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Abstract
The use of remote sensing to monitor animal populations has greatly expanded during 
the	 last	decade.	Drones	 (i.e.,	Unoccupied	Aircraft	Systems	or	UAS)	provide	a	cost-		
and	 time-	efficient	 remote	 sensing	 option	 to	 survey	 animals	 in	 various	 landscapes	
and	sampling	conditions.	However,	drone-	based	surveys	may	also	 introduce	count-
ing	errors,	especially	when	monitoring	mobile	animals.	Using	an	agent-	based	model	
simulation approach, we evaluated the error associated with counting a single animal 
across various drone flight patterns under three animal movement strategies (random, 
directional	persistence,	and	biased	toward	a	resource)	among	five	animal	speeds	(2,	4,	6,	
8,	10 m/s).	Flight	patterns	represented	increasing	spatial	independence	(ranging	from	
lawnmower	pattern	with	image	overlap	to	systematic	point	counts).	Simulation	results	
indicated that flight pattern was the most important variable influencing count ac-
curacy, followed by the type of animal movement pattern, and then animal speed. 
A		awnmower	pattern	with	0%	overlap	produced	the	most	accurate	count	of	a	solitary,	
moving	animal	on	a	landscape	(average	count	of	1.1 ± 0.6)	regardless	of	the	animal's	
movement pattern and speed. Image overlap flight patterns were more likely to result 
in	multiple	counts	even	when	accounting	for	mosaicking.	Based	on	our	simulations,	
we	recommend	using	a	lawnmower	pattern	with	0%	image	overlap	to	minimize	error	
and augment drone efficacy for animal surveys. Our work highlights the importance 
of understanding interactions between animal movements and drone survey design 
on count accuracy to inform the development of broad applications among diverse 
species and ecosystems.
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1  |  INTRODUC TION

Drones	 (i.e.,	 unoccupied	 aircraft	 systems	 or	 UAS)	 are	 increas-
ingly being used for myriad ecological applications, includ-
ing direct animal observation (Hodgson et al., 2018; Koh & 
Wich, 2012; Vermeulen et al., 2013),	vegetation	evaluation	(Olsoy	
et al., 2018, 2020),	 and	nest	 observation	 (Lachman	et	 al.,	2020; 
Lyons et al., 2019).	Benefits	associated	with	using	drones	 in	ani-
mal	monitoring,	compared	to	traditional	animal	survey	techniques,	
include	 less	 time	and	effort	 in	 the	 field	 (McMahon	et	 al.,	2022),	
reduced	 animal	 disturbance	 compared	 to	 ground	 surveys	 (Barr	
et al., 2020; Krause et al., 2021),	 and	 greater	 survey	 accuracy	
(Hodgson et al., 2018; Jones et al., 2020).	Additionally,	drones	can	
be launched over areas inaccessible for ground surveys (Junda 
et al., 2015; Wang et al., 2019),	 provide	 a	 safer	 alternative	 for	
ecologists	compared	with	occupied	aircraft	(Christie	et	al.,	2016; 
Hartmann et al., 2021;	Sasse,	2003),	and	enable	creation	of	digi-
tal	repositories	of	high-	resolution	 imagery	from	use	of	advanced	
sensor	 technologies	 (Samiappan	et	 al.,	2024; Wang et al., 2019).	
Drone use in animal monitoring continues to increase (Linchant 
et al., 2015),	a	trend	that	is	exemplified	by	the	recent	annual	pub-
lication rate of articles investigating animal surveys using drones 
during	 the	 past	 decade	 (Chabot,	 2018; Elmore et al., 2023).	
However, drone surveys have limitations compared with tradi-
tional methods, including relatively short battery lives (Linchant 
et al., 2015),	 large	post-	processing	time	requirements	for	 images	
(Barbedo	&	Vieira	Koenigkan,	2018),	and	line-	of-	sight	restrictions	
(Chabot	&	Bird,	2015; Duffy et al., 2018).	Additionally,	drones	may	
lead to behavioral changes or disturb animals of interest (Headland 
et al., 2021; Wilson et al., 2023),	which	may	lead	to	inaccurate	sur-
vey	counts	 (Augustine	&	Burchfield,	2022)	and	can	depend	on	a	
variety	of	factors	(Mo	&	Bonatakis,	2021).

