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In this paper, a flexural Mikaelian lens in thin plate is designed by using conformation transformation. 
The propagation characteristics of flexural waves in the lens are investigated through rays trajectory 
equation, simulation analyses, and experimental tests, confirming the self-focusing properties of the 
Mikaelian lens. Additionally, the study explores the Talbot effect for flexural waves, revealing through 
simulation studies that the Talbot effect within the Mikaelian lens exhibits nearly diffraction-free 
properties. Building on the non-diffractive nature of the Talbot effect within the Mikaelian lens, we 
explore the potential for encoding flexural waves using active interference sources. The simulation and 
experiment results demonstrate the good performance of the designed active encoding system. This 
work opens up new avenues for the encoding of flexural waves, presenting promising implications for 
applications in communication such as structural health monitoring, wireless communication in solid 
media and data transmission in robotics and other areas related to flexural wave technology.

Metamaterials have showcased significant advantages and vast potential in the domain of subwavelength 
control1–5. Leveraging these materials alongside foundational theories such as transformation theory and the 
generalized Snell’s law6–9 has led to the successful development of functional devices. These include acoustic 
and optical cloaking devices10–12, metasurfaces13–15, and high-performance lenses16–18, thereby enriching device 
functionality and broadening their applicability.

While metamaterial devices offer groundbreaking potential, they often face limitations such as singular 
functionality, constraints to specific environments, and static operational frequency ranges. The development of 
programmable and reconfigurable metamaterial devices emerges as a solution to these challenges, significantly 
expanding the versatility and adaptability of these devices across various applications19–22. This advancement 
marks a pivotal shift towards creating more dynamic and flexible metamaterial systems. Lau et al proposed 
a reconfigurable electromagnetic metasurface arrays to archieve omni directional phase coverage23. Cui et al 
develped the concepts of digital metamaterials inspired by the binary representation of digital circuits24. By 
integrating a two-phase composite approach, combining hydrogel-based fillers with auxetic lattices, the 
research offers a programmable method for creating materials with custom mechanical properties, including 
temperature-responsive behavior for dynamic adaptability25. Tian and colleagues proposed a programmable 
acoustic metasurface based on Helmholtz resonators and straight channels, utilizing a fluid system to regulate 
the resonators’ equivalent mass, thereby achieving multifunctional manipulation of the phase and amplitude of 
sound waves26. By carefully designing rotating supports within each unit and employing 3D printing to craft a 
base with periodic holes, Chen presented a reconfigurable hexagonal Helmholtz resonator, which enables easy 
rotation and adjustment of the acoustic metamaterial chamber to different configurations without the need for 
reprinting or redesigning the entire structure, allowing for efficient control over ventilation and insertion loss27.

The control of flexural waves in thin plates also deserves in-depth study and attention28–32, since it holds crucial 
significance in vibration and elastic wave control. Similarly, programmable and reconfigurable devices for flexural 
waves have also experienced rapid development. Xu et al proposed an alternative method for beam splitting of 
flexural waves based on the generalized Snell’s law, utilizing a coding meta-slab composed of two logical units, 
“0” and “1,” which has been experimentally verified to effectively split incident flexural waves across a broadband 
frequency range33. Yaw et al proposed a functionally switchable 3-bit active coding elastic metasurface, utilizing 
stacked piezoelectric patches and connected negative capacitance circuitry to achieve omnidirectional frequency 
control of elastic longitudinal waves, covering the entire 2π phase range and demonstrating a wide range of 
manipulation capabilities and high transmittance34. Li et al. introduced the concept of binary metasurfaces into 
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the field of elastic waves, proposing a strategy for designing coding units through topology optimization. They 
successfully constructed a structured binary elastic metasurface, achieving accurate guidance and focusing of 
flexural waves, along with demonstrating an efficient energy harvesting system35. Yuan et al. have designed and 
implemented a broadband reconfigurable metasurface using a “screw-and-nut” operating mechanism, achieving 
active control of the wavefront of flexural waves36. Wu et al introduced a linear active metalayer, achieving 
independent frequency conversion of flexural waves in elastic beams and plates, opening up new possibilities for 
comprehensive control of time-domain signals and wave energy37.

