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Abstract

Background: Congenital heart diseases (CHDs), particularly atrial and ventricular septal defects, pose significant health risks and com-
mon challenges in detection via echocardiography. Doctors often employ the cardiac structural information during the diagnostic process.
However, prior CHD research has not determined the influence of including cardiac structural information during the labeling process
and the application of data augmentation techniques. Methods: This study utilizes advanced artificial intelligence (AI)-driven object
detection frameworks, specifically You Look Only Once (YOLO)v5, YOLOv7, and YOLOv9, to assess the impact of including cardiac
structural information and data augmentation techniques on the identification of septal defects in echocardiographic images. Results:
The experimental results reveal that different labeling strategies substantially affect the performance of the detection models. Notably,
adjustments in bounding box dimensions and the inclusion of cardiac structural details in the annotations are key factors influencing the
accuracy of the model. The application of deep learning techniques in echocardiography enhances the precision of detecting septal heart
defects. Conclusions: This study confirms that careful annotation of imaging data is crucial for optimizing the performance of object
detection algorithms in medical imaging. These findings suggest potential pathways for refining AI applications in diagnostic cardiology
studies.
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1. Introduction
Echocardiography is often used in clinical practice to

determine cardiac function. Echocardiographic findings
can assist cardiologists in performing additional diagnostic
tests and selecting appropriate treatments. However, con-
siderable clinical experience is required for doctors to iden-
tify cardiac diseases and make sound decisions on the basis
of imaging findings to identify cardiac diseases. Therefore,
the present study identified a method that assists in the iden-
tification of cardiac diseases, particularly congenital heart
diseases (CHDs), by echocardiographic images. One of the
most commonly encountered types of congenital heart de-
fects is a ventricular septal defect (VSD) [1]. Wu et al. [2]
reported that VSDs and atrial septal defects (ASD; secun-
dum) are the two most common CHDs in Taiwan. Veronese
et al. [3] demonstrates the accuracy of the Fetal Intelli-
gent Navigation Echocardiography (FINE) method in de-
tecting atrioventricular septal defects in pregnancies, sup-
porting early diagnosis and treatment decisions.

VSD can be categorized into four types on the basis of
its location in the right ventricular septum [4]. The present

study focuses on Type II VSDs. Type II VSD is a mem-
branous VSD [Fig. 1b] located in the interventricular area
of the membranous septum. Membranous VSD is the most
common type of VSD, accounting for more than 50% of
VSD cases. The recommended interventions for VSD are
those outlined in the guidelines proposed by Marelli et al.
[1].

ASD occurs in the atrial septum. As illustrated in
Fig. 1, ASD secundum (or Type II ASD) is the most com-
mon ASD type and accounts for approximately 80% of
ASD cases. Type II ASD is generally caused by the enlarge-
ment of the foramen ovale and the inadequate development
of the septum secundum.

In this study, we focused on Type II ASDs because it
is the most common type. For our analysis, we used ultra-
sound images in the parasternal left ventricular short-axis
view: the aortic root section, four apical AV sections, five
apical AV sections, the short-axis section of the two cavities
under the xiphoid process, and the long-axis section of the
two cavities under the xiphoid process (Fig. 2).
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Fig. 1. Representations of various ventricular septal defect (VSD) types and atrial septal defects (ASD) Type 2. (a–c) are the three
types of VSD. (d) shows a typical pattern of ASD Type 2.

Deep-learning has been widely used for medical im-
age classification, object-detection, and segmentation [5–
7]. Deep-learning has been applied in pediatric echocar-
diography, for the detection of CHDs [4,8–10]. However,
further studies exploring the potential applications of deep-
learning in the field of object-detection are required [4].
Although object-detection algorithms can be used to de-
termine edge information, defining the edge of a clinically
anomalous object on ultrasound images remains challeng-
ing. In this study, to determine the bounding box size for
the recognition of ASDs and VSDs in medical images, we
defined two sizes: one where the box is a large one that in-
cludes the structures neighboring a lesion (i.e., the nearby
atrium or ventricle), and one where the box is a small one
that excludes such a structure.