Numerous	 survey	 methods	 are	 used	 in	 conservation	 science	
for population assessments and vary based on species of interest, 
landscape	 size	 and	 characteristics,	 as	 well	 as	 survey	 objectives	
(Silvy,	2020).	Typical	drone	survey	methods	sample	an	area	with	a	
lawnmower	(i.e.,	back	and	forth)	pattern	(Elmore	et	al.,	2023).	Belt	
transects are less common in drone surveys, and point counts, a 
common	technique	for	ground	surveys,	could	be	adapted	to	drone	
surveys	using	programmed	flight	patterns	(Silvy,	2020).	Lawnmower	
patterns	in	drone	surveys	typically	include	60%–80%	frontal	and	side	
overlapping	of	adjacent	images	(Figure 1a–d;	Ezat	et	al.,	2018; Lyons 
et al., 2019;	Aubert	et	al.,	2021).	While	overlapping	images	are	nec-
essary for mapping orthorectified landscapes (Koh & Wich, 2012),	
image overlap for animal monitoring can increase sampling bias due 
to	risk	of	repeatedly	counting	 individuals	 (Brack	et	al.,	2018;	Lenzi	
et al., 2023).	 Yet,	 common	 default	 flight	 settings	 among	 commer-
cially available drone software use overlapping lawnmower flight 
patterns	(Frazier	&	Singh,	2021; Harris et al., 2019),	an	approach	that	
may not support accurate surveys.

Animal	 movements	 have	 the	 potential	 to	 influence	 count-
ing accuracy in drone surveys through omission of individuals or 
multiple	 counts	often	 caused	by	 the	 same	animal(s)	 occurring	 in	

several	overlapping	images	(Brack	et	al.,	2018).	Lenzi	et	al.	(2023)	
mentioned “ghost” animals produced when overlapping drone im-
ages were mosaicked. These were individuals that moved during 
subsequent	image	capture,	creating	blurred	or	transparent	animals	
on the final mosaicked photograph, leading to possible erroneous 
counts. However, even when transect and image overlaps do not 
occur, multiple counts of mobile animals in drone surveys can hap-
pen	(Witczuk	et	al.,	2018).	The	distance	traveled	by	animals	within	
a given period depends on many factors, including life history 
needs	and	a	variety	of	abiotic	(e.g.,	seasonal	resources)	and	biotic	
(e.g.,	conspecific	competition)	influences	(Nathan	et	al.,	2008).	For	
example, breeding colonies of nesting shorebirds often remain on 
their	 nests	 (i.e.,	 fixed	 locations)	 for	 long	 periods	 of	 time	 during	
breeding seasons (Hodgson et al., 2016; Jones et al., 2020).	In	con-
trast, an adult cheetah has been recorded at a running speed of up 
to	29 m/s	(Sharp,	1997).	Animals	are	known	to	exhibit	changes	in	
activity	period	 throughout	 the	day,	with	white-	tailed	deer,	black	
bears (Lewis & Rachlow, 2011),	and	wolves	(Merrill	&	Mech,	2003)	
all	moving	more	frequently	during	crepuscular	periods.	Thus,	vari-
ation in animal movement patterns and speeds depend on the spe-
cies ecology and current environment.

Movement	models	can	be	used	to	depict	various	animal	move-
ment	 patterns	 along	 a	 spectrum	of	 speeds	with	 (1)	 random	walks	
representing	 animals	 dispersing	 randomly	 on	 the	 landscape,	 (2)	
correlated random walks depicting animals moving with directional 
persistence,	mimicking	something	analogous	to	migration,	and	(3)	bi-
ased random walks depicting animal home ranging behavior in some 
cases	(Codling	et	al.,	2008).	These	movement	models	challenge	the	
common assumption among traditional survey methods of animals 
being	 detected	 in	 their	 original	 position	 (i.e.,	 no	 movement)	 and	
can be applied to understand the influence of animal movement on 
drone-	based	survey	count	error.	Only	one	study,	to	our	knowledge,	
has	quantified	 error	 and	highlighted	 the	 importance	of	 estimating	
detection probability for drone flight patterns when monitoring a 
mobile animal (Hodgson et al., 2017),	the	humpback	whale,	but	their	
study has limited application to terrestrial systems.

Simulations	 represent	 an	 alternative	 and	 powerful	 approach	
to evaluate how animal movements can affect drone surveys. 
Simulations	have	been	employed	to	 investigate	how	various	drone	
survey speeds and altitudes influence abundance and occupancy 
estimates	 (Baxter	&	Hamilton,	2018).	The	virtual	environment	can	
also	provide	insights	not	possible	in	real-	world	settings	due	to	field	
inconsistency and other potential confounding variables (e.g., image 
processing,	 observer	 biases,	 and	 varying	 detection	 rates).	 Agent-	
based	modeling	 (ABM;	also	referred	to	as	 individual-	based	model-
ing)	 uses	 iterative	 computer	 simulations	 to	 incorporate	 real-	world	
parameters in a controlled environment, modeling scenarios that 
can	 address	 targeted	 research	questions	 (Chudzinska	 et	 al.,	2021; 
Hoegh et al., 2021).	 Here,	 we	 used	 an	 ABM	 simulation	 approach	
(Grimm et al., 2020)	to	(1)	quantify	error	rates	among	six	drone	flight	
patterns and three common animal movement patterns at five dif-
ferent	 speeds	and	 (2)	provide	suggestions	 for	optimal	drone	 flight	
patterns	that	minimize	error	associated	with	animal	movement.	Our	
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ABM	simulation	approach	permitted	a	robust	examination	of	the	po-
tential influence of animal movements and drone flight patterns on 
survey count errors that would otherwise be difficult to replicate 
in field experiments. We predicted lawnmower flight patterns with 
overlapping images would overestimate true counts due to counting 
the same individual multiple times. We also predicted that subsa-
mpling methods such as belt transects and multiple single images 
(i.e.,	systematic	point	counts)	would	underestimate	true	counts	due	
to a greater probability of omitting the moving animal. Finally, we 
predicted that an increase in animal speed and persistence in the 
directional movement of the animal would lead to overestimation as 
the animal could cross multiple images.