Recently, the regulation of flexural waves by Mikaelian lenses has attracted the attention and research of 
researchers38–40. Mikaelian lens, with hyperbolic secant refractive index, enables self-focusing, facilitating 
phenomena including point-to-point imaging, aberration-free spherical surfaces, enhanced convergence, 
effective waveguiding, and Talbot effects without diffraction, illustrating their broad utility in wave controlling. 
Zhao et al designed and experimental demonstrated a Mikaelian lens with large refraction to realize broadband 
sub-diffraction focusing without introducing evanescent waves38. Then a flexural wave Mikaelian lens was 
designed and fabricated by conformal transformation, successfully achieving achromatic subwavelength 
focusing (FWHM approximately 0.30λ) and a beam-scanning angle of up to 120◦ in the frequency ranges from 
30 to 180 kHz. These work indicate significant potential applications of the Mikaelian lens in high-resolution 
medical imaging and flexural wave communication40. However, compared to its optical41–43 and acoustical 
counterparts9,44, research reports on flexural wave Mikaelian lenses are still relatively limited. Therefore, 
the research on flexural wave Mikaelian lenses has important application value in designing and opening 
programmable and reconfigurable flexural wave devices based on Mikaelian lenses.

In this work, we design a flexural wave Mikaelian lens using conformal transformation, and study the 
propagation properties of flexural wave in the designed Mikaelian lens. The designed Mikaelian lens has a width 
of W = 280 mm, a self-focusing period of l = 880 mm, and a lens length of L = 600 mm, that is, 68.18% of the 
self-focusing period. A piezoelectric sheet line array was arranged at the incident end of the lens as interference 
sources. The flexural wave Talbot effect generated by the interference sources are studied, and the non-diffraction 
characteristics of the Talbot effect in the Mikaelian lens are verified with simulation. Furthermore, we develop an 
active encoding system based on the designed lens to achieve flexural non-diffraction Talbot communication. 
Based on the self-focusing effect of the Mikaelian lens, the image converges at one quarter of the period, and 
reappears as an inverted image near one half of the period. Therefore, if the channel state of the piezoelectric 
sheet is regarded as 1 in the binary code, and the open one as 0 in the binary code, then the incident signal can 
be regarded as being encrypted near the quarter period of the lens, and it is decoded again at the half of the 
period. Simulation and experimental results indicate that the designed system has excellent performance in 
actively encoding flexural waves. This study focuses on the development and demonstration of a non-diffractive 
Talbot effect using a Mikaelian lens, with multifunctional capabilities in flexural wave manipulation. It shows 
significant potential for enhancing high-resolution imaging and communications through flexural waves, 
offering new avenues for technological advancements in these fields.

Theory and design
The Mikaelian lens is a self-focusing lens designed by A.L. Mikaelian in 195145, which has a hyperbolic cosine 
inverse distribution of refractive indices. Recent research indicates that the Maxwell’s fish-eye lens and the 
Mikaelian lens can establish a mapping relationship through conformal transformations, as demonstrated 
below41,44:

 
nz = nw

∣∣∣∣
dw

dz

∣∣∣∣ , (1)

where nz and nw are the refractive index distributions in virtual space (Maxwell’s fish-eye) and physical space 
(Mikaelian lens), respectively, as shown in Fig. 1a–d. The refractive index distribution for the Maxwell fisheye 
lens is:

 

nw =
2α(

1 +
(
r
R

)2), (2)

where α and R denote the refractive index on the lens boundary and the radius of the lens, respectively, and r is 
the distance to the center of the lens, as shown in Fig. 1a. The wave rays emanate from the left end of Maxwell’s 
fish-eye lens and will then propagate along a circular arc and converge at the far right end of the lens, as shown in 
Fig. 1b. Performing an exponential conformal transformation w (u, v) = exp (βz (x, y)) on the Maxwell fish-eye 
lens yields a physical spatial refractive index distribution is:

 
n(x, y) = n0 sech

(
2βy

W

)
 (3)