Several augmentation methods can be used to increase
the amount of data available to train machine-learning and
deep-learning algorithms. The most common methods in-
clude flip, rotation, scale, brightness, contrast, cropping,

and cutout [11]. In flip augmentation, new images are ar-
tificially created by flipping the original images horizon-
tally or vertically. However, vertically or horizontally flip-
ping echocardiographic images changes the location of the
chamber, which reduces the likelihood of over-fitting but at
the cost of lower prediction performance. The present study
conducted experiments to investigate the effects of employ-
ing left-right flip augmentation for echocardiographic im-
ages.

We evaluated the influence of the structures around a
lesion and the use of flip augmentation on the performance
of two well-known object-detection algorithms: You Look
Only Once (YOLO)v5 [12], YOLOv7 [13], and YOLOv9
[14]. Both algorithms were trained using the same data sets
with and without the inclusion of the structures neighboring
a lesion and when the augmentation method was employed.
The following section describes the methods used in this
study.
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Fig. 2. Twomajor echo views often used by doctors to diagnose the ventricular septal defect (VSD) and atrial septal defects (ASD).
(a) Parasternal short-axis view. (b) Four chamber view. RV, right ventricle; LV, left ventricle; RA, right atrium; LA, left atrium.

2. Research Methods
The algorithms used in this study, namely the

YOLOv5 and YOLOv7, are based on YOLOv4, which is
described in Section 2.1. In addition, we present two po-
tential methods for determining bounding boxes and aug-
mentation in Section 2.2.

2.1 Main Characteristics of YOLOv5, YOLOv7 and
YOLOv9

Arising from YOLOv4 [11], Jocher et al. [12] pro-
posed YOLOv5 which continues the YOLO tradition, bal-
ancing performance and efficiency. It employs a Cross
Stage Partial Network (CSPNet) backbone, enhancing
learning while reducing complexity, and integrates a Path
Aggregation Network (PANet) neck for effective multi-
scale feature fusion. The model’s head uses anchor-based
detection with optimized anchor box clustering for pre-
cise object localization and classification. YOLOv5’s train-
ing combines Cross-Entropy, Generalized Intersection over
Union (GIoU), and Objectness Losses, supplemented by
data augmentation and adaptive learning rate strategies
to improve robustness and generalization. YOLOv5 has
five model sizes ranging from small to large: YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. YOLOv5s is the
smallest model and thus has the highest speed but the low-
est accuracy. Among these models, the accuracy increases
and the speed decreases with the size of the model.

YOLOv7 [13] introduces innovations such as the
trainable bag-of-freebies, extended Extended Efficient
Layer Aggregation Network (ELAN), and RepVGG archi-
tecture to enhance detection without increasing computa-
tional load, to increase efficiency. These advancements,
including model re-parameterization and dynamic label as-
signment, significantly reduce the model’s parameters and
computation, maintaining high accuracy, making YOLOv7
exceptionally competitive across detection tasks.

Compared with YOLOv7, YOLOv9 has the Pro-
grammable Gradient Information (PGI) and Generalized
Efficient Layer Aggregation Network (GELAN). PGI ef-
fectively preserves more information during the training
process, enhancing its ability to detect objects. GELAN
is a new lightweight network architecture designed to en-
hance information integration and transmission efficiency
in deep learning models. Its core concept is to optimize
message transmission with an effective hierarchical aggre-
gation mechanism, boosting model performance and effi-
ciency.

Because both YOLOv5, YOLOv7, and YOLOv9
are well-known, contemporary object-detection algorithms.
We compared the effects of the scale of the bounding box
methods and augmentation on the object-detection preci-
sion when each algorithm was employed.

2.2 Bounding Box Scale and Augmentation Methods
Because VSDs and ASDs require clear edges for de-

tection, no standards for how these defects should be an-
notated have been developed. Therefore, the present study
developed twomethods for determining bounding box sizes
for VSDs and ASDs. The first involves including the heart
structure in echocardiographic figures. Fig. 3a, for exam-
ple, presents the parasternal short-axis view of a heart. The
bounding box includes the aorta in the center of the image.
If an image is captured in the apical four chamber view, the
bounding box should include the chamber septums. This
standard was developed to ensure that the deep-learning
algorithms would be able to consider the structure of the
heart. Because the bounding box incorporates the heart
structure, the size of the bounding box is larger. There-
fore, in our study, we refer to this method as the large-scale
bounding box method.