2  |  MATERIAL S AND METHODS

2.1  |  Drone parameters

We examined the potential error among drone flight patterns and 
animal	movement	models	(speed	and	movement	pattern)	using	ABM	
simulations	created	 in	Python	3.9	 (van	Rossum	&	Drake,	2009).	To	
realistically approximate methodologies that conservation practition-
ers currently employ, the simulated drone sensor was programmed 
to	approximate	specifications	of	a	20-	megapixel	camera	with	a	focal	
length	 of	 6.8 mm	 and	 field	 of	 view	 of	 approximately	 67	 degrees.	
Flights	were	modeled	at	61 m	above	ground	level,	representing	one	

F I G U R E  1 Drone	flight	patterns	
simulated over a theoretical landscape: 
(a)	lawnmower	with	60%	overlap,	
(b)	lawnmower	with	40%	overlap,	
(c)	lawnmower	with	20%	overlap,	(d)	
lawnmower	with	0%	overlap,	(e)	belt	
transect,	(f)	systematic	points.	Gray	boxes	
denote viewing window of the first image 
taken during each survey representing a 
60 × 60 m	area.
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of	several	typical	altitudes	for	animal	monitoring	using	a	multi-	copter	
drone	(McEvoy	et	al.,	2016; Wang et al., 2019)	which	has	been	shown	
to	have	zero	or	minimal	behavioral	impacts	to	several	animal	species	
(Barr	et	al.,	2020; Krause et al., 2021).	This	altitude	and	sensor	com-
bination	produced	a	1.28 cm	ground	sample	distance	and	captured	a	
~50 m × 65 m	ground	footprint	for	each	image.	For	simplicity,	we	ad-
justed	the	ground	viewing	window	in	simulations	to	a	60 × 60 m	area,	
with	grid	cells	in	our	simulation	measuring	4 m	by	4 m	in	dimension.	
The	 drone	 speed	was	 simulated	 at	 10 m/s	 to	 approximate	 a	 realis-
tic platform speed for image capture and sharpness. To approximate 
real-	world	drone	battery	capabilities	and	line-	of-	sight	considerations,	
surveys	did	not	exceed	a	30 min	flight	time	(Raoult	et	al.,	2020).

2.2  |  Landscape and drone flight patterns

We simulated six drone flight patterns, which increased along a spec-
trum of spatial independence among images and included the fol-
lowing	commonly	used	flight	patterns:	(1)	a	lawnmower	pattern	with	
60%	image	overlap	(Figure 1a),	 (2)	a	 lawnmower	pattern	with	40%	
image overlap (Figure 1b),	(3)	a	lawnmower	pattern	with	20%	image	
overlap (Figure 1c),	(4)	a	lawnmower	pattern	with	0%	image	overlap	
where images touched (Figure 1d),	 (5)	 a	 randomized	 belt	 transect	
(Figure 1e),	and	(6)	systematic	points	 (Figure 1f).	To	ensure	the	as-
sumption	that	the	animal	was	100%	available	and	detectable	during	
the simulated survey, the landscape dimensions were slightly revised 
for	the	lawnmower	patterns	with	20,	40,	and	60%	image	overlap	to	
ensure complete coverage by the drone imagery. The lawnmower 
patterns	with	 20%	 and	 40%	 image	 overlap	 covered	 a	 242,064 m2 
(492 × 492 m)	 landscape;	 whereas	 for	 60%	 overlap,	 the	 landscape	
size	was	adjusted	to	219,024 m2	 (468 × 468 m).	For	the	 lawnmower	
pattern	with	0%	image	overlap,	transect,	and	systematic	point	flight	
patterns,	the	landscape	size	was	fixed	at	230,400 m2	(480 × 480 m).