Equation (3) represents the refractive index distribution of the Mikaelian lens. In Eq. (3), β is the length coefficient 
controlling the Mikaelian lens, W = 2R = 280 mm represents the width of the lens, and l = 2πR/β = 880 mm 
is the period of the Mikaelian lens. And n0 is the maximum refractive index along the lens’s central axis, defined 
as n0 = αβ. The refractive index distribution of the lens, as shown in Fig. 1c, clearly indicates a gradual increase 
in refractive index from both sides of the lens towards its central axis. The self-focusing effect of the Mikaelian 
lens can be reflected through ray trajectories, as illustrated in Fig. 1d. In this work, we use Mikaelian lens to 
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modulate the flexural wave and implement a kind of coding for flexural wave, where the schematic is shown in 
Fig. 1e.

The two-dimensional motion equation for flexural wave in a thin plate with variable local thickness h (x, y) is:

 
∇2

(
D∇2w

)
− (1− υ) ·

(
∂2D

∂y2
∂2w

∂x2
− 2

∂2D

∂x∂y

∂2w

∂x∂y
+

∂2D

∂x2
∂2w

∂y2

)
+ ω2ρhw = 0. (4)

In Eq. (4), D = Eh3 (x, y) /12
(
1− υ2

)
 indicates the flexural rigidity, w represents the transverse displacement 

of the plate,E, ρ, υ, ω and hw are the Young’s modulus, mass density, Poisson’s ratio, angular frequency, 
longitudinal displacement of the plate correspondingly. The solution of Eq. (4) is given as:

 w = A (x, y) exp (ikvϕ (x, y)) , (5)

where A (x, y) and kvϕ(x, y) are the wave amplitude and cumulative phase at the view point (x, y). Thus, the 
velocity c of flexural wave in a Mikaelian lens is expressed as:

 
c =

(
Eh2ω2

12ρ (1− υ2)

)1
4

. (6)

The refractive index of the lens is controlled by the thickness of the localization39:

 
n(x, y) =

√
h0

h(x, y)
. (7)

As a result, the thickness distribution of the flexural wave Mikaelian lens can be expressed as:

 
h(x, y) =

h0 cosh
2 (2βy/W )

n2
0

. (8)

The designed Mikaelian lens is embedded in a stainless steel plate with a thickness of 3.8 mm, Young’s modulus 
of 210 GPa, density of 7800 kg/m3, and Poisson’s ratio of 0.29, as shown in Fig. 2a. To achieve impedance 
matching, an impedance matching gradient layer has been designed between the lens and the background plate. 
The cross-sectional view of the lens is illustrated in Fig. 2b, with the corresponding thickness and refractive 
index depicted in Fig. 2c.

The simulation model is shown in Fig. 3a, in which a transitional zone has been added between the lens and the 
thin plate38 to achieve impedance matching. The designed simulation model has a width of W0 = 600 mm, a 
length of L0 = 1000 mm, and the width of PML of t0 = 50 mm. The distance from the piezoelectric element to 
the edge of the thin plate is l0 = 200 mm.

Fig. 1. Theoretical design and communication encoding technique schematics of the conformal mapping 
Mikaelian lens. (a) Refractive index distribution of the Maxwell’s fish-eye lens. (b) The rays trajectories in 
the Maxwell’s fish-eye lens. (c) Refractive index distribution of conformal Mikaelian lens. (d) Self-focusing 
phenomenon of the Mikaelian lens. (e) Schematic representation of active encoding of flexural waves by the 
Mikaelian lens.
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The flexural wave is generated by an array of circular piezoelectric elements46, shown as the circles in Fig. 3b, 
where the produced flexural wave is determined by the following equation:

 
w =

A0R0

r
exp (ikr) , (9)

with r0 and A0 as the radius and amplitude of a circular source,correspondingly. In addition, Perfect Matched 
Layer (PML) are imposed to minimize the reflections. Therefore, the superposition of N sources on a point 
outside the plane can be explained as:

 
w = A0r0

N∑
n=1

exp (i (krn + ϕn))

rn
, (10)

where ϕn is the initial phase of each element, rn represents the distance from the nth element to the observation 
point. And the distance from the nth element to the first element is (n− 1) d with d as the distance between two 
adjacent sources. Therefore, rn in the Eq. (10) can be replaced by r − (n− 1) d sin (θ), and ϕn can be replaced by 
(n− 1)∆ϕ, which can be rewritten as:

 
w =

A0r0 exp (ikr)

r
exp

[
−N − 1

2
· i · (kd sin (θ)−∆ϕ)

