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ABSTRACT: Despite the discovery of actinide borohydride complexes over 80 years ago, no plutonium borohydride complexes
have been structurally validated using single-crystal X-ray diffraction (XRD). Here we describe Pu2(H3BPtBu2BH3)6, the first
example of a Pu(III) borohydride complex authenticated by XRD and NMR spectroscopy. Theoretical calculations (DFT, EDA, and
QTAIM) and experimental comparisons of metal−boron distances suggest that metal−borohydride covalency in
M2(H3BPtBu2BH3)6 complexes generally decreases in the order M = U(III) > Pu(III) > Ln(III).

Actinide borohydrides, complexes containing An−H−B
bonds, were discovered during the Manhattan Project

when volatile U(BH4)4 was investigated for isotopically
enriching uranium in U-235.1,2 The first crystal structure of
an actinide borohydride, again U(BH4)4, was reported several
decades later.3,4 These data revealed for the first time the
defining structural characteristics of these complexes with
uranium coordinated exclusively by hydrogen atoms.5

Though many structurally determined Th and U boro-
hydride complexes have been identified since the discovery of
U(BH4)4,5−7 there are very few examples beyond uranium.
Np(BH4)4 and Np(MeBH3)4 are the only two transuranium
borohydride complexes to be characterized by single-crystal X-
ray diffraction (Figure 1).8−14 Pu(BH4)4, the only known
plutonium borohydride complex,15 is an unstable liquid at
room temperature.11 Powder X-ray diffraction (XRD) data

showed that Pu(BH4)4 crystallizes in the same space group and
has similar unit cell parameters as Np(BH4)4,11,16 but no data
indicating atomic positions were reported.

The dearth of transuranium borohydride structures has
come into focus recently because there has been growing
evidence of how metal−borohydride covalency can influence
the structures and properties of trivalent actinide complexes, a
phenomenon commonly associated with more conventional
soft donor ligands.17−19 These effects have been observed in
U(III) borohydride complexes,20−22 but little is known about
how they manifest as the 5f-block is traversed into the
transuranium elemental realm.

One set of difficulties in preparing molecular borohydride
complexes with Pu concerns radiological safety and isotope
availability limitations, as well as the known pyrophoricity of
borohydrides when complexed with actinides.10,11,23−25

Another challenge is the instability of Pu(IV) in the presence
of reducing borohydride ligands. The aforementioned Pu-
(BH4)4, for example, decomposes via reduction to form
Pu(III) products that have yet to be characterized.11,16 Once
reduced, traditional borohydrides like BH4

1− and BH3Me1− are
too small to saturate the relatively large coordination sphere of
Pu(III) to form homoleptic complexes soluble in organic
solvents.5,7 Thus, the investigation of homoleptic Pu(III)
borohydride complexes requires the development of boro-
hydride ligands that can saturate the coordination sphere of
this relatively large trivalent ion.26

We recently demonstrated how a class of larger borohydride
ligands called phosphinodiboranates, which have the general

Received: July 20, 2024
Revised: September 5, 2024
Accepted: September 6, 2024
Published: September 16, 2024

Figure 1. Transuranium borohydride complexes structurally charac-
terized by single-crystal XRD.
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formula H 3 BPR 2BH 3
1 − , can be used to prepare

U2(H3BPtBu2BH3)6 and Ln2(H3BPtBu2BH3)6.22,27−30 These
dinuclear complexes are isostructural regardless of metal size,
which permitted structural comparisons that revealed shorter
than expected U−B distances.22 Subsequent calculations
corroborated the structural observations and converged to
suggest that the uranium−borohydride bonds have increased
covalency compared to those with lanthanides.22 Aside from its
larger size, H3BPtBu2BH3

1− was an ideal choice for extension
to transuranium elements (that pose greater radiological
hazards) because the U and Ln complexes have shown no
appreciable volatility and they appear less susceptible to
enflaming in air.28

Herein, we report how H3BPtBu2BH3
1− (tBu-PDB) was used

to prepare the first Pu borohydride complex to be
characterized by single-crystal XRD and NMR spectroscopy.
Given the logistical and safety constraints associated with
synthetic Pu chemistry in a fundamental research laboratory
setting, we first had to develop procedures to prepare and
crystallize the Pu complex on milligram scales. Using 9.0 mg of
UI3(THF)4

24,31,32 as a test surrogate, we showed that reactions
with 6.3 mg of K(H3BPtBu2BH3)33 in chlorobenzene, followed
by crystallization from pentane, afforded red crystals of
U2(H3BPtBu2BH3)6 (1) in yields as high as 79% (5.5 mg;
Figure 2). Chlorobenzene, a solvent shown by Edelstein and

co-workers to be compatible with the synthesis of actinide
borohydrides,10 was used because we previously showed that
metathesis reactions with several phosphinodiboranate salts are
low yielding and often irreproducible in Et2O and THF.27,28

Moreover, mechanochemical methods used to prepare other
tBu-PDB complexes22,29,30 were not amenable to reactions with
powdered Pu salts because of the contamination risk.