Transect	 surveys	 included	 one	 horizontal	 belt	 transect	 with	
a	 length	of	384 m	(80%	of	the	total	 landscape	 length)	and	a	width	
of	 60 m	 (image	 width;	 Figure 1e).	 Image	 captures	 from	 transects	
were	programmed	to	have	60%	frontal	overlap,	capturing	 imagery	
of	10%	of	the	total	landscape.	Transects	were	generated	to	include	
stochasticity among simulations by randomly selecting the initial x 
and y coordinates for each replicate in places that would allow the 
entire	transect	to	be	placed	horizontally	across	the	landscape.	The	
systematic	points	flight	pattern	simulated	16	image	captures	evenly	
distributed across the landscape (Figure 1f),	which	amounts	to	the	
same number of images captured by the transect survey. However, 
since the systematic points flight pattern did not exhibit any image 
overlap	it	was	able	to	capture	25%	of	the	total	landscape.	The	ani-
mal was counted when it was located inside the image viewing win-
dow. To account for approaches where multiple images would be 
stitched	into	an	orthomosaic	(Frazier	&	Singh,	2021),	an	animal	was	
not	 counted	 in	 an	 image	 if	 it	 had	 not	moved	more	 than	 4 m	 from	
its previous location as the animal would have remained within the 
same	 grid	 cell.	 Previous	 studies	 describing	 “ghost”	 animal	 issues	
(Brack	et	al.,	2018;	Lenzi	et	al.,	2023)	do	not	detail	how	far	animals	

moved when creating discrepancies, but in our case movements 
greater	than	4 m	were	assumed	to	be	large	enough	to	cause	issues	
with	post-	processing	software	within	the	simulations.

2.3  |  Animal movement

To	best	quantify	error	rates,	only	one	animal	was	simulated	within	
the landscape so that counts >1 indicated multiple counting, 
whereas 0 or average counts <1 were associated with animal omis-
sion.	By	using	one	animal	on	the	landscape,	we	were	able	to	track	
all animal movements, isolate variables of interest, and address our 
study	objectives	 in	 a	 relatively	 simplistic	 environment.	The	use	of	
a	 single	 animal	 on	 this	 230,400 m2	 landscape	was	 equivalent	 to	 a	
density of 4.3 animals/km2, which is like natural densities of many 
mammalian and large raptor populations (Kittle et al., 2017; Laurent 
et al., 2021; Roseberry & Woolf, 1998).	Thus,	our	simulations	apply	
to low density and solitary animal species.

For each survey type, the animal was first positioned randomly 
on the landscape. Initial validation simulations had no movement, 
mimicking a stationary animal for the entire survey duration as a 
control to compare to other simulation scenarios that subsampled 
the	 landscape.	 A	 moving	 animal	 was	 then	 simulated	 with	 one	 of	
three	different	movement	patterns:	(1)	random	walk,	(2)	correlated	
random	walk,	and	 (3)	biased	 random	walk.	Walks	were	created	by	
sampling an exponential step length distribution and varying turn-
ing	angle	distributions	(see	Appendix	S1; Duchesne et al., 2015).	For	
each walk type, simulations were run with average animal velocities 
representing a spectrum of natural terrestrial animal speeds (2, 4, 
6,	 8,10 m/s),	 as	 animal	 taxa	 differ	 substantially	 in	 various	 locomo-
tion	behaviors	that	affect	speed	(walking,	running,	etc.).	To	maintain	
standardized	comparisons	within	the	study	purpose	for	drone	sur-
veys, the simulated animal was designed to only move within the 
closed	landscape	(i.e.,	no	immigration	or	emigration)	and	was	always	
available for detection within the viewing window of the drone (i.e., 
no	occlusion).	Count	outputs	also	assumed	that	perception	and	de-
tection probability during image review was perfect. If an animal 
reached the border of the landscape, depending on its programmed 
movement type, it was randomly reflected in a new direction and 
continued its programmed movements within the simulated land-
scape area until the drone survey was complete.

2.4  |  Simulations

A	 total	 of	 90	 scenarios	were	 simulated	with	 each	 combination	 of	
drone flight pattern (n = 6),	 animal	 movement	 pattern	 (n = 3),	 and	
animal speed (n = 5)	 iterated	 10,000	 times,	 resulting	 in	 a	 total	 of	
900,000	simulations.	For	each	simulation,	the	number	of	times	the	
animal was captured within the image taken by the drone was re-
corded	and	the	mean	and	standard	deviation	(SD)	of	the	raw	counts	
were reported for model replicates to compare various combina-
tions	 of	 our	 variables.	 Accuracy	 of	 the	 survey	 counts	 was	 based	
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on the deviation from the true value (i.e., one animal; Hone, 2008).	
We also report the percentage of simulations that returned the cor-
rect number of animals (n = 1),	omitted	the	animal,	or	had	multiple	
counts among scenarios. We compare subsampled landscape (tran-
sect	and	systematic	point)	counts	to	control	scenario	counts	using	a	
randomly placed, stationary animal on the landscape and report dif-
ferences	in	mean	and	SD	of	the	raw	counts.	To	further	visualize	the	
differentiation of raw count error among animal walk, animal speed, 
and drone flight pattern, we conducted a regression tree analysis. 
We	used	the	Classification	and	Regression	Tree	method	 (De'ath	&	
Fabricius, 2000; Lewis, 2000)	with	raw	count	as	the	response	vari-
able and animal walk and speed, as well as drone flight pattern as 
predictor variables. We report variable importance values of each 
predictor	as	measures	of	effect	size.	A	full	description	of	the	simula-
tions, following the ODD protocol (Overview, Design concepts, and 
Details)	for	agent-	based	models	(Grimm	et	al.,	2020),	is	provided	in	
Appendix	S1.