]
·
sin

[
N
2 (kd sin (θ)−∆ϕ)

]

sin
[
1
2 (kd sin (θ)−∆ϕ)

] , (11)

where ∆ϕ is the phase difference between adjacent elements. By substituting r =
√
x2 + y2, sin (θ) = y/

√
x2 + y2 

into the Eq. (11), it can be obtained that:
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√
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], (12)

with considering that the initial phases of the sources are all the same in our research, leading ∆ϕ = 0. According 
to Eq. (12), the modulation of the flexural wave propagation can be realized by adjusting multiple piezoelectric 
sheet array element circles.

Fig. 3. Schematic of the simulation model: (a) Schematic of the relative positioning of the Mikaelian lens on 
the stainless steel thin plate (front side). (b) Schematic of circular piezoelectric sheet array element (back side).

 

Fig. 2. (a) The model of the designed flexural wave Mikaelian lens. (b) Cross-sectional view of the lens with a 
thickness variation structure. (c) Relationship between thickness, refractive index, and distance from the lens 
center.
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The equation for the trajectory of the rays inside a Mikaelian lens can be determined by the transverse components 
of the wave vector being equal to each other9:

 

n (y (x))√
1 + y′2 (x)

= n (y0) cos (θ) . (13)

Here, y0 = y (0) represents the entry position on the y-axis to the left of the lens, and θ is the angle of incidence. 
The refractive index distribution of the Mikaelian lens mentioned above is given by Eq. (3), thus the equation of 
the trajectory of the ray in the lens is given by Refs.47–49:

 
y (x) =

W

2β
sinh−1


sinh


2βy0
W


cos


2βx
W



cos (θ)


 . (14)

According to Eq. (14), y becomes to zero at x = πW/4β and y0 at x = πW/4β in the case of plane wave 
normally incident to the lens, which indicates the properties of self-focusing. Figure 4 illustrates the flexural 
wave produced by the circle sources propagating in the thin plate and the designed Mikaelian lens. In Fig.  4a, it 
can be seen that the wave produced by the source array exhibits nearly as plane wave. However, in the Mikaelian, 
the wave focuses at x = l/4 and then transforms to plane wave at x = l/2, as described by Eq. (14), implying the 
self-focusing of the designed lens, as illustrated Fig. 4b. Figure 4c shows the distributions of the displacements 
along the line at x = l/4 in thin plate (blue curve) and Mikaelian lens (red curve). It can observed that there is an 
obvious shark peak with a FWHM of 0.65λ in the red curve, while the blue cure tend to be more flat. This further 
verifies the focusing of the Mikaelian lens. Figure 4d demonstrates the simulation results for the wave from point 
source propagating in the ordinary thin plate, indicating that the flexural wave gradually spreads as it propagates. 
However, when the flexural wave from a single source is incident to the Mikaelian lens, due to the self-focusing 
of the Mikaelian lens, the wave propagates along a curve and forms a iverted image at x = l/2, as shown in Fig. 
4e. Figure 4f presents the displacements along the line x = l/2 in thin plate (red curve) and Mikaelian lens (blue 
curve), correspondingly. It can be seen a very obvious peak at y = 63.2 mm, with the FWHM of 0.61λ, in the 
displacements distribution of the Mikaelian lens, while the blue curve is almost a straight line. Since the source 
is at y = −62.9, this further proves the good performance of the inverting focusing of the designed lens.

