. A: The protein-protein interaction network of the proteins related to the Gene 
Ontology (GO): 0001666 gene set; B: The direct interactions among thirty genes in GO: 0001666 were assessed via the “betweenness” algorithm.
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Figure 3 Risk score analysis, prognostic performance, and survival analysis based on the prognostic model. A: Least absolute shrinkage and 
selection operator (LASSO) regression analysis with tenfold cross-validation was performed to construct a model based on 3 hypoxia-related genes; B: The 
coefficient distribution in the LASSO regression model; C: Risk scores and survival time distribution of patients in the cancer genome atlas-pancreatic 
adenocarcinoma (TCGA-PAAD) cohort stratified by the risk score of the hypoxia-related model; D: Kaplan-Meier analysis of overall survival (OS) for the risk groups in 
the TCGA-PAAD cohort (P = 0.005); E: The receiver operating characteristic curves of the risk score model for predicting 1-year [area under the curve (AUC) = 
0.687], 3-year (AUC = 0.749), and 5-year (AUC = 0.796) OS in the TCGA-PAAD cohort.

risk group and lower expression levels in the low-risk group (Figure 3C). Time-dependent ROC curve analysis revealed a 
1-year area under the curve (AUC) (which indicates prognostic accuracy) of 0.687 (95%CI: 0.6158-0.8084), a 3-year AUC of 
0.749 (95%CI: 0.5969-0.8341), and a 5-year AUC of 0.796 (95%CI: 0.6218-0.9497) for OS (Figure 3E). These findings suggest 
that the hypoxia-related gene-based prognostic model can effectively predict the prognosis of pancreatic cancer.

Validation of prognostic model
To assess the precision of the established prognostic model, an additional validation dataset on 65 patients with pan-
creatic cancer (GSE62452) was assessed. The risk score was computed using the same formula used for the training 
cohort, and the patients in the validation cohort were stratified into a high-risk subgroup (n = 33) and a low-risk sub-
group (n = 32) based on the median risk score (Figure 4A). Like in the training cohort, in the high-risk cohort, patients 
exhibited significantly shorter survival (P < 0.001) (Figure 4B). Time-dependent ROC curve analysis revealed a 1-year 
AUC (indicating prognostic accuracy) of 0.765 (95%CI: 0.463-0.7643) and a 3-year AUC of 0.849 (95%CI: 0.6934-0.9195). 
The 5-year AUC for OS was 0.809 (95%CI: 0.6053-1.0127) (Figure 4C). These validation results reinforce the robustness of 
our prognostic model across distinct datasets.

Furthermore, calibration curves were generated, revealing the congruence of our model with the observed survival 
patterns in patients with PAAD (Figure 4D). The results of the formulation of a nomogram incorporating risk scores and 
conventional prognostic factors (Figure 4F) revealed that our model displayed an increased AUC compared to that of 
traditional clinical parameters (Figure 4F). This finding emphasizes the heightened predictive accuracy of our model, 
underscoring its potential as a robust tool for clinical prognostication.

Correlations of clinical prognostic factors with the model risk score
When the correlations between the risk score associated with hypoxia and the clinicopathological characteristics of 
TCGA-PAAD patients were analysed, the risk score was found to be closely associated with tumor stage (T) (Figure 5A), 
tumor grade (G) (Figure 5B), and residual tumor status (R) (Figure 5C). These results underscore the potential of our 
prognostic model to discern and stratify risk across patients with various clinical features, providing valuable insights 
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Figure 4 Analysis of the risk score model and its prognostic performance of the validation set prognostic model. A: The risk score and 
survival time distribution of hypoxia-related genes in the verification cohort; B: Kaplan-Meier survival analysis of overall survival (OS) between risk groups in the 
verification cohort (P < 0.001); C: The verification set receiver operating characteristic (ROC) curves of the risk scoring model for predicting 1-year [area under the 
curve (AUC) = 0.765], 3-year (AUC = 0.845), and 5-year OS (AUC = 0.809) survival; D: Nomogram calibration curves for predicting 1-year, 3-year, and 5-year OS in 
the cancer genome atlas-pancreatic adenocarcinoma cohort; E: ROC curves for the prediction of survival based on the risk score and other variables (M, N, T, age, 
pathologic stage, residual tumor, neoplasm histologic grade, and LASSO-derived risk score); F: Nomogram of the risk score and traditional prognostic factors. AUC: 
Area under the curve.

into the heterogeneity of PAAD.

Analysis of the infiltration levels of immune cells
We found that the proportions of macrophages, T helper 1 cells (Th1) , activated dendritic cells (aDCs), “natural killer 
CD56bright cells (NK CD56bright cells) and T helper 2 cells (Th2) were higher in the high-risk group, while those of T 
helper 17 cells (Th17), plasmacytoid dendritic cells (pDCs), eosinophils, t follicular helper (TFH), mast cells, CD8 T cells, 
immature dendritic cells, T cells, B cells, cytotoxic cells and Tem cells were lower in the high-risk group (Figure 6A).