3  |  RESULTS

Flight pattern, animal movement pattern, and animal speed all af-
fected the count bias. The regression tree analysis revealed that 

the effect of drone flight patterns were most influential for pre-
dicting the raw count of the survey (Figure 2).	Variable	importance	
values by predictor, ranked from greatest to least, were flight pat-
tern	(78),	animal	walk	(17),	and	speed	(6).	Thus,	the	effect	of	flight	
pattern was over 4.5 times more than animal walk type, which was 
almost three times more than animal speed. With one animal on 
the landscape, the mean and standard deviation of animal counts 
ranged	 from	0.2 ± 0.7	 to	3.2 ± 2.7	animals	among	 flight	patterns,	
from	 1.1 ± 1.1	 to	 1.6 ± 2.1	 animals	 among	 movement	 patterns,	
and	1.2 ± 1.2	to	1.5 ± 2.0	animals	among	animal	speeds.	Although	
flight pattern was the most influential variable determining ac-
curate animal counts in drone surveys, combinations of various 
animal movement patterns and speeds also resulted in more accu-
rate counts of the simulated animal within various flight patterns 
(Figures 3 and 4).

For	flight	patterns,	the	lawnmower	pattern	with	0%	overlap	was	
the	least	biased	of	all	animal	movement	types	and	speeds	(1.1 ± 0.6	
animals, Figure 3)	with	comparatively	high	accuracy	(73.2%	of	sim-
ulations with correct counts; Figure 4).	 The	 next	 most	 accurate	
flight	pattern	was	 the	 lawnmower	pattern	with	20%	overlap	 (63%	
of	 simulations	 with	 correct	 counts)	 followed	 by	 the	 lawnmower	
with	40%	and	60%	overlap	 (45.7%	and	33.6%	of	 simulations	with	
correct counts, respectively; Figure 4).	 Counts	 increased	 overall	

F I G U R E  2 Regression	tree	analysis	of	an	agent-	based	model	simulating	various	drone	flight	patterns	across	a	landscape	with	raw	count	
as	the	response	variable.	Splits	indicate	the	importance	of	each	predictor	variable.	At	each	node,	splits	to	the	left	indicate	“yes”	and	the	right	
“no” based on the predictor variables listed. The numbers in each node represent the mean of the raw counts and the percentage of the total 
number of observations that fall within.
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with	 lawnmower	overlap	percentage,	 averaging	1.4 ± 0.9,	1.9 ± 1.4,	
and	3.2 ± 2.7	animals	for	20%,	40%,	and	60%	overlap,	respectively	
(Figure 3).	 The	 transect	 and	 systematic	 point	 flight	 patterns	were	
the	most	likely	to	omit	the	animal	in	the	drone	survey	(0.2 ± 0.7	and	
0.4 ± 0.5	animals,	respectively;	Figure 3).	The	transect	flight	pattern	
very rarely returned an accurate animal count across movements 
and speeds (Figure 3)	and	mostly	omitted	(87.1%)	the	animal,	as	did	
the	systematic	points	(63.1%;	Figure 4).	As	the	transect	flight	pattern	
captured	10%	of	the	landscape,	it	should	have	captured	the	animal	
in	10%	of	our	simulations;	however,	the	average	count	for	a	moving	
animal	 was	 0.2 ± 0.7,	 indicating	 that	 animal	 movement	 influenced	
survey	counts,	especially	when	compared	to	the	average	of	0.1 ± 0.3	
for the stationary animal transect count. In contrast, the systematic 
points	 flight	 pattern,	with	 images	 covering	 25%	of	 the	 landscape,	
had	a	greater	average	count	of	0.4 ± 0.5	mobile	animals,	compared	
with	0.25 ± 0.4	stationary	animals.

Animal	counts	were	most	accurate	 for	 the	correlated	 random	
walk	 (1.1 ± 1.1	 animals)	 among	 drone	 flight	 patterns	 for	 almost	

all animal speeds (Figure 3).	 Generally,	 the	 random	 and	 biased	
animal	 walks	 resulted	 in	 overestimated	 animal	 counts	 (1.6 ± 2.1	
and	1.6 ± 1.9	 animals,	 respectively),	 particularly	when	overlap	 in-
creased	for	lawnmower	patterns	from	20%	to	60%,	(Figure 3).	The	
correlated random walking animal resulted in the least number 
of	multiple	 counts	 (12.0%),	with	36.0%	and	37.7%	of	 simulations	
having multiple counts for the random and biased random walking 
animal, respectively (Figure 4).	 Animal	movement	 resulted	 in	 the	
omission	of	 the	animal	 in	20.3%	 (correlated	 random	walk),	32.1%	
(biased	random	walk),	and	33.7%	(random)	of	simulations	(Figure 4).