Non-diffractive Talbot effect and its encoding in flexural wave Mikaelian lens
The Talbot effect was firstly discovered by Talbot in optics50, and has practical applications in optical fields for 
beam collimation tests and precise lens focal length measurements51. Considering the similarity between optical 
wave and elastic wave, the Talbot effect should also appear in flexural wave. Since the phenomena of diffraction 
and interference are all produced by the wave’s superposition, the periodic interference sources can also generate 
the Talbot effects. Figure 5 shows the Talbot effects in different situations. In Fig. 5a, it presents the interference 
field produced by the infinite periodic sources with a period of D = 4r0, where r0 is the radius of the source. It 
can be observed that periodic sources repeat along the propagation direction at integer multiples of the main 
Talbot length LT = 2D2/λ and are equally spaced in the transverse direction. This has the same phenomena 
of Talbot effect produced by infinite periodic diffraction gratings41. However, in practical systems, the array 

Fig. 4. Simulation results of displacement of plane wave in a thin plate (a) and in the designed Mikaelian 
lens (b). (c) Distributions of the displacements along x = l/4. Simulation results of the flexural wave excited 
by a single piezoelectric sheet propagating in a thin plate (d) and in the designed Mikaelian lens (e). (f) 
Distributions of the displacements along x = l/2.
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cannot be infinitely large, hence the Talbot spots are limited into near fields. For instance, Fig. 5b displays the 
simulated results of the ordinary Talbot effect for finite-period sources. Clearly, due to the diffraction, the Talbot 
effect can only be maintained over relatively short distances in finite-period systems. Consequently, it is not 
possible to achieve long-distance propagation of the sources’ modes through the Talbot effect in thin plate. 
Since the Mikaelian lens has a self-focusing effect, it can achieve a non-diffractive Talbot effect. Theoritically, 
the non-diffractive Talbot effect of the Mikaelian lens can propagate the modes of the interference sources over 
a considerable distance. Figure 5c shows the simulation results of the Talbot effect propagating in the Mikaelian 
lens, which is excited by four adjacent piezoelectric plates with a spacing of 4 cm. It can be observed that the 
Talbot diverge at a quarter of the period but reimage at half the period. According to Eq. (14), the image at 
x = 0.5l should be antisymmetric to the input signals about the lens axis. Since the input signals are symmetric, 
thus the image at x = 0.5l are the same with the input signals. This mode periodically repeat as the propagation 
distance increases. Figure 5d presents the fields distributions at x = 0 (orange curve), x = 0.5l (dashed curve), 
x = l (dot dashed curve) and x = 1.5l (dot curve). It can be seen that there are four peaks in the curves, which 
actually presents the Talbot spots. The peaks in the curves locate at the same positions correspondingly, which 
further more verify the repetitive imaging of the Talbot effects in the Mikaelian lens.

The research above demonstrates that the Talbot effect produced by finite-period interference sources in the 
Mikaelian lens possesses non-diffractive properties and can reform the image of the interference source at the 
half-period position. This feature can be used to achieve communication encoding for flexural waves. To further 
investigate the potential of using the non-diffractive Talbot effect of flexural waves in the Mikaelian lens for 
communication encoding, simulations are conducted using the commercial software COMSOL Multiphysics. In 
the simulations, we utilized a proprietary tetrahedral mesh to partition the model, while simultaneously setting 
the maximum element size to 1/6 of the wavelength and the minimum element size to 1/12 of the wavelength. 
The simulations are performed at 35 kHz with the specified displacements applied at the incident end of the 
Mikaelian lens model (Fig. 3b sources position), and the displacement field was observed both on the thin 
plate and the back of the lens. By adjusting whether the actively controlled piezoelectric elements were excited, 
encoding was performed using “0′′ for no excitation and “1′′ for excitation. The simulation results are shown 
in Fig. 6, where Fig. 6a–d represent the displacement fields of flexural waves for various encoding sequences of 
01000000, 001001001, 010010010, and 101000101, respectively. The input signal (blue solid line) is obtained near 
the left end of the Mikaelian lens. The encrypted result (black solid line) is at the x = l/4 (focusing plane). The 
final output result (red solid line) is obtained at x = l/2. It can be observed that the four sequences are transmitted 
and focused over long distances in the lens. Figure 6e shows the normalized displacement distribution of the 
input signal when exciting a single piezoelectric element, where there is only one peak located at (0,−62.9), 
indicating the 9-bits binary code of 010000000, while Fig. 6i shows the normalized displacement distribution 
of the encrypted result. In Fig. 6m, there is an obviously peak appearing at the location of (0.5l, 63.2), implying 
a 9-bits binary code of 000000010. The source creates an inverted image at half period, making the encoding at 
x = 0.5l antisymmetric to the incoming signal, as discussed in the previous parts. Consequently, by applying 
a reverse transformation-converting the output signal 000000010 to its reverse 010000000-we can accurately 
reconstruct the original incident signal as 010000000. Figure 6f,j,n,g,k,o,h,l,p correspond to different encoding 
sequences. The simulation results show that the designed system has a good performance for non-diffractive 
Talbot effect encoding.