The other annotation method involves the color
Doppler jet area. Fig. 3b depicts the narrow area in which
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Fig. 3. Schematic diagram of the marking ranges. (a) includes the heart structure of ventricular and atrium diaphragm. (b) only
focuses on the jet area.

diseases may be detected. Applying this method would en-
able doctors to focus on a specific region. Because the size
of the bounding box is smaller when this method is em-
ployed, we refer to this method as the small-scale bounding
box method.

In addition to the size of the bounding box, data aug-
mentationmight influence the performance of an algorithm.
Data augmentation is a technique used to artificially in-
crease the number of figures in a data set to improve the
robustness and generalizability of a model. In the present
study, we employed left-right flip augmentation with a
probability of 0.5. We compared whether the differences
in the images would affect the training results of the model
under the same conditions compared with other conditions.

3. Experimental Findings
This research leverages deep learning techniques,

specifically YOLOv5, YOLOv7, and YOLOv9 to identify
VSDs and ASDs in echocardiographic images. The study
delves into how the presence or absence of structures ad-
jacent to lesions influences the accuracy of image annota-
tions and the effectiveness of augmentation strategies. We
demonstrate how to organize the experiments in Section 3.1
and the results are shown in Section 3.2.

3.1 Study Design

Echocardiograms in mp4 format were converted into
static images and anonymized to protect patient privacy.
The images were categorized based on patient conditions,
verified by a physician for accuracy, and labeled using La-
belMe. The dataset comprised 491 Doppler ultrasound im-
ages of ASDs and 345 of VSDs, divided into 70% training,
20% validation, and 10% testing subsets.

The training of the select three models was conducted
on the Taiwan Computing Cloud (TWCC), harnessing the

computational power of a Tesla V100 GPU with 32 GB of
memory. The models were trained using images with a res-
olution of 448 × 448 pixels, over 300 epochs, and a batch
size of 32, within an environment powered by the NVIDIA
pytorch-22.08-py3 container image, specifically optimized
for deep learning applications.

3.2 Results

To determine the optimal settings for detecting ASDs
and VSDs, each experiment was performed three times,
with the mean values serving as the final training results
that would be used in subsequent comparisons (Table 1).
Twelve experimental combinations involving three factors
(i.e., the object-detection method, labeling scale, and left–
right flip augmentation) were used in this study. We high-
light the best result of each algorithm in bold. With re-
gard to the object-detection method, the mean average pre-
cision at a 0.5 intersection over the union (mAP@.5) was
used. YOLOv5 and YOLOv9 shows strong performance
in large-scale settings, slightly decreasing in smaller-scales.
The left–right flip improves its small-scale performance.
YOLOv7 excels in large-scale performance with flip aug-
mentation, reaching the highest mAP@.5, but has a notable
drop in small-scale labeling without flip. As a result, both
algorithms benefit from the large labeling scale. In terms
of the flip parameter, especially in small-scale scenarios,
YOLOv7 resulted in a significant improvement in large-
scale detection accuracy.

To ascertain themost effective configurations for ASD
and VSD detection, each experiment was replicated three
times, and the average of these outcomes was employed for
subsequent analyses, as detailed in Table 1. The study ex-
plored eight different combinations of three variables: the
object-detection algorithm used, the scale of labeling, and
the implementation of left–right flip augmentation. To as-
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sess object detection performance, the mean average pre-
cision at an intersection over a union (mAP@.5) thresh-
old of 0.5 was utilized. YOLOv5, YOLOv7 and YOLOv9
showed robust performance in large-scale labeled settings,
though its effectiveness marginally decreased in smaller
scales. The introduction of left–right flip augmentation sig-
nificantly enhanced the performance of YOLOv5 in small-
scale environments. Conversely, YOLOv7 demonstrated
superior performance in large-scale scenarios with flip aug-
mentation, achieving the highest mAP@.5, but experienced
a significant reduction in accuracy for small-scale labels
without augmentation. These results underscore the impor-
tance of labeling scale and augmentation techniques, partic-
ularly flip augmentation, in optimizing detection accuracy
for both YOLOv5, YOLOv7 and YOLOv9 models.

