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Abstract
The use of remote sensing to monitor animal populations has greatly expanded during 
the last decade. Drones (i.e., Unoccupied Aircraft Systems or UAS) provide a cost- 
and time-efficient remote sensing option to survey animals in various landscapes 
and sampling conditions. However, drone-based surveys may also introduce count-
ing errors, especially when monitoring mobile animals. Using an agent-based model 
simulation approach, we evaluated the error associated with counting a single animal 
across various drone flight patterns under three animal movement strategies (random, 
directional persistence, and biased toward a resource) among five animal speeds (2, 4, 6, 
8, 10 m/s). Flight patterns represented increasing spatial independence (ranging from 
lawnmower pattern with image overlap to systematic point counts). Simulation results 
indicated that flight pattern was the most important variable influencing count ac-
curacy, followed by the type of animal movement pattern, and then animal speed. 
A  awnmower pattern with 0% overlap produced the most accurate count of a solitary, 
moving animal on a landscape (average count of 1.1 ± 0.6) regardless of the animal's 
movement pattern and speed. Image overlap flight patterns were more likely to result 
in multiple counts even when accounting for mosaicking. Based on our simulations, 
we recommend using a lawnmower pattern with 0% image overlap to minimize error 
and augment drone efficacy for animal surveys. Our work highlights the importance 
of understanding interactions between animal movements and drone survey design 
on count accuracy to inform the development of broad applications among diverse 
species and ecosystems.
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1  |  INTRODUC TION

Drones (i.e., unoccupied aircraft systems or UAS) are increas-
ingly being used for myriad ecological applications, includ-
ing direct animal observation (Hodgson et  al.,  2018; Koh & 
Wich, 2012; Vermeulen et al., 2013), vegetation evaluation (Olsoy 
et  al.,  2018, 2020), and nest observation (Lachman et  al., 2020; 
Lyons et al., 2019). Benefits associated with using drones in ani-
mal monitoring, compared to traditional animal survey techniques, 
include less time and effort in the field (McMahon et  al., 2022), 
reduced animal disturbance compared to ground surveys (Barr 
et  al.,  2020; Krause et  al.,  2021), and greater survey accuracy 
(Hodgson et al., 2018; Jones et al., 2020). Additionally, drones can 
be launched over areas inaccessible for ground surveys (Junda 
et  al.,  2015; Wang et  al.,  2019), provide a safer alternative for 
ecologists compared with occupied aircraft (Christie et al., 2016; 
Hartmann et al., 2021; Sasse, 2003), and enable creation of digi-
tal repositories of high-resolution imagery from use of advanced 
sensor technologies (Samiappan et  al., 2024; Wang et  al., 2019). 
Drone use in animal monitoring continues to increase (Linchant 
et al., 2015), a trend that is exemplified by the recent annual pub-
lication rate of articles investigating animal surveys using drones 
during the past decade (Chabot,  2018; Elmore et  al.,  2023). 
However, drone surveys have limitations compared with tradi-
tional methods, including relatively short battery lives (Linchant 
et al., 2015), large post-processing time requirements for images 
(Barbedo & Vieira Koenigkan, 2018), and line-of-sight restrictions 
(Chabot & Bird, 2015; Duffy et al., 2018). Additionally, drones may 
lead to behavioral changes or disturb animals of interest (Headland 
et al., 2021; Wilson et al., 2023), which may lead to inaccurate sur-
vey counts (Augustine & Burchfield, 2022) and can depend on a 
variety of factors (Mo & Bonatakis, 2021).