Repeating the same mg-scale procedure using PuI3(THF)4
instead of UI3(THF)4 reproducibly afforded blue crystals of
Pu2(H3BPtBu2BH3)6 (2), as confirmed by single-crystal XRD
(Figure 2). The structure is dinuclear and isostructural with 1
and homoleptic lanthanide tBu-PDB complexes reported
previously.22 The structure has two chelating ligands per
metal and two bridging ligands that form the dinuclear core.
The metals are coordinated exclusively by hydrogen atoms and
are tentatively assigned coordination numbers of 14 based on
the Pu−B distances, but this may be lower, as suggested by
DFT calculations (vide inf ra). The chelating Pu−B distances
range from 2.848(6) to 2.950(6) Å, indicative of κ2-BH3
groups, whereas the bridging Pu−B distances are shorter at
2.675(6) and 2.678(5) Å and more consistent with κ3-BH3.

The experimental M−B distances in 2 were compared to
those in 1 and isostructural lanthanide tBu-PDB complexes
(Figure 3).22 Structural assessments of 1 revealed that bridging

U−B distances were 0.04 Å shorter than expected when
compared to the linear regression afforded by plotting Ln−B
distances against Ln ionic radii, whereas the bridging Pu−B
distances were 0.02 Å shorter.34 This suggests that the Pu−B
bonds are less covalent than U−B bonds, which is consistent
with systematic metal−ligand bond comparison studies of
trivalent actinide complexes containing ligands with soft
chalcogen donor groups.35−37

Figure 2. Top − Synthesis of M2(H3BPtBu2BH3)6 and comparison of
solution and solid-state structures for M = U (1) and Pu (2). Bottom
− Molecular structure of 2. Ellipsoids are drawn at 50%. Carbon
atoms are shown as capped sticks, and hydrogen atoms attached to
carbon were omitted from the figure.

Figure 3. Top − Plot of average bridging M−B distances vs ionic
radius26 of the metal for M2(H3BPtBu2BH3)6 complexes (M =
actinide or lanthanide). The error bars account for the standard
deviation of the averaged M−B distances and the esd’s for the
individual M−B distances (see SI for details). Bottom − Plot of
chelating M−B distances vs ionic radius of the metal. The shorter
chelating Pu−B distances are circled for emphasis. Actinides are
represented by solid squares, whereas lanthanides are represented by
open circles. The error bars represent esd values from XRD. Dashed
lines in both plots represent linear regressions of the lanthanide data
points. R2 values are all >0.96.
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We next evaluated the chelating M−B distances. It was
observed previously that the chelating U−B bonds in 1 show
no significant departure from linear regressions obtained when
plotting chelating Ln−B distances against their ionic radii
(Figure 3). In contrast, data collected for 2 showed that the
three shortest chelating Pu−B distances are all 0.02 Å shorter
than expected. Only the longest (and presumably most ionic)
Pu−B distance at 2.950(6) Å falls close to its respective line.

Before detailing calculations used to assess metal−ligand
covalency in 2, we describe its NMR data, the first for a Pu
borohydride complex (see SI for solid-state UV−vis−NIR data
for 2). 1H, 11B, and 31P NMR data collected on crystals of 2
dissolved in C6D6 revealed that 2 deoligomerizes to form an
equilibrium mixture of the dimer and the putative monomer
Pu(H3BPtBu2BH3)3 (2a), as described previously for other
M2(H3BPtBu2BH3)6 complexes.22 Three paramagnetically
shifted and broadened 11B resonances were observed at δ
−0.6, 9.7, and 44.7 ppm, and these complemented three
31P{1H} NMR resonances at δ −208.7, −159.2, and 158.9
ppm. Two of the resonances in each set are assigned to the
dimer 2 (bridging and chelating tBu-PDB environments), and
one of the resonances is assigned to the monomer 2a
(chelating tBu-PDB only). Consistent with the 11B and 31P
data, the 1H NMR spectrum revealed three major tBu
resonances at δ 0.88, 1.01, and 1.26 ppm. Additional 1H
resonances assigned to the BH3 groups were more para-
magnetically shifted due to their direct binding to Pu(III). A
broad multiplet assigned to a single BH3 resonance was
observed at δ 12.0 ppm, and overlapping resonances were
observed at δ 20.9 ppm, similar to those reported with the
lanthanide congener Sm.22

