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Interleukin-12 (IL-12) and IL-18 Are Important in Innate Defense
against Genital Herpes Simplex Virus Type 2 Infection in Mice

but Are Not Required for the Development of Acquired
Gamma Interferon-Mediated Protective Immunity
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Using a combination of gene-targeted mice and neutralizing antibodies, we showed that interleukin-12
(IL-12) and IL-18 are important in the innate control of genital herpes simplex virus type 2 infection but were
not found to be critical, either singly or in combination, for the development of a protective gamma interferon-
mediated immune response.

Natural antibodies, NK cells, neutrophils, macrophages, and
complement all contribute to the innate control of genital
herpes infection (1, 5, 9, 13, 24). Once a herpes simplex virus
type 2 (HSV-2) infection is established, virus-specific CD41

and CD81 T cells develop and participate in the resolution of
the infection (16). To prevent infection, both specific antibod-
ies and T cells are implicated. Antibodies limit the uptake and
replication of the virus (30). Thereafter, memory T cells infil-
trate the exposed area (26, 32).

Gamma interferon (IFN-g) appears to play an important
role in T-cell-mediated viral clearance (25, 33). There is a
markedly increased genital virus load in vaccinated mice
treated with anti-IFN-g antibodies (25, 33). Furthermore, lack
of protection in vaccinated CD42/2 mice correlates with re-
duced IFN-g responses, and protection can be restored in vivo
by addition of exogenous IFN-g (13).

Interleukin-12 (IL-12) and IL-18 are key factors for Th1
development. IL-12 is the dominant factor inducing IFN-g
production by T cells and NK cells (27). IL-18 synergizes with
IL-12 in inducing IFN-g by T cells and is thus required for
optimal IFN-g synthesis (18, 34, 38, 39). Previous studies in
experimental animals point to the important role of IL-12 and
IL-18 in host defense against intracellular bacteria, parasites,
and fungi (6, 11, 12, 15, 20–22, 28). To assess the requirements
of IFN-g, IL-12, and IL-18 in innate immune control of genital
HSV-2 infection, C57BL/6 wild-type (WT), IFN-g2/2 (10),
IL-12p402/2 (19), and IL-182/2 (40) mice were vaginally chal-
lenged with a lethal dose (4 3 104 PFU) of HSV-2 strain 333
(37). Following HSV-2 infection, vaginal fluids were collected
and HSV-2 titers were determined by plaque assay, and mice
were examined daily for disease and death. Statistical analyses
were done by Student’s t test or log rank test.

Innate defense against primary infection. Three days after
viral inoculation the level of shed virus was four times higher in

IFN-g2/2 mice (Fig. 1A) and these animals died significantly
earlier (4 days) than WT mice (P , 0.01) (Fig. 1B). The vaginal
HSV-2 titers both in IL-122/2 and in IL-182/2 mice were
higher than those observed for WT animals (Fig. 1A), and the
animals died significantly earlier (3 days [P , 0.05] in IL-122/2

mice and 4 days [P , 0.01] in IL-182/2 mice) (Fig. 1B).
The most prominent function of IL-12 and IL-18 in innate

defense is as enhancers of NK cell activity including IFN-g
production (42, 43). IL-18 can also induce intercellular adhe-
sion molecule 1 expression by an IFN-g-independent pathway,
promoting immune-cell recruitment to the target tissue (17).
To assess the outcome of primary genital HSV-2 infection in
the absence of both IL-12 and IL-18, we depleted endogenous
IL-18 in IL-122/2 mice. A neutralizing rat anti-mouse IL-18
antibody (R&D systems) (20 mg/mouse) was administered in-
traperitoneally to IL-122/2 mice 4 h prior to vaginal HSV-2
inoculation. An additional 10 mg of anti-IL-18 antibody was
given vaginally at the time of inoculation followed by 20 mg of
anti-IL-18 antibody given intraperitoneally on days 2, 4, and 6
after virus challenge. The vaginal HSV-2 titers in anti-IL-18
antibody-treated IL-122/2 mice were threefold higher than
those in control antibody (rat immunoglobulin G [IgG])-treat-
ed IL-122/2 mice on day 3 postchallenge (Fig. 1C), and these
mice also died significantly earlier (3 days) (P , 0.05) (Fig.
1D). Thus, the natural defense against genital HSV-2 infection
is impaired in mice lacking IL-12 and/or IL-18.