Statistical analysis, conducted using Matlab software
(version 23.2, MathWorks, Natick, MA, USA), assessed
the effects and interactions of Method, Area, and Augmen-
tation on detection performance, as detailed in Table 2.
The “Method” factor denotes the utilized algorithm, “Area”
refers to whether an area including the heart was marked,
and “Augmentation” signifies the application of left-right
image flip. The analysis of variance (ANOVA) results
demonstrate significant impacts of these factors on out-
comes, with p-values all below 0.001, providing robust evi-
dence against the null hypothesis. Furthermore, significant
interactions among Method, Area, and Augmentation indi-
cate that these variables intricately influence detection ac-
curacy. The effect size, measured by the F-value—a statis-
tic indicating the ratio of variance between groups to the
variance within groups—was largest for Area, followed by
the Augmentation, and the combination effects of Method
and Area, emphasizing the need to consider these elements
and their interplay in the analysis.

Following the identification of significant factors in
the ANOVA analysis, the Honestly Significant Difference
(HSD) test was employed to determine specific group mean
differences. This post-hoc analysis, vital for pinpointing
precise contrasts between factor levels, revealed that Large-
Scale bounding areas significantly outperform Small-Scale
ones, as shown in Fig. 4. Moreover, the Augmentation
yielded the second highest F-value, illustrating that the ap-
plication of the flip parameter set to 0.5 has better perfor-
mance depicted in Fig. 5.

Finally, we need to evaluate the interaction between
the Method and Area. When YOLOv5, YOLOv7, and
YOLOv9 models were applied to Large-Scale bounding
boxes, no discernible difference in efficacy was observed
between the algorithms, as evidenced by Fig. 6, underscor-
ing their comparable performance under these conditions.
YOLOv5, YOLOv7, and YOLOv9 performed statistically
equally even though the YOLOv9 was slightly better than
the YOLOv5 and YOLOv7. However, if the algorithms
applied the Small-Scale bounding boxes, the performances
were degraded significantly.

Table 1. Descriptive statistics of three replicate studies.

Algorithm
Left–right flip
parameter

Labeling scale mAP@.5

YOLOv5 0.0 Large-scale 98.7%
YOLOv5 0.0 Small-scale 92.9%
YOLOv5 0.5 Large-scale 98%
YOLOv5 0.5 Small-scale 94.5%
YOLOv7 0.0 Large-scale 98.67%
YOLOv7 0.0 Small-scale 76.4%
YOLOv7 0.5 Large-scale 99.2%
YOLOv7 0.5 Small-scale 93.5%
YOLOv9 0.0 Large-scale 98.7%
YOLOv9 0.0 Small-scale 94.1%
YOLOv9 0.5 Large-scale 99.4%
YOLOv9 0.5 Small-scale 94%

YOLO, You Look Only Once.

4. Discussion

Numerous CHD studies have investigated the appli-
cation of artificial intelligence for pediatric echocardiogra-
phy [4,8–10,15,16]. For example, a study [10] proposed
a multiview classification model for diagnosing ASDs and
VSDs Nurmaini et al. [9] proposed a deep-learning-based,
computer-aided method for fetal-heart echocardiographic
image analysis with an instance segmentation approach to
improve the accuracy of detecting structural abnormalities,
such as congenital heart defects. The results indicated that
the method had satisfactory performance in segmenting im-
ages in the standard views and in detecting congenital heart
defects. Arnaout et al. [8] investigated an ensemble of neu-
ral networks by training an algorithm with 107,823 images
created from 1326 fetal echocardiograms to identify the op-
timal cardiac views for distinguishing normal hearts from
those with complex CHDs, such as the tetralogy of Fallot
and hypoplastic left heart syndrome.