Varying the speed of the animal exhibited one clear trend among 
variables; increasing animal speed increased the variation around 
counts	 (i.e.,	 lowered	precision)	 for	most	 flight	patterns	and	animal	
walks (Figure 3).	 The	 lawnmower	 pattern	 with	 60%	 overlap	 and,	
to	a	 lesser	extent	the	40%	overlap,	tended	to	overestimate	animal	
counts, with average counts and variability nearly doubling, as animal 
speed	increased	from	2	to	10 m/s	during	random	and	biased	random	
walking (Figure 3).	 In	 contrast,	 increasing	 animal	 speed	 tended	 to	

F I G U R E  3 Mean	and	standard	deviation	for	raw	counts	from	10,000	replicates	of	an	agent-	based	model	simulating	various	drone	flight	
patterns	across	a	landscape.	Dotted	lines	show	a	count	of	1,	which	represents	the	one	animal	placed	on	the	landscape.	Animal	movement	
patterns	include	random	(no	directional	persistence),	CRW,	correlated	random	walk,	BRW,	biased	random	walk.
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decrease multiple counts for the correlated random walk (Figure 4).	
Animal	speed	also	influenced	the	number	of	correct	counts	in	some	
cases, with the percentage of correct survey counts decreasing for 
the	 0%	 (66.0%	 and	 69%)	 and	 20%	 (51.8%	 and	 53.7%)	 overlap	 for	
the random and biased walks, respectively, but increasing for the 
correlated	random	walk	for	those	flight	patterns	(84.4%	and	83.5%,	
respectively; Figure 4).	 The	number	of	 correct	 survey	 counts	 also	
increased with animal speed for systematic points when the animal 
had	a	correlated	random	walk	(38.3%	correct	at	2 m/s	to	84.6%	cor-
rect	at	10 m/s;	Figure 4).

4  |  DISCUSSION

This research represents the first study investigating the in-
teractions of multiple drone flight patterns and animal move-
ment	 behaviors	 in	 a	 systematic	 and	 quantitative	 approach.	 We	

demonstrate that drone flight patterns can greatly influence ani-
mal count accuracy, from 4 to 13 times more than animal walk or 
speed, even over relatively small areas (herein ~22–24 ha).	Our	re-
sults also provide support for the use of a rarely considered drone 
flight	 pattern	 (a	 lawnmower	 pattern	with	 0%	 image	 overlap)	 for	
animal monitoring. While lawnmower patterns with large overlaps 
allow for the development of image mosaics for landscape map-
ping	 (Frazier	&	Singh,	2021),	we	 found	that	 these	 flight	patterns	
increasingly lead to overestimated counts of mobile animals as 
percent overlap increased as predicted, even when accounting for 
mosaicking.	Subsampling	the	landscape	with	a	belt	transect	under-
estimated counts of the moving animal as predicted compared to 
a stationary animal. However, subsampling with systematic points 
was more accurate when the animal was moving compared with 
stationary, contrary to predictions. Increases in animal persistence 
and speed often did not result in overcounting the moving animal, 
as	we	predicted.	Some	directional	persistence	(random	correlated	

F I G U R E  4 Total	number	of	simulations	from	an	agent-	based	model	that	either	returned	the	correct	number	of	animals	(one	animal;	
Correct),	omitted	the	animal	(Omissions),	or	had	multiple	counts	(Multiple)	among	various	drone	flight	patterns,	animal	movement	speeds,	
and	animal	movement	patterns	(BRW,	biased	random	walk;	CRW,	correlated	random	walk;	Random,	random	walk).
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walk)	in	the	moving	compared	to	the	stationary	animal	resulted	in	
more	accurate	counts	than	no	(random	walk)	or	greater	directional	
persistence	 (biased	walk).	 Increasing	animal	speed	tended	to	de-
crease precision overall, but the results depended on flight pattern 
and walk type. Our results have important and often overlooked 
implications for drone surveys compared with more commonly ap-
plied practices.