Vaccination-induced acquired defense. Vaginal vaccination
of mice with an attenuated strain of HSV-2 confers protection
against a lethal challenge with a virulent strain of the virus (23,
31). To examine the roles of IFN-g, IL-12, and IL-18 for the
development of vaccine-induced protective immune responses,
IFN-g2/2, IL-122/2, and IL-182/2 mice were vaccinated with
3.6 3 106 PFU of attenuated HSV-2 strain Lyon, which con-
tains a partial deletion of the thymidine kinase gene (2), and
then 4 weeks later they were challenged vaginally with a lethal
dose of HSV-2. Three days after the challenge infection, no
viral replication was detected in vaccinated WT mice and con-
sequently no death was observed (Fig. 1E). In contrast, vacci-
nated IFN-g-deficient mice had evidence of persistent viral
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FIG. 1. Vaginal HSV-2 titers and disease progression in mice deficient in IFN-g, IL-12, or IL-18 after primary and secondary genital HSV-2
infections. (A and B) Naı̈ve mice were challenged intravaginally with a lethal dose of HSV-2, and the vaginal HSV-2 titers (A) were examined on
day 3 after viral challenge (n 5 6). Differences were statistically significant at P values of ,0.05 (p) and ,0.01 (pp) by Student’s t test compared
with WT mice. The mice were monitored daily for mortality (n $ 12) (B). (C and D) Effects of in vivo administration of neutralizing anti-IL-18
antibody on vaginal HSV-2 replication and disease progression in HSV-2-challenged IL-122/2 mice. Groups of IL-122/2 mice (4 mice/group)
received either neutralizing anti-IL-18 antibody or purified normal IgG2a on days 0, 2, 4, and 6 after HSV-2 challenge. At day 3 after viral
challenge, the vaginal HSV-2 titers (C) were evaluated. p, statistically significant at P values of ,0.05 compared to control antibody-treated
IL-122/2 mice. The mice were examined daily for mortality (D). (E) Survival of vaccinated C57BL/6 WT, IFN-g2/2, IL-122/2, IL-182/2 (10 to 15
mice/group), and IL-18-depleted IL-122/2 mice (6 mice/group) after a lethal challenge with HSV-2.
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replication (134 6 47.9 [mean 6 standard error of the mean]
PFU) and the majority of the vaccinated IFN-g2/2 mice had
died by day 20 (Fig. 1E). No viral replication was observed in
the vaccinated IL-122/2 or IL-182/2 mice on day 3 postchal-
lenge, and all these animals survived (Fig. 1E).

Next, we examined the induction of protective immunity in
the absence of both IL-12 and IL-18. Endogenous IL-18 was
depleted in IL-122/2 mice by using different sets of anti-IL-18
antibodies (rat and goat) at the time of vaccination and at
the time of challenge as described above. Similarly to what

FIG. 2. HSV-2-specific immune responses in vaccinated WT, IFN-g2/2, IL-122/2, and IL-182/2 mice (n 5 4 to 8). (A to C) Spleen
mononuclear cells obtained 4 weeks postvaccination were cultured in the presence of either UV-inactivated HSV-2 or mock antigen and analyzed
for HSV-2-specific production of IFN-g and IL-2. Data are expressed as a stimulation index (A), the concentration (in picograms per milliliter)
of secreted IL-2 (B), and the concentration (in picograms per milliliter) of secreted IFN-g (C) per million analyzed spleen cells. ND, not detected.
(D) HSV-2-specific DTH reactions were measured 4 weeks after vaccination. Results are expressed as the mean and standard error of the mean
of the HSV-2-specific DTH reaction (D mm, 102) at 48 h postchallenge. (E) Ratio of HSV-specific IgG2a to IgG1 in WT, IFN-g2/2, IL-122/2, and
IL-182/2 mice 4 weeks after vaccination with attenuated HSV-2. Data are expressed as the mean and standard error of the mean. Differences were
statistically significant at P values of ,0.05 (p) and ,0.01 (pp) by Student’s t test compared with vaccinated WT mice.
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was observed for vaccinated WT mice, no viral replication
was observed on day 3 postchallenge in anti-IL-18-treated
IL-122/2 mice. Neither the vaccinated anti-IL-18-treated
IL-122/2 mice nor the control antibody-treated IL-122/2 ani-
mals died or exhibited any signs of disease throughout the
20-day observation course (Fig. 1E). These results demon-
strate that IFN-g but not IL-12 or IL-18 is required for devel-
opment of acquired protective immunity against genital HSV-2
infection.