Numerous survey methods are used in conservation science 
for population assessments and vary based on species of interest, 
landscape size and characteristics, as well as survey objectives 
(Silvy, 2020). Typical drone survey methods sample an area with a 
lawnmower (i.e., back and forth) pattern (Elmore et al., 2023). Belt 
transects are less common in drone surveys, and point counts, a 
common technique for ground surveys, could be adapted to drone 
surveys using programmed flight patterns (Silvy, 2020). Lawnmower 
patterns in drone surveys typically include 60%–80% frontal and side 
overlapping of adjacent images (Figure 1a–d; Ezat et al., 2018; Lyons 
et al., 2019; Aubert et al., 2021). While overlapping images are nec-
essary for mapping orthorectified landscapes (Koh & Wich, 2012), 
image overlap for animal monitoring can increase sampling bias due 
to risk of repeatedly counting individuals (Brack et al., 2018; Lenzi 
et  al.,  2023). Yet, common default flight settings among commer-
cially available drone software use overlapping lawnmower flight 
patterns (Frazier & Singh, 2021; Harris et al., 2019), an approach that 
may not support accurate surveys.

Animal movements have the potential to influence count-
ing accuracy in drone surveys through omission of individuals or 
multiple counts often caused by the same animal(s) occurring in 

several overlapping images (Brack et al., 2018). Lenzi et al. (2023) 
mentioned “ghost” animals produced when overlapping drone im-
ages were mosaicked. These were individuals that moved during 
subsequent image capture, creating blurred or transparent animals 
on the final mosaicked photograph, leading to possible erroneous 
counts. However, even when transect and image overlaps do not 
occur, multiple counts of mobile animals in drone surveys can hap-
pen (Witczuk et al., 2018). The distance traveled by animals within 
a given period depends on many factors, including life history 
needs and a variety of abiotic (e.g., seasonal resources) and biotic 
(e.g., conspecific competition) influences (Nathan et al., 2008). For 
example, breeding colonies of nesting shorebirds often remain on 
their nests (i.e., fixed locations) for long periods of time during 
breeding seasons (Hodgson et al., 2016; Jones et al., 2020). In con-
trast, an adult cheetah has been recorded at a running speed of up 
to 29 m/s (Sharp, 1997). Animals are known to exhibit changes in 
activity period throughout the day, with white-tailed deer, black 
bears (Lewis & Rachlow, 2011), and wolves (Merrill & Mech, 2003) 
all moving more frequently during crepuscular periods. Thus, vari-
ation in animal movement patterns and speeds depend on the spe-
cies ecology and current environment.

Movement models can be used to depict various animal move-
ment patterns along a spectrum of speeds with (1) random walks 
representing animals dispersing randomly on the landscape, (2) 
correlated random walks depicting animals moving with directional 
persistence, mimicking something analogous to migration, and (3) bi-
ased random walks depicting animal home ranging behavior in some 
cases (Codling et al., 2008). These movement models challenge the 
common assumption among traditional survey methods of animals 
being detected in their original position (i.e., no movement) and 
can be applied to understand the influence of animal movement on 
drone-based survey count error. Only one study, to our knowledge, 
has quantified error and highlighted the importance of estimating 
detection probability for drone flight patterns when monitoring a 
mobile animal (Hodgson et al., 2017), the humpback whale, but their 
study has limited application to terrestrial systems.

Simulations represent an alternative and powerful approach 
to evaluate how animal movements can affect drone surveys. 
Simulations have been employed to investigate how various drone 
survey speeds and altitudes influence abundance and occupancy 
estimates (Baxter & Hamilton, 2018). The virtual environment can 
also provide insights not possible in real-world settings due to field 
inconsistency and other potential confounding variables (e.g., image 
processing, observer biases, and varying detection rates). Agent-
based modeling (ABM; also referred to as individual-based model-
ing) uses iterative computer simulations to incorporate real-world 
parameters in a controlled environment, modeling scenarios that 
can address targeted research questions (Chudzinska et  al., 2021; 
Hoegh et  al.,  2021). Here, we used an ABM simulation approach 
(Grimm et al., 2020) to (1) quantify error rates among six drone flight 
patterns and three common animal movement patterns at five dif-
ferent speeds and (2) provide suggestions for optimal drone flight 
patterns that minimize error associated with animal movement. Our 
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ABM simulation approach permitted a robust examination of the po-
tential influence of animal movements and drone flight patterns on 
survey count errors that would otherwise be difficult to replicate 
in field experiments. We predicted lawnmower flight patterns with 
overlapping images would overestimate true counts due to counting 
the same individual multiple times. We also predicted that subsa-
mpling methods such as belt transects and multiple single images 
(i.e., systematic point counts) would underestimate true counts due 
to a greater probability of omitting the moving animal. Finally, we 
predicted that an increase in animal speed and persistence in the 
directional movement of the animal would lead to overestimation as 
the animal could cross multiple images.