Easily programmed drone lawnmower pattern surveys typ-
ically	 use	 60%–80%	 overlapping	 imagery	 (Aubert	 et	 al.,	 2021; 
Lyons et al., 2019),	 but	 our	 results	 indicate	 this	may	have	major	
implications	 for	multiple-	count	concerns	during	drone	surveys	 if	
the animal of interest is mobile. While it is acknowledged that ani-
mals	move	during	surveys	(Brack	et	al.,	2018),	many	drone	surveys	
assume	animals	are	stationary	(Sudholz	et	al.,	2022)	and	create	a	
mosaic image to more easily count animals and understand distri-
butions (De Kock et al., 2021;	Ezat	et	al.,	2018)	without	quantifying	
the	effect	of	animal	movement	on	counting	accuracy.	A	few	field	
drone studies have attempted to address animal movement issues 
post data collection (Linchant et al., 2018)	and	with	manual	image	
searches for clones, partial, or blurred animals after mosaicking 
(Barbedo	&	Vieira	Koenigkan,	2018;	 Lenzi	 et	 al.,	2023).	Another	
approach reviews individual overlapping images, comparing ani-
mal	 shapes,	 sizes,	 and	 positions	 to	 reduce	 the	 number	 of	multi-
ple	 counted	 animals	 (Cleguer	 et	 al.,	 2021;	 Sudholz	 et	 al.,	 2022; 
Witczuk	et	al.,	2018).	This	additional	post-	processing	of	 imagery	
can be helpful, but uncertainty remains in their effectiveness 
considering most animals are unmarked or indistinguishable from 
other individuals. These image reviews are also very labor inten-
sive,	time-	consuming,	and	do	not	address	animal	omissions	due	to	
their	movements	(Brack	et	al.,	2018).	Automated	image	classifica-
tion	approaches	are	being	developed	(Chabot	et	al.,	2022;	Dujon	
et al., 2021;	Gonzalez	et	al.,	2016; Krishnan et al., 2023),	but	the	
development of accurate algorithms for aerial animal imagery is 
still	in	its	infancy	and	has	many	challenges	to	overcome	(Corcoran,	
Winsen, et al., 2021;	 Sudholz	et	 al.,	2022).	Addressing	 the	 issue	
of multiple counting during data collection, as opposed to during 
post-	processing	could	reduce	the	likelihood	of	the	multiple-	count	
problem. Incorporating lawnmower patterns with minimal image 
overlap may be key, as noted in the increase in count accuracy of 
our simulations as overlap percentage decreased.

Subsampling	 the	 landscape	 or	 spreading	 sampling	 intervals	
has been suggested as a means to avoid issues of multiple counts 
of	 the	 same	 animal	 (Witczuk	 et	 al.,	 2018).	 However,	 we	 found	
that animal movement can still influence counts of an individual 
in these scenarios. The average count and variation of the tran-
sect flight pattern both doubled when the animal was moving, 
as opposed to when the animal was stationary on the landscape. 
Similarly,	 for	 the	 systematic	 points	 flight	 pattern,	 the	 average	
count increased 1.5 times, with a slight increase in count variation 
as well. However, we also found that during the systematic points 
flight (Figure 1f),	an	animal	moving	with	directional	persistence	re-
sulted in a large percentage of accurate surveys, which was consis-
tent with other drone flight patterns. Thus, surveys at systematic 

points for animals behaving this way may be accurate and would 
result	in	less	imagery	for	post-	processing,	sequentially	leading	to	
additional time savings during data preparation and image evalu-
ation.	Ultimately,	 subsampling	 the	 landscape,	 compared	 to	 a	 full	
census,	will	 require	 correction	of	 counts	 (Buckland	et	 al.,	2001),	
but as we have shown, these corrections should vary depending 
on if the animals of interest are anticipated to be mobile during 
the survey period.

Our simulations confirm that animal movement patterns and 
speeds influence whether an animal is correctly counted in drone 
imagery. The random and biased random walking animal movement 
patterns often resulted in overestimates from multiple counts of an 
animal traveling back into the path of the drone after its initial “cap-
ture.”	An	increase	in	the	animal	speed	lowered	the	precision	for	most	
flight patterns and animal walks, with an exception for the correlated 
walking animal. Therefore, researchers need to consider animal move-
ment	behaviors	to	avoid	count	bias	and	consequential	incorrect	man-
agement prescriptions (Guerrasio et al., 2022).	 Overall,	 our	 results	
emphasize	 that	 knowledge	 of	 animal	 movement	 patterns	 can	 help	
identify the optimal survey periods and drone flight patterns to mini-
mize	sampling	error.	To	minimize	count	error,	one	might	survey	using	a	
systematic points flight pattern during crepuscular periods when cer-
tain	species,	such	as	white-	tailed	deer,	are	most	active	(Kammermeyer	
&	Marchinton,	 1977).	 Or	 depending	 on	 the	 research	 question,	 0%	
overlap lawnmower pattern surveys during other times of day or year 
when	individuals	are	more	stationary,	such	as	when	juveniles	have	not	
yet dispersed from natal areas, may also be appropriate.