We also found that cluster of CD276, TNFSF4, CD70, TNFSF9, CD44, CD80, CD274, CD40, TNFRSF9, PDCD1 LG2, 
LGALS9, CD86, HHLA2, HAVCR2, NRP1, TNFRSF18, TNFRSF4, IDO1 and CD160 were differentially expressed between 
high-risk and low-risk patients grouped according to our model (Figure 6B).

We also explored the relationship between the hypoxia-related risk score and the effect of chemotherapy on PAAD 
treatment. We found that the half-maximal inhibitory concentrations (IC50) of the chemotherapy drugs cisplatin and 
paclitaxel were lower in the high-risk group (Figure 6C).

Differential enrichment of signal pathways between hypoxia-related risk groups
GSEA revealed enrichment of pathways related to tumor progression and immunity in the high-risk group (Figure 7A), 
whereas pathways associated with tumor progression and immunity were less enriched in the low-risk group (Figure 7B). 
Our GSVA further revealed substantial alterations in metabolic pathways among the distinct hypoxia risk groups 
(Figure 7C). This comprehensive examination sheds light on the intricate interplay between hypoxia, the immune res-
ponse, and metabolic dynamics in pancreatic cancer, offering valuable insights into potential therapeutic avenues.

RT-qPCR
The RT-PCR results revealed that CCNA2 was highly expressed in PANC-1 cells and hTERT-HPNE cells (Figure 8A). The 
expression levels of CCNA2 in PANC-1 cells subjected to hypoxia was greater than those in untreated cells (Figure 8B). 
Similarly, PLAU was highly expressed in PANC-1 cells and hTERT-HPNE cells (Figure 8C), the expression levels of 
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Figure 5 Association between clinical features and the risk score in the cancer genome atlas-pancreatic adenocarcinoma dataset. A: T 
stage (T1 and T2 vs T3 and T4); B: G stage (G1 and G2 vs G3 and G4); C: Residual tumor status (R0 vs R1 and R2). aP < 0.05, bP < 0.01.

CCNA2 in PANC-1 cells subjected to hypoxia was greater than those in untreated cells (Figure 8D). Additionally, CAPN2 
was highly expressed in both PANC-1 cells and hTERT-HPNE cells (Figure 8E), the expression levels of CCNA2 in PANC-
1 cells subjected to hypoxia was greater than those in untreated cells (Figure 8F).

DISCUSSION
Pancreatic cancer mainly originates from the pancreatic ductal epithelium; its symptoms are not obvious, and it is 
difficult to diagnose this disease early[17]. It has a very poor prognosis and a high mortality rate worldwide[18]. Its onset 
is insidious, and there are no specific symptoms at the beginning of the disease; once there are obvious symptoms, most 
tumors have reached the advanced stage, which is one of the reasons for the poor prognosis of pancreatic cancer[19]. In 
this context, identifying new high-efficiency prognostic models that contribute to clinical diagnosis, treatment, and 
prognosis evaluation is critical. Overall, we conducted a comprehensive analysis of pancreatic cancer using gene ex-
pression omnibus, TCGA, and genotype-tissue expression data and searched for relevant key molecules in the anoxic 
tumor microenvironment of pancreatic cancer to construct a prognostic model.

Hypoxia is one of the main factors leading to the malignant progression of pancreatic cancer[20]. Hypoxia occurs when 
the oxygen supply is insufficient to meet the metabolic needs of the tissues[21]. A hypoxic environment can promote the 
survival and proliferation of cancer cells and induce the expression of genes related to angiogenesis and metastasis, 
leading to the formation of abnormal and inefficient blood vessels and further leading to a hypoxic environment[22]. 
Recent studies have shown that HIF-1 plays an important role in this process. Hypoxia-induced HIF-1a overexpression 
can decrease caspase-3 and caspase-9 expression and inhibit tumor cell apoptosis[23].

Previous studies have highlighted the critical role of hypoxia in pancreatic cancer progression and prognosis. Lin et al
[24] identified that hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation. Liu et 
al[25] revealed that m6A methylation regulates hypoxia-induced pancreatic cancer glycolytic metabolism through an 
ALKBH5-HDAC4-HIF1α positive feedback loop. Chen et al[26] showed that in the hypoxic environment of pancreatic 
cancer, exosomal miR-30b-5p promotes tumor angiogenesis by inhibiting GJA1 expression. These studies collectively 
demonstrate the complex interplay between hypoxia, exosomes, epigenetic modifications, and cellular metabolism in 
pancreatic cancer, providing insights into potential therapeutic targets and diagnostic markers. Our study builds upon 
these findings by focusing on a more refined set of genes and their specific roles in the hypoxic pancreatic cancer micro-
environment.