2  |  MATERIAL S AND METHODS

2.1  |  Drone parameters

We examined the potential error among drone flight patterns and 
animal movement models (speed and movement pattern) using ABM 
simulations created in Python 3.9 (van Rossum & Drake, 2009). To 
realistically approximate methodologies that conservation practition-
ers currently employ, the simulated drone sensor was programmed 
to approximate specifications of a 20-megapixel camera with a focal 
length of 6.8 mm and field of view of approximately 67 degrees. 
Flights were modeled at 61 m above ground level, representing one 

F I G U R E  1 Drone flight patterns 
simulated over a theoretical landscape: 
(a) lawnmower with 60% overlap, 
(b) lawnmower with 40% overlap, 
(c) lawnmower with 20% overlap, (d) 
lawnmower with 0% overlap, (e) belt 
transect, (f) systematic points. Gray boxes 
denote viewing window of the first image 
taken during each survey representing a 
60 × 60 m area.
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of several typical altitudes for animal monitoring using a multi-copter 
drone (McEvoy et al., 2016; Wang et al., 2019) which has been shown 
to have zero or minimal behavioral impacts to several animal species 
(Barr et al., 2020; Krause et al., 2021). This altitude and sensor com-
bination produced a 1.28 cm ground sample distance and captured a 
~50 m × 65 m ground footprint for each image. For simplicity, we ad-
justed the ground viewing window in simulations to a 60 × 60 m area, 
with grid cells in our simulation measuring 4 m by 4 m in dimension. 
The drone speed was simulated at 10 m/s to approximate a realis-
tic platform speed for image capture and sharpness. To approximate 
real-world drone battery capabilities and line-of-sight considerations, 
surveys did not exceed a 30 min flight time (Raoult et al., 2020).

2.2  |  Landscape and drone flight patterns

We simulated six drone flight patterns, which increased along a spec-
trum of spatial independence among images and included the fol-
lowing commonly used flight patterns: (1) a lawnmower pattern with 
60% image overlap (Figure 1a), (2) a lawnmower pattern with 40% 
image overlap (Figure 1b), (3) a lawnmower pattern with 20% image 
overlap (Figure 1c), (4) a lawnmower pattern with 0% image overlap 
where images touched (Figure  1d), (5) a randomized belt transect 
(Figure 1e), and (6) systematic points (Figure 1f). To ensure the as-
sumption that the animal was 100% available and detectable during 
the simulated survey, the landscape dimensions were slightly revised 
for the lawnmower patterns with 20, 40, and 60% image overlap to 
ensure complete coverage by the drone imagery. The lawnmower 
patterns with 20% and 40% image overlap covered a 242,064 m2 
(492 × 492 m) landscape; whereas for 60% overlap, the landscape 
size was adjusted to 219,024 m2 (468 × 468 m). For the lawnmower 
pattern with 0% image overlap, transect, and systematic point flight 
patterns, the landscape size was fixed at 230,400 m2 (480 × 480 m).