Chen et al. [4] proposed YOLOv4-DenseNet to solve
the object-detection problem for detecting three VSD sub-
types. Xu et al. [16] proposed a deep-learning frame-
work that combines deep-learning and graph algorithms
for whole-heart and great-vessel segmentation in images
of hearts with CHDs to overcome the ineffectiveness
of whole-heart and great-vessel segmentation frameworks
when they are applied for medical images in hearts with sig-
nificant variations in heart structure and great-vessel con-
nections. Liu et al. [15] explored a new deep-learning
algorithm model for screening and diagnosing specific
types of left-to-right shunt CHDs, such as ASD, VSD, and
patent ductus arteriosus, by using electrocardiographic data.
Truong et al. [17] extracted cardiac information and in-
vestigated whether the random forest algorithm would im-
prove the sensitivity of predicting the presence or absence
of CHDs in fetal echocardiographic images and demon-
strated that six essential features play crucial roles in the
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Table 2. ANOVA table of the main effect factors and interactions among the factors.
Source Sum Sq. d.f. Mean Sq. F Prob > F

Method 0.01527 2 0.00764 14.91 0
Area 0.05585 1 0.05585 109.03 0
Augmentation 0.00915 1 0.00915 17.87 0.0003
Method*Area 0.01679 2 0.00840 16.39 0
Method*Augmentation 0.01426 2 0.00713 13.91 0.0001
Area*Augmentation 0.00816 1 0.00816 15.93 0.0005
Error 0.01332 26 0.00051
Total 0.13281 35
ANOVA, analysis of variance.

Fig. 4. Analysis of area variations using Least Significant Difference (LSD) post-hoc test.

prediction of such diseases. However, none of these stud-
ies considered the influence of the structures neighboring a
lesion.

In the above studies, the structures neighboring a le-
sion are the surrounding tissues or organs that are adja-
cent to a lesion, and were not considered. The results of
the present study’s post-hoc analysis (Fig. 4) indicated that
including the structures neighboring a lesion in image la-
beling improved the performance of both the YOLOv5 and
YOLOv7 object-detection algorithms. These results indi-
cate that such neighboring structures provide key informa-
tion about a lesion, such as its location and relationship to
other structures, and that the inclusion of this cardiac infor-
mation is key when labeling bounding boxes.

Overall, our findings reveal that the structures neigh-
boring a lesion should be included for both object-detection

algorithms when training data sets are being labeled. In ad-
dition, the left-right flip augmentation is no longer sensi-
tive during the training phase. Once we select the struc-
tures neighboring a lesion in image labeling, the average
mAP value of the object detection algorithm was higher
than 98% no matter which left-right flip was used. As a
result, the performance can be considered satisfactory. Be-
cause doctors might consider memorizing and recalling the
large volumes of information required for object-detection
to be difficult [18], designing an effective object-detection
algorithm could be of considerable assistance.

There are three limitations of this paper. Firstly, this
paper presents the importance of inclusion of structures
neighboring a lesion for other medical image recognition
problems. Even though this approach might cause some
difficulties in labeling the dataset, the labeling process may
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Fig. 5. Exploring the interaction between Area and Augmentation through post-hoc analysis.

Fig. 6. Assessment of the Method and Area interaction via post-hoc analysis. YOLO, You Look Only Once.

adopt the expertise from experienced doctors. Secondly,
our experimental results show the inclusion of structures
neighboring a lesion is effective for the two selected al-
gorithms, future research needs to evaluate this concept of
the proposed algorithm. Finally, the potential challenges

in actual clinical environments may include the insuffi-
cient computing ability and that the software environment
is hard to establish in existing ultrasound machines. Hence,
it might require ultrasound machine manufacturers to re-
design the equipment.
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5. Conclusions
The present study highlights the importance of em-

ploying appropriate image-labeling and data augmenta-
tion techniques for achieving accurate results in detecting
VSD and ASD in echocardiographic images. We applied
two well-known object-detection algorithms, YOLOv5,
YOLOv7 and YOLOv9, to validate our results. Overall,
labeling including the structures neighboring lesions led to
more favorable training outcomes than small-scale label-
ing. Inclusion of information on nearby areas more ef-
fectively improved image recognition than when this in-
formation was excluded. When the training data for the
object-detection algorithms included structures neighbor-
ing lesions, both well-known algorithms achieved a higher
mean average precision score compared with the label-
ing without including the heart structure information. In
future research, neighboring structure inclusion and flip
augmentation can be applied for the training data sets for
more recently developed object-detection algorithms, such
as YOLOv10 [19], to improve their performance.
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