Even on our simplified landscape, we observed large amounts 
of bias among animal counts during scenario simulations with one 
mobile	 animal.	 While	 our	 assumptions	 of	 100%	 availability	 and	
detectability	are	highly	unlikely	in	real-	world	applications	(Gilbert	
et al., 2021),	for	example,	due	to	visual	obstructions	above	the	ani-
mals or the ability of the animal to dive underwater or move under 
cover	 (Brunton	 et	 al.,	2020; Hodgson et al., 2017),	 this	 assump-
tion allowed us to simplify our scenarios and better understand 
how flight patterns and animal movements may create counting 
errors. Typically, surveyors are concerned with omission rates as-
sociated with conventional animal survey methods (i.e., occupied 
aircraft	and	ground	surveys)	due	to	detectability	issues,	and	there	
are	means	 of	 addressing	 some	 of	 these	 problems	 (Brack,	 Kindel,	
de	Oliveira,	&	Lahoz-	Monfort,	2023; Hamilton et al., 2018;	Samuel	
et al., 1992;	Steinhorst	&	Samuel,	1989).	For	example,	the	inclusion	
of detection probabilities in statistical models has greatly improved 
our	 ability	 to	 estimate	 animal	 populations	 (Corcoran,	Denman,	&	
Hamilton, 2021;	Martin	et	al.,	2012),	and	 incorporating	detection	
probabilities	 into	 drone-	based	 estimates	 would	 be	 a	 helpful	 ad-
vancement	 (Brack,	 Kindel,	 de	 Oliveira,	 &	 Lahoz-	Monfort,	 2023; 
Hodgson et al., 2017, 2023).	 It	 is	also	notable	that	false	positives	
(i.e.,	 multiple	 counts)	 are	 less	 frequent	 during	 ground-	based	 and	
occupied aircraft surveys, something that researchers using drones 
need	to	carefully	consider	moving	forward	(Brack	et	al.,	2018).

We	 acknowledge	 other	 trade-	offs	 must	 be	 considered	 for	
drone	 surveys	 such	 as	 balancing	 battery	 life	 and	 line-	of-	sight	
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limitations	 during	 survey	 planning	 (Baxter	 &	 Hamilton,	 2018; 
Linchant et al., 2015).	 Hence,	 trade-	offs	 between	 the	 area	 sam-
pled and survey accuracy may need to be considered for larger 
sampling areas. There may also be potential for increased accuracy 
with alternative flight patterns that we did not consider. For ex-
ample, sea turtle density estimates were calculated using a mod-
ified	 strip–transect	 approach	with	 35%–45%	 frontal	 overlap	 and	
sequential	 images	used	in	counts	to	reduce	multiple	counting	po-
tential	(Brack,	Kindel,	Berto,	et	al.,	2023;	Sykora-	Bodie	et	al.,	2017),	
and	 point	 count	 drone	 surveys	 with	 360-	degree	 rotations	 were	
found to be a promising approach for mesocarnivore abundance 
estimates	(Bushaw	et	al.,	2019).	In	either	case,	the	method	was	not	
thoroughly vetted for accuracy, although this could be explored in 
future	work.	Barbedo	and	Vieira	Koenigkan	 (2018)	 suggest	 flying	
multiple drones in formation to collect accurate counts, acknowl-
edging that animals could otherwise move between survey efforts. 
However, they also note that this would greatly increase survey 
cost and that formation flights have many technical challenges. 
In any case, researchers should not assume mosaics composed 
of overlapped images can be used for both vegetation mapping 
and animal surveying simultaneously. Instead, careful thought is 
needed	for	drone	flight	patterns	with	objectives	related	to	animal	
monitoring.

5  |  CONCLUSIONS

As	the	use	of	drones	in	animal	monitoring	continues	to	grow,	con-
sideration of how these survey platforms can be appropriately in-
corporated	 into	 animal	 survey	 techniques	 is	 vital.	 Based	 on	 our	
results, when using a drone to survey areas similar to our simula-
tions (~22–24 ha),	we	 recommend	 that,	 researchers	 interested	 in	
animal counts should consider a lawnmower flight pattern with 
0%	 overlap	 as	 an	 alternative	 to	 other	more	 easily	 programmed,	
overlapping patterns. We also recommend that animal life history 
knowledge be incorporated in survey design, aligning with stages 
and times of day when animals may exhibit more sedentary or 
more directional movements. This will allow for the most accurate 
counts	as	well	as	maximize	overall	ground	coverage	area	when	ac-
counting for limited battery capabilities (Linchant et al., 2015).	The	
simulated	approach	we	utilized	also	allows	for	robust	inference	to	
investigate a myriad of animal behaviors and population processes 
that can be broadly applied across many taxa and provide guid-
ance of drone applications in a variety of wildlife management ap-
plications.	Although	our	scope	in	this	study	was	limited	to	solitary,	
low-	density	animals,	future	efforts	with	our	agent-	based	modeling	
approach can help assess the influence of animal density, distri-
butions,	and	detection	probabilities	to	better	simulate	real-	world	
environments.
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