Transect surveys included one horizontal belt transect with 
a length of 384 m (80% of the total landscape length) and a width 
of 60 m (image width; Figure  1e). Image captures from transects 
were programmed to have 60% frontal overlap, capturing imagery 
of 10% of the total landscape. Transects were generated to include 
stochasticity among simulations by randomly selecting the initial x 
and y coordinates for each replicate in places that would allow the 
entire transect to be placed horizontally across the landscape. The 
systematic points flight pattern simulated 16 image captures evenly 
distributed across the landscape (Figure 1f), which amounts to the 
same number of images captured by the transect survey. However, 
since the systematic points flight pattern did not exhibit any image 
overlap it was able to capture 25% of the total landscape. The ani-
mal was counted when it was located inside the image viewing win-
dow. To account for approaches where multiple images would be 
stitched into an orthomosaic (Frazier & Singh, 2021), an animal was 
not counted in an image if it had not moved more than 4 m from 
its previous location as the animal would have remained within the 
same grid cell. Previous studies describing “ghost” animal issues 
(Brack et al., 2018; Lenzi et al., 2023) do not detail how far animals 

moved when creating discrepancies, but in our case movements 
greater than 4 m were assumed to be large enough to cause issues 
with post-processing software within the simulations.

2.3  |  Animal movement

To best quantify error rates, only one animal was simulated within 
the landscape so that counts >1 indicated multiple counting, 
whereas 0 or average counts <1 were associated with animal omis-
sion. By using one animal on the landscape, we were able to track 
all animal movements, isolate variables of interest, and address our 
study objectives in a relatively simplistic environment. The use of 
a single animal on this 230,400 m2 landscape was equivalent to a 
density of 4.3 animals/km2, which is like natural densities of many 
mammalian and large raptor populations (Kittle et al., 2017; Laurent 
et al., 2021; Roseberry & Woolf, 1998). Thus, our simulations apply 
to low density and solitary animal species.

For each survey type, the animal was first positioned randomly 
on the landscape. Initial validation simulations had no movement, 
mimicking a stationary animal for the entire survey duration as a 
control to compare to other simulation scenarios that subsampled 
the landscape. A moving animal was then simulated with one of 
three different movement patterns: (1) random walk, (2) correlated 
random walk, and (3) biased random walk. Walks were created by 
sampling an exponential step length distribution and varying turn-
ing angle distributions (see Appendix S1; Duchesne et al., 2015). For 
each walk type, simulations were run with average animal velocities 
representing a spectrum of natural terrestrial animal speeds (2, 4, 
6, 8,10 m/s), as animal taxa differ substantially in various locomo-
tion behaviors that affect speed (walking, running, etc.). To maintain 
standardized comparisons within the study purpose for drone sur-
veys, the simulated animal was designed to only move within the 
closed landscape (i.e., no immigration or emigration) and was always 
available for detection within the viewing window of the drone (i.e., 
no occlusion). Count outputs also assumed that perception and de-
tection probability during image review was perfect. If an animal 
reached the border of the landscape, depending on its programmed 
movement type, it was randomly reflected in a new direction and 
continued its programmed movements within the simulated land-
scape area until the drone survey was complete.

2.4  |  Simulations

A total of 90 scenarios were simulated with each combination of 
drone flight pattern (n = 6), animal movement pattern (n = 3), and 
animal speed (n = 5) iterated 10,000 times, resulting in a total of 
900,000 simulations. For each simulation, the number of times the 
animal was captured within the image taken by the drone was re-
corded and the mean and standard deviation (SD) of the raw counts 
were reported for model replicates to compare various combina-
tions of our variables. Accuracy of the survey counts was based 
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on the deviation from the true value (i.e., one animal; Hone, 2008). 
We also report the percentage of simulations that returned the cor-
rect number of animals (n = 1), omitted the animal, or had multiple 
counts among scenarios. We compare subsampled landscape (tran-
sect and systematic point) counts to control scenario counts using a 
randomly placed, stationary animal on the landscape and report dif-
ferences in mean and SD of the raw counts. To further visualize the 
differentiation of raw count error among animal walk, animal speed, 
and drone flight pattern, we conducted a regression tree analysis. 
We used the Classification and Regression Tree method (De'ath & 
Fabricius, 2000; Lewis, 2000) with raw count as the response vari-
able and animal walk and speed, as well as drone flight pattern as 
predictor variables. We report variable importance values of each 
predictor as measures of effect size. A full description of the simula-
tions, following the ODD protocol (Overview, Design concepts, and 
Details) for agent-based models (Grimm et al., 2020), is provided in 
Appendix S1.