In recent years, an increasing focus has been placed on biomarkers, prognostic markers, and prognostic models in the 
context of pancreatic ductal adenocarcinoma[27]. We performed enrichment analysis of DEGs between risk grounds in 
the PAAD dataset via GEPIA2 and constructed a PPI network, and these analyses revealed genes associated with hypoxia. 
Through univariate Cox analysis, we further screened hypoxia- and prognosis-related genes (CAPN2, PLAU, and CCNA2) 
from among the above genes and established a prognostic model via LASSO analysis. According to rigorous validation 
and analysis, our model demonstrated robust reliability in prognosis prediction for pancreatic cancer patients, exhibiting 
superior performance compared to conventional clinical prognostic factors, as indicated by the area under the ROC curve. 
The close correlation of our prognostic model with key clinical features, including tumor grade, T stage, and residual 
tumor status, emphasizes its potential utility for clinicians. Consequently, our model offers a valuable tool for improving 
the prognosis of pancreatic cancer patients, as it facilitates more effective and timely treatment and reveals potentially 
effective intervention options.
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Figure 6 Association of immune infiltration with the risk score in the cancer genome atlas-pancreatic adenocarcinoma dataset. A: Box plot 
showing the difference in the level of immune cell infiltration between the high-risk and low-risk groups; B: The box plot shows the difference in immune checkpoint 
expression between the high-risk and low-risk groups; C: The estimated half-maximal inhibitory concentration of different hypoxia-related risk groups. aP < 0.05, bP < 
0.01, cP < 0.001.

Our analysis identified three key hypoxia- and prognosis-related genes: PLAU, CCNA2, and CAPN2. PLAU is crucial 
for extracellular matrix degradation and angiogenesis[28]. CCNA2 regulates cancer cell growth and influences the tumor 
immune microenvironment[29]. CAPN2 promotes epithelial-mesenchymal transition in pancreatic cancer[30]. These 
genes likely play significant roles in hypoxia-mediated pancreatic cancer progression, highlighting their potential as pro-
gnostic markers and therapeutic targets.

The microenvironment of pancreatic cancer has a crucial and complex impact on the biological behaviour of cancer 
cells[31]. As the tumor evolves, its tissue structure and function dynamically change, forming an immunosuppressive 
environment that facilitates tumor cell evasion of immune surveillance[32]. Patients with rapidly progressing PAAD 
typically exhibit insufficient infiltration of immune cells in the tumor immune microenvironment[33]. Research has 
shown that the NLRP3 signalling pathway and Dectin-1 signalling pathway mediate the predominant effects of immu-
nosuppressive Th2 cells and regulatory T cells in the response of CD4+ T lymphocytes, thereby exacerbating the im-
munosuppressive effect of the pancreatic cancer microenvironment[34]. NK cells are cytotoxic lymphocytes that are 
essential for the innate immune system[35]. CD56bright NK cells (10% of the total NK cells) are inhibitory[36]. IL-27 is an 
antigen-presenting cell-derived cytokine that can transmit regulatory activity to NK cells positive for CD56, mediating 
their inhibitory effect on T cells and thus playing an important role in autoimmune regulation[37]. In our study, we 
observed a significant positive correlation between the proportions of Th2 cells and NK CD56bright cells in the immune 
microenvironment of pancreatic cancer patients and a high risk score based on our hypoxia-related prognostic model, 
demonstrating that these cells are highly invasive in the high-risk group. In contrast, Th17, pDCs, eosinophils, and TFH 
cells were significantly negatively correlated with the risk score of our hypoxia-related prognostic model, indicating 
decreased invasion in the high-risk group. In our research, the high invasion of immunosuppressive cells and sig-
nificantly reduced invasion of immune effector cells in the immune microenvironment of high-risk pancreatic cancer 
patients indicate that hypoxia influences the immune suppression of pancreatic cancer. Patients with rapidly progressing 
PAAD typically exhibit insufficient infiltration of immune cells in the tumor immune microenvironment.