Experimental results
The performance of the designed lens is further verified by experiments. The experimental setup, as shown in 
Fig. 7, consists of the flexural wave Mikaelian lens, a signal generator, an array of piezoelectric elements with a 
radius of r0 = 10 mm, a controller comprising a Stm32 microcontroller and relays, a laser scanner, and other 
components. The designed Mikaelian lens is fabricated by the precision mechanical machining technology on 
a CK6160 CNC lathe, as shown in Fig. 7a. This approach allows to efficiently realize the design with precision 
and speed. Blu-tack is adhesive to the edges of the lens to absorb the reflected waves, and the lens lies on the 
sound-absorbing wedge made up of sponge. This will result in a slight deviation between the experimental and 
simulation results, but this deviation can be ignored as it is sufficiently small. And placing the lens in this way 
would be more convenient for experiments. Nine circular piezoelectric elements are attached to the back of the 

Fig. 5. The Talbot effects generated by (a) infinite and (b) finite periodic interference sources in thin plate and 
(c) generated by finite periodic sources in the designed Mikaelian lens. (d) The Talbot spots located at x = 0 
(orange curve), x = 0.5l (dashed curve), x = l (dot dashed curve) and x = 1.5l (dot curve).
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lens and are located at the incident end of the lens to generate incident flexural waves. The incident wave signal 
applied to the piezoelectric elements is generated by a signal generator and amplified by a power amplifier. The 
displacements are scanned and recorded by a laser vibrometer.

The controller has multiple channels to independently control their different element of the line array. The 
open and closed circuit states represent the binary codes of 0 and 1, respectively. A signal generator is used to 
excite the circular piezoelectric elements.

Figure 8 shows the simulated and experimental results of the non-diffractive encoding, where three different 
9bits codes, i.e. 001001001, 010010010 and 101000101, are employed to verify the encoding capacities. Figure 8a–
c are the cases of 001001001, where in Fig. 8a the dashed and solid lines represent the displacement distribution 
of the simulation and experiment at x = l/4, respectively. It can be seen that the simulated results match with the 
experiments well. The output signals are shown in Fig. 8b, where the simulated and experiment result have a high 
consistency. Since the input and output signals are near the left end and half of the period of the Mikaelian lens 
correspondingly, they are anti-symmetric about y = 0. This can be further proved in Fig. 8c, where the dashed 
and solid curves are the input and the output signals, respectively. It can be seen that there are 3 peaks both in the 
input and output signals. Furthermore, the y coordinates of the 3 input peaks are y = −43.31, 19.02 and 91.08 
respectively, while the peaks of the output signals are at y = −87.75,−18.39 and 46.80 correspondingly. Given 
that the spacing between two adjacent binary codes is approximately 2r0 or 20 mm, the input signal encodes a 
9-bit binary sequence of 001001001. Conversely, the corresponding output signal reflects an inverted pattern, 
represented by 100100100. Therefore, by inverting themselves, the output signals are transformed into the same 

Fig. 7. (a) Experimental setup. (b) The wave source is mounted on the backside of the sample, and the 
displacement normalized distribution of the lens’s focusing and imaging positions is measured using a laser 
vibrometer.