3  |  RESULTS

Flight pattern, animal movement pattern, and animal speed all af-
fected the count bias. The regression tree analysis revealed that 

the effect of drone flight patterns were most influential for pre-
dicting the raw count of the survey (Figure 2). Variable importance 
values by predictor, ranked from greatest to least, were flight pat-
tern (78), animal walk (17), and speed (6). Thus, the effect of flight 
pattern was over 4.5 times more than animal walk type, which was 
almost three times more than animal speed. With one animal on 
the landscape, the mean and standard deviation of animal counts 
ranged from 0.2 ± 0.7 to 3.2 ± 2.7 animals among flight patterns, 
from 1.1 ± 1.1 to 1.6 ± 2.1 animals among movement patterns, 
and 1.2 ± 1.2 to 1.5 ± 2.0 animals among animal speeds. Although 
flight pattern was the most influential variable determining ac-
curate animal counts in drone surveys, combinations of various 
animal movement patterns and speeds also resulted in more accu-
rate counts of the simulated animal within various flight patterns 
(Figures 3 and 4).

For flight patterns, the lawnmower pattern with 0% overlap was 
the least biased of all animal movement types and speeds (1.1 ± 0.6 
animals, Figure 3) with comparatively high accuracy (73.2% of sim-
ulations with correct counts; Figure  4). The next most accurate 
flight pattern was the lawnmower pattern with 20% overlap (63% 
of simulations with correct counts) followed by the lawnmower 
with 40% and 60% overlap (45.7% and 33.6% of simulations with 
correct counts, respectively; Figure  4). Counts increased overall 

F I G U R E  2 Regression tree analysis of an agent-based model simulating various drone flight patterns across a landscape with raw count 
as the response variable. Splits indicate the importance of each predictor variable. At each node, splits to the left indicate “yes” and the right 
“no” based on the predictor variables listed. The numbers in each node represent the mean of the raw counts and the percentage of the total 
number of observations that fall within.
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with lawnmower overlap percentage, averaging 1.4 ± 0.9, 1.9 ± 1.4, 
and 3.2 ± 2.7 animals for 20%, 40%, and 60% overlap, respectively 
(Figure  3). The transect and systematic point flight patterns were 
the most likely to omit the animal in the drone survey (0.2 ± 0.7 and 
0.4 ± 0.5 animals, respectively; Figure 3). The transect flight pattern 
very rarely returned an accurate animal count across movements 
and speeds (Figure 3) and mostly omitted (87.1%) the animal, as did 
the systematic points (63.1%; Figure 4). As the transect flight pattern 
captured 10% of the landscape, it should have captured the animal 
in 10% of our simulations; however, the average count for a moving 
animal was 0.2 ± 0.7, indicating that animal movement influenced 
survey counts, especially when compared to the average of 0.1 ± 0.3 
for the stationary animal transect count. In contrast, the systematic 
points flight pattern, with images covering 25% of the landscape, 
had a greater average count of 0.4 ± 0.5 mobile animals, compared 
with 0.25 ± 0.4 stationary animals.

Animal counts were most accurate for the correlated random 
walk (1.1 ± 1.1 animals) among drone flight patterns for almost 

all animal speeds (Figure  3). Generally, the random and biased 
animal walks resulted in overestimated animal counts (1.6 ± 2.1 
and 1.6 ± 1.9 animals, respectively), particularly when overlap in-
creased for lawnmower patterns from 20% to 60%, (Figure 3). The 
correlated random walking animal resulted in the least number 
of multiple counts (12.0%), with 36.0% and 37.7% of simulations 
having multiple counts for the random and biased random walking 
animal, respectively (Figure  4). Animal movement resulted in the 
omission of the animal in 20.3% (correlated random walk), 32.1% 
(biased random walk), and 33.7% (random) of simulations (Figure 4).