Immune factors associated with protection. The immunity
levels of mice deficient in IFN-g, IL-12, or IL-18 were com-
pared 4 weeks postvaccination. The production of type 1 cyto-
kines (IFN-g and IL-2) in vitro was examined using a
cellELISA method (13). Spleen cells from all groups of vacci-
nated mice responded to in vitro recall HSV-2 antigen with a
strong proliferative response (Fig. 2A) and IL-2 production
(Fig. 2B), even though the responses were lower in IL-122/2

and IL-182/2 mice. There were significantly reduced levels of
IFN-g in spleen cells from vaccinated IL-122/2 mice (P ,
0.01), whereas the levels of IFN-g in spleen cells from IL-182/2

mice were comparable to those of WT animals (Fig. 2C). Thus,
an appreciable Th1 type response developed in IL-182/2 ani-
mals after vaccination whereas IL-122/2 mice displayed an
impaired Th1 type response.

We also examined the HSV-2-specific delayed-type hyper-
sensitivity (DTH) 4 weeks after vaccination. The specific foot-
pad swelling was examined 48 h after injection of UV-inacti-
vated HSV-2 (corresponding to 7 3 106 PFU) or mock
antigens in the left and right footpads, respectively. In IL-
182/2 mice, the DTH response was of a magnitude similar to
that in vaccinated WT mice (Fig. 2D). The IL-122/2 mice had
intermediate levels of DTH response, whereas IFN-g2/2 mice
showed an almost completely abolished DTH response (Fig.
2D). Thus, protection in the vaccinated animals was associated
with a maintained capacity to mount HSV-2-specific IFN-g
responses in vitro and DTH responses in vivo. Our results
support and extend previous findings that IFN-g production is
important in protective immunity against genital HSV-2 infec-
tion (13, 25, 33). However, it was evident that an optimal Th1
response required IL-12. These findings are in line with other
observations implying that IFN-g production and a Th1-type
immune response can be induced during certain viral infec-
tions even in the absence of IL-12 (29, 36, 44). Other factors
can compensate for the lack of IL-12. IL-18 cannot induce Th1
development by itself (34) but can contribute to IFN-g re-
sponse through activation of the IFN-g promoter in T cells (4).
The strong Th1 immune response in IL-182/2 mice was likely
induced by IL-12 in synergy with other cytokines such as IL-15,
tumor necrosis factor alpha, and IL-1b (3, 7, 8, 41). HSV-
specific serum IgG was measured in sera obtained 4 weeks
postvaccination using an enzyme-linked immunosorbent assay
based on a deoxycholate-solubilized membrane fraction of
HSV-1-infected cells (14). The serum levels of HSV-specific
IgG antibodies were comparable in all groups of vaccinated
mice (not shown), but the ratio of HSV-specific IgG2a to IgG1
varied considerably. WT and IL-122/2 mice had high levels of
HSV-specific IgG2a resulting in a significant IgG2a/IgG1 ratio.
IFN-g2/2 and IL-182/2 mice, on the other hand, had impaired
HSV-specific IgG2a levels and thus gave a diminished IgG2a/
IgG1 ratio (Fig. 2E). To our knowledge, the role of IL-18 as an

important switch factor for antigen-specific IgG2a subclasses in
vivo has not been demonstrated previously. This finding cor-
relates with the documented role of NK cells in the develop-
ment of an IgG2a response (35), as IL-18 is an important
activator of NK cells (40).

In conclusion, our results show that IFN-g plays a key role in
both innate and acquired immunity to genital HSV-2 infection,
while IL-12 and IL-18 are important for innate but not for
vaccination-induced adaptive immunity. The latter finding
raises interesting questions about the nature of factors other
than IL-12 and IL-18 that are induced by viral infection and
contribute to the development of protective IFN-g production
in the adaptive immune response.
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