 

Fig. 6. Simulation results of the displacement field for a single interference source (a), sources of 001001001 
(b), sources of 010010010 (c) and sources of 101000101 (d). Normalized displacement distribution of the input 
signals (e–h), encryption signals (i–l) and output signals (m–p), corresponding to (a–d), respectively.
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as the input signals, achieving the reconstruction of the input signal. According to Fig. 8a–c, it is obvious that the 
system works well for the encoding of 001001001. Figure 8d–f and h–i are the experiment results of the cases of 
010010010 and 101000101, respectively.

Since the encoding process is based on the active interference sources, the system works in a broadband 
frequency range. This is further proved by the experiments, as shown in Fig. 9, where the simulated and 
experimental displacements at output ends are represented by the dashed and solid curves correspondingly. 
Figure 9a shows the displacements at the output ends produced by a single source at 38 kHz, where there can be 

Fig. 9. Simulation and experimental results of the output binary sequences of (a) 001001001, (b) 010010010, 
(c) 101000101 at 38 kHz, correspondingly. (e–h) The counterpart of subfigures (a–c) at 41kHz.

 

Fig. 8. The simulations (dashed blue curves) and experiments (solid red curves) of the non-diffractive 
encodings of 001001001 (a–c), 010010010 (d–f) and 101000101 (g–i), respectively.
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found the good matching between the simulations and experiment. And Fig. 9b to d are the cases of the coding 
sequences of 001001001,010010010 and 101000101 at 38 kHz respectively, in which the simulations matches 
the experiments well. Figure 9e–h present the 41 kHz counterparts of the scenarios in Fig. 9a–d. Additionally, 
it is noteworthy that the performance remains robust at 41 kHz, as indicated by the close agreement between 
simulations and experiments in Fig. 9e–h.

In addition, we conduct a field scan of the output displacements of the system at 35 kHz, 38 kHz, and 41 kHz 
to visually illustrate the alignment between simulations and experiments, as depicted in Fig. 10. Specifically, Fig. 
10a–c represent the simulated displacement fields for the coding sequence 010010010 at 35 kHz, 38 kHz, and 
41 kHz, respectively. It is evident that the Talbot effect can be generated through the interference sources, and 
a reconstructed image of the source is formed at l/2 after convergence at the coding output end. Corresponding 
experimental results are shown in Fig. 10d–f, where the displacement field was measured in an area near the 
output end with a width of 80 mm and a length of 200 mm, with a scanning step size of 5 mm. The high 
consistency between experimental and simulated results confirms the broad-frequency effectiveness of the 
designed system.

Conclusions
In conclusion, we design a Mikaelian lens, with a length of about half a period, for manipulating flexural waves 
with conformal transformation theory. The properties of the designed lens are studied with simulations, which 
show that the flexural wave propagating in the lens exhibits behaviors of self-focusing as well as non-diffraction 
Talbot effects. Based on these properties, an active encoding system is proposed to encoding the fleuxral wave 
effectively. In the proposed system, 9 adjacent piezoelectric pieces are placed at the incident end of the lens to 
provide the incident binary signals, where the open and closed states of the piezoelectric pieces represent 0 and 
1 in the binary, respectively. The output end is at the right end of the lens, which means the distance between the 
input and the output signals is as far as half of the lens period, leading to antisymmetry of the signals. According 
to the properties of the designed Mikaelian lens, the input signals and the output signals are antisymmetric 
about the main axis of the lens. Therefore, the input coding sequences can be reconstructed by inverting the 
binary sequences of the output signals. Moreover, the piezoelectric pieces are connected to a programmable 
switch controller, which enables active control of both closed and open circuits, resulting in flexible active 
encoding. The results from simulations, corroborated by experimental evidence, substantiate the efficiency of 
active encoding in this study, indicating promising avenues for its application in the realms of flexural wave 
communication and detection, such as structural health monitoring, wireless communication in solid media 
and data transmission in robotics.

Data availability
The datasets analyzed during the current study are available from the corresponding author on reasonable re-
quest.
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Fig. 10. The simulated displacements of the coding sequences of 010010010 at (a) 35 kHz, (b) 38 kHz and (c) 
41 kHz. The experimental displacements of the coding sequences of 010010010 at (d) 35 kHz, (e) 38 kHz and 
(f) 41 kHz.
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