Varying the speed of the animal exhibited one clear trend among 
variables; increasing animal speed increased the variation around 
counts (i.e., lowered precision) for most flight patterns and animal 
walks (Figure  3). The lawnmower pattern with 60% overlap and, 
to a lesser extent the 40% overlap, tended to overestimate animal 
counts, with average counts and variability nearly doubling, as animal 
speed increased from 2 to 10 m/s during random and biased random 
walking (Figure  3). In contrast, increasing animal speed tended to 

F I G U R E  3 Mean and standard deviation for raw counts from 10,000 replicates of an agent-based model simulating various drone flight 
patterns across a landscape. Dotted lines show a count of 1, which represents the one animal placed on the landscape. Animal movement 
patterns include random (no directional persistence), CRW, correlated random walk, BRW, biased random walk.
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decrease multiple counts for the correlated random walk (Figure 4). 
Animal speed also influenced the number of correct counts in some 
cases, with the percentage of correct survey counts decreasing for 
the 0% (66.0% and 69%) and 20% (51.8% and 53.7%) overlap for 
the random and biased walks, respectively, but increasing for the 
correlated random walk for those flight patterns (84.4% and 83.5%, 
respectively; Figure  4). The number of correct survey counts also 
increased with animal speed for systematic points when the animal 
had a correlated random walk (38.3% correct at 2 m/s to 84.6% cor-
rect at 10 m/s; Figure 4).

4  |  DISCUSSION

This research represents the first study investigating the in-
teractions of multiple drone flight patterns and animal move-
ment behaviors in a systematic and quantitative approach. We 

demonstrate that drone flight patterns can greatly influence ani-
mal count accuracy, from 4 to 13 times more than animal walk or 
speed, even over relatively small areas (herein ~22–24 ha). Our re-
sults also provide support for the use of a rarely considered drone 
flight pattern (a lawnmower pattern with 0% image overlap) for 
animal monitoring. While lawnmower patterns with large overlaps 
allow for the development of image mosaics for landscape map-
ping (Frazier & Singh, 2021), we found that these flight patterns 
increasingly lead to overestimated counts of mobile animals as 
percent overlap increased as predicted, even when accounting for 
mosaicking. Subsampling the landscape with a belt transect under-
estimated counts of the moving animal as predicted compared to 
a stationary animal. However, subsampling with systematic points 
was more accurate when the animal was moving compared with 
stationary, contrary to predictions. Increases in animal persistence 
and speed often did not result in overcounting the moving animal, 
as we predicted. Some directional persistence (random correlated 

F I G U R E  4 Total number of simulations from an agent-based model that either returned the correct number of animals (one animal; 
Correct), omitted the animal (Omissions), or had multiple counts (Multiple) among various drone flight patterns, animal movement speeds, 
and animal movement patterns (BRW, biased random walk; CRW, correlated random walk; Random, random walk).
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walk) in the moving compared to the stationary animal resulted in 
more accurate counts than no (random walk) or greater directional 
persistence (biased walk). Increasing animal speed tended to de-
crease precision overall, but the results depended on flight pattern 
and walk type. Our results have important and often overlooked 
implications for drone surveys compared with more commonly ap-
plied practices.