The immune checkpoint programmed death-ligand 1 (PD-L1) (CD274) is an important immune regulatory molecule 
that primarily inhibits the activity of immune cells by binding to programmed death-1 (PD-1) on the surface of immune 
cells to prevent excessive immune responses[38]. Overexpression of PD-L1 has been observed in various cancers and is 
associated with tumor progression, metastasis, and treatment resistance[39]. In our study, the immune checkpoint pro-
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Figure 7 Enrichment of signalling pathways in the hypoxia-related risk groups. A: gene set enrichment analysis (GSEA) of the differentially 
expressed genes in the high-risk group based on the hypoxia-related model; B: GSEA of differentially expressed genes in the low-risk and high-risk groups based on 
the hypoxia-related model; C: Gene Set Variation Analysis of the enrichment of metabolic pathways in different risk groups based on the hypoxia-related model.

grammed death 1 (PD-1) was significantly upregulated in the group of pancreatic cancer patients at high risk of hypoxia. 
The excessive activation of these immune checkpoints in patients at high risk of hypoxia prevents immune cells from 
attacking tumor cells, thereby helping tumor cells evade immune surveillance and clearance[40]. We analysed the 
relationship between our model risk score and the immune microenvironment by assessing the levels of infiltrating 
immune cells in high-risk and low-risk patients. Furthermore, we investigated the correlation between hypoxia risk 
factors and treatment outcomes in PAAD patients. Our findings suggest a significant correlation between the risk score 
based on the prognostic model and IC50 of chemotherapeutic drugs such as cisplatin and paclitaxel. These findings 
indicate that the sensitivity of tumor cells to chemotherapeutic drugs such as cisplatin and paclitaxel may be affected by 
the hypoxic tumor microenvironment in pancreatic cancer. This discovery underscores the potential role of the hypoxia-
related prognostic model we constructed in assessing chemotherapy sensitivity and devising personalized treatment 
plans. Therefore, accurate assessment and monitoring of risk factors in prognostic models, as well as research on their 
correlation with chemotherapy drug sensitivity, are of paramount importance for optimizing treatment strategies for 
cancer patients.

There is a strong link between hypoxia and metabolism, especially at the cellular and tissue levels[41]. In hypoxic 
environments, cells often choose to produce energy through lactic acid fermentation rather than through oxidative 
phosphorylation[42]. This choice stems from the fact that lactic acid fermentation is a more rapid way to produce ATP in 
the absence of oxygen, helping to meet the energy needs of cells[43]. Hypoxia may lead to disruption of the reduction-
oxidation (REDOX) balance in cells, which in turn affects multiple metabolic pathways[44]. In our study, GSVA revealed 
that, compared with those in the low-risk group, the expression of genes in multiple metabolic pathways, including those 
involved in the REDOX pathway and tricarboxylic acid cycle, tended to increase or decrease, respectively. Dysregulation 
of these pathways may be a key factor affecting the prognosis of pancreatic cancer. Moreover, through GSEA, we ob-
served significant differences in survival in the high-risk group, with significant enrichment of tumor-related and 
immune-related pathways, including cytokine signalling in the immune system and interactions between immune cells 
and microRNAs in the tumor microenvironment; moreover, no significant enrichment was observed in the low-risk 
group. Hypoxia is closely related to the immunosuppressive microenvironment, which profoundly affects the pro-
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Figure 8 Hypoxia key gene expression changes in hTERT-HPNE cells, normal PANC-1 cells, and hypoxic PANC-1 cells. A: CCNA2 
expression in PANC-1 and hTERT-HPNE cells; B: CCNA2 expression in hypoxia-treated vs untreated PANC-1 cells; C: PLAU expression in PANC-1 and hTERT-
HPNE cells; D: PLAU expression in hypoxia-treated vs untreated PANC-1 cells; E: CAPN2 expression in PANC-1 and hTERT-HPNE cells; F: CAPN2 expression in 
hypoxia-treated vs untreated PANC-1 cells. aP < 0.05, bP < 0.01, cP < 0.001.

gression of tumors[45].
Through RT-qPCR analysis, our investigation revealed notable differences in the expression levels of critical hypoxia-

related genes (CAPN2, PLAU, and CCNA2) in pancreatic cancer cells subjected to a hypoxic environment compared to 
those in untreated pancreatic cancer cells. The substantial upregulation of these genes implies their potential pivotal role 
in promoting the progression of pancreatic cancer.

While our study provides insights into the role of hypoxia-related genes in the prognosis of patients with pancreatic 
cancer, there are some limitations related to its retrospective nature, so prospective clinical validation studies are needed. 
Future research should focus on validating our model's predictive power through prospective trials, exploring the 
complex interactions between hypoxia and other tumor microenvironment factors, and elucidating the underlying mole-
cular mechanisms involved. Nevertheless, our hypoxia-related prognostic model provides a new tool for predicting the 
prognosis of pancreatic cancer patients according to the expression of hypoxia-related genes and the features of the 
immune microenvironment. This approach allows us to study the complex microenvironment of pancreatic cancer in 
greater depth.

CONCLUSION
In this study, we established a novel hypoxia-related prognostic model for pancreatic cancer, which demonstrated robust 
power in predicting patient outcomes. By elucidating the relationships among hypoxia, gene expression, and the immune 
landscape, we developed a tool for guiding personalized treatment. This integration of hypoxia-related biomarkers may 
lead to more targeted treatment strategies, potentially improving outcomes in patients with pancreatic cancer.
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