Easily programmed drone lawnmower pattern surveys typ-
ically use 60%–80% overlapping imagery (Aubert et  al.,  2021; 
Lyons et  al., 2019), but our results indicate this may have major 
implications for multiple-count concerns during drone surveys if 
the animal of interest is mobile. While it is acknowledged that ani-
mals move during surveys (Brack et al., 2018), many drone surveys 
assume animals are stationary (Sudholz et al., 2022) and create a 
mosaic image to more easily count animals and understand distri-
butions (De Kock et al., 2021; Ezat et al., 2018) without quantifying 
the effect of animal movement on counting accuracy. A few field 
drone studies have attempted to address animal movement issues 
post data collection (Linchant et al., 2018) and with manual image 
searches for clones, partial, or blurred animals after mosaicking 
(Barbedo & Vieira Koenigkan, 2018; Lenzi et  al., 2023). Another 
approach reviews individual overlapping images, comparing ani-
mal shapes, sizes, and positions to reduce the number of multi-
ple counted animals (Cleguer et  al.,  2021; Sudholz et  al.,  2022; 
Witczuk et al., 2018). This additional post-processing of imagery 
can be helpful, but uncertainty remains in their effectiveness 
considering most animals are unmarked or indistinguishable from 
other individuals. These image reviews are also very labor inten-
sive, time-consuming, and do not address animal omissions due to 
their movements (Brack et al., 2018). Automated image classifica-
tion approaches are being developed (Chabot et al., 2022; Dujon 
et al., 2021; Gonzalez et al., 2016; Krishnan et al., 2023), but the 
development of accurate algorithms for aerial animal imagery is 
still in its infancy and has many challenges to overcome (Corcoran, 
Winsen, et  al.,  2021; Sudholz et  al., 2022). Addressing the issue 
of multiple counting during data collection, as opposed to during 
post-processing could reduce the likelihood of the multiple-count 
problem. Incorporating lawnmower patterns with minimal image 
overlap may be key, as noted in the increase in count accuracy of 
our simulations as overlap percentage decreased.

Subsampling the landscape or spreading sampling intervals 
has been suggested as a means to avoid issues of multiple counts 
of the same animal (Witczuk et  al.,  2018). However, we found 
that animal movement can still influence counts of an individual 
in these scenarios. The average count and variation of the tran-
sect flight pattern both doubled when the animal was moving, 
as opposed to when the animal was stationary on the landscape. 
Similarly, for the systematic points flight pattern, the average 
count increased 1.5 times, with a slight increase in count variation 
as well. However, we also found that during the systematic points 
flight (Figure 1f), an animal moving with directional persistence re-
sulted in a large percentage of accurate surveys, which was consis-
tent with other drone flight patterns. Thus, surveys at systematic 

points for animals behaving this way may be accurate and would 
result in less imagery for post-processing, sequentially leading to 
additional time savings during data preparation and image evalu-
ation. Ultimately, subsampling the landscape, compared to a full 
census, will require correction of counts (Buckland et  al., 2001), 
but as we have shown, these corrections should vary depending 
on if the animals of interest are anticipated to be mobile during 
the survey period.

Our simulations confirm that animal movement patterns and 
speeds influence whether an animal is correctly counted in drone 
imagery. The random and biased random walking animal movement 
patterns often resulted in overestimates from multiple counts of an 
animal traveling back into the path of the drone after its initial “cap-
ture.” An increase in the animal speed lowered the precision for most 
flight patterns and animal walks, with an exception for the correlated 
walking animal. Therefore, researchers need to consider animal move-
ment behaviors to avoid count bias and consequential incorrect man-
agement prescriptions (Guerrasio et  al.,  2022). Overall, our results 
emphasize that knowledge of animal movement patterns can help 
identify the optimal survey periods and drone flight patterns to mini-
mize sampling error. To minimize count error, one might survey using a 
systematic points flight pattern during crepuscular periods when cer-
tain species, such as white-tailed deer, are most active (Kammermeyer 
& Marchinton,  1977). Or depending on the research question, 0% 
overlap lawnmower pattern surveys during other times of day or year 
when individuals are more stationary, such as when juveniles have not 
yet dispersed from natal areas, may also be appropriate.

Even on our simplified landscape, we observed large amounts 
of bias among animal counts during scenario simulations with one 
mobile animal. While our assumptions of 100% availability and 
detectability are highly unlikely in real-world applications (Gilbert 
et al., 2021), for example, due to visual obstructions above the ani-
mals or the ability of the animal to dive underwater or move under 
cover (Brunton et  al., 2020; Hodgson et  al.,  2017), this assump-
tion allowed us to simplify our scenarios and better understand 
how flight patterns and animal movements may create counting 
errors. Typically, surveyors are concerned with omission rates as-
sociated with conventional animal survey methods (i.e., occupied 
aircraft and ground surveys) due to detectability issues, and there 
are means of addressing some of these problems (Brack, Kindel, 
de Oliveira, & Lahoz-Monfort, 2023; Hamilton et al., 2018; Samuel 
et al., 1992; Steinhorst & Samuel, 1989). For example, the inclusion 
of detection probabilities in statistical models has greatly improved 
our ability to estimate animal populations (Corcoran, Denman, & 
Hamilton, 2021; Martin et al., 2012), and incorporating detection 
probabilities into drone-based estimates would be a helpful ad-
vancement (Brack, Kindel, de Oliveira, & Lahoz-Monfort,  2023; 
Hodgson et al., 2017, 2023). It is also notable that false positives 
(i.e., multiple counts) are less frequent during ground-based and 
occupied aircraft surveys, something that researchers using drones 
need to carefully consider moving forward (Brack et al., 2018).

We acknowledge other trade-offs must be considered for 
drone surveys such as balancing battery life and line-of-sight 
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limitations during survey planning (Baxter & Hamilton,  2018; 
Linchant et  al.,  2015). Hence, trade-offs between the area sam-
pled and survey accuracy may need to be considered for larger 
sampling areas. There may also be potential for increased accuracy 
with alternative flight patterns that we did not consider. For ex-
ample, sea turtle density estimates were calculated using a mod-
ified strip–transect approach with 35%–45% frontal overlap and 
sequential images used in counts to reduce multiple counting po-
tential (Brack, Kindel, Berto, et al., 2023; Sykora-Bodie et al., 2017), 
and point count drone surveys with 360-degree rotations were 
found to be a promising approach for mesocarnivore abundance 
estimates (Bushaw et al., 2019). In either case, the method was not 
thoroughly vetted for accuracy, although this could be explored in 
future work. Barbedo and Vieira Koenigkan  (2018) suggest flying 
multiple drones in formation to collect accurate counts, acknowl-
edging that animals could otherwise move between survey efforts. 
However, they also note that this would greatly increase survey 
cost and that formation flights have many technical challenges. 
In any case, researchers should not assume mosaics composed 
of overlapped images can be used for both vegetation mapping 
and animal surveying simultaneously. Instead, careful thought is 
needed for drone flight patterns with objectives related to animal 
monitoring.

5  |  CONCLUSIONS

As the use of drones in animal monitoring continues to grow, con-
sideration of how these survey platforms can be appropriately in-
corporated into animal survey techniques is vital. Based on our 
results, when using a drone to survey areas similar to our simula-
tions (~22–24 ha), we recommend that, researchers interested in 
animal counts should consider a lawnmower flight pattern with 
0% overlap as an alternative to other more easily programmed, 
overlapping patterns. We also recommend that animal life history 
knowledge be incorporated in survey design, aligning with stages 
and times of day when animals may exhibit more sedentary or 
more directional movements. This will allow for the most accurate 
counts as well as maximize overall ground coverage area when ac-
counting for limited battery capabilities (Linchant et al., 2015). The 
simulated approach we utilized also allows for robust inference to 
investigate a myriad of animal behaviors and population processes 
that can be broadly applied across many taxa and provide guid-
ance of drone applications in a variety of wildlife management ap-
plications. Although our scope in this study was limited to solitary, 
low-density animals, future efforts with our agent-based modeling 
approach can help assess the influence of animal density, distri-
butions, and detection probabilities to better simulate real-world 
environments.
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