DFT calculations were performed to quantify the
thermodynamics of the 2/2a equilibrium for comparison to
1. The structures of 2 and 2a were calculated at the TPSS-D3/
def2-TZVP, def-TZVP level of theory,38,39 as previously used
for 1.22 The optimized structure of 2 was in good agreement
with the experimental data (see SI for details), and bond
distances and angles for the calculated structures of 2 and 2a
are provided in Tables S1−S3. The ΔG for 1 and 2 are
identical within error at 6.3 and 6.7 kcal·mol−1 and ∼2 kcal·
mol−1 higher than those for the lanthanide complexes (Table
S4). The increase in ΔG of deoligomerization for 1 and 2 is
enthalpic in origin, suggesting it is attributable to stronger
bridging actinide−borohydride bonds compared to the
analogous lanthanide complexes.

Subsequent energy decomposition analysis (EDA) calcu-
lations were performed at the PBE/TZP level of theory to
determine if the shortened Pu−B distances reflect increased
covalency with the bridging and chelating tBu-PDB ligands.
Starting with the bridging metal−ligand bonds, the orbitalic
energy contribution for the trivalent lanthanide complexes was
on average 35.8 ± 0.4% (Table S11). Consistent with the
bridging M−B distances, this value was largest in 1 at 39.1%,
but decreased to 36.6% in 2. The orbitalic contribution for the
chelating ligands in the lanthanide complexes was on average
36.7 ± 1.1% with larger values again obtained for 1 and 2 at
39.1% and 38.0%, respectively (Table S10). While the orbitalic
contribution for Pu is closer to the lanthanides (Figure S22),
there is a clear difference in the total interaction energies
(Figure S23). The actinide complexes had interaction energies
that were stronger for the bridging ligands, consistent with the
aforementioned deoligomerization energies, but weaker
compared to the lanthanides for the chelating ligands. Bond

order calculations (PBE/TZP)40,41 showed a much stronger
interaction for 1, while 2 had much weaker bond orders for
both bridging and chelating ligands consistent with assigning
the Pu complex a more lanthanide-like interaction (Tables S5−
S9).

To further assess contributions to covalent metal−ligand
bonding, quantum theory of atoms in molecules (QTAIM)42

was used to obtain the average electron density (ρ) at bond
critical points, as well as delocalization indexes (δ) between
metal and hydrogen atoms. Covalency in metal−ligand bonds
can be influenced by changes in 1) metal−ligand orbital
overlap or 2) frontier orbital energy matching (i.e., energy-
degeneracy-driven covalency).43−48 QTAIM has been used to
distinguish between these contributions. The ρ values have
been used by us and others as a reflection of orbital-driven
covalency,44,49 whereas the δ values can be used as a metric for
degeneracy-driven covalency.50−52

QTAIM calculations indicate that U and Pu have a larger
accumulation of electron density (ρ) at the M−H bond critical
points compared to the lanthanides for both the chelating and
bridging ligands (Figure 4; Tables S15 and S16). The
increased ρ values for 1 and 2 relative to those of lanthanides
are consistent with the greater orbital overlap expected due to
the larger radial extension of the 6d and 5f orbitals of the
actinides. Moreover, the ρ values are slightly larger with Pu
than U, but they generally track along the same trend vs radius

Figure 4. Top − Average QTAIM electron density (ρ) at the M−H
bond critical points (PBE/TZP) for the chelating (blue) and bridging
(red) ligands in the trivalent lanthanide and actinide dimers plotted as
a function of ionic radius.26 Bottom − Sum per ligand of the M−H
delocalization indices (PBE/TZP) for the chelating (blue) and
bridging (red) ligands in the trivalent lanthanide and actinide dimers.
Actinides are represented by solid squares, whereas lanthanides are
represented by open circles. Data points in red represent average
values obtained for bridging ligands, whereas data points shown in
blue represent average chelating ligands. Dashed lines between the
lanthanide data points are to help guide the eye.
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as observed with lanthanides. By contrast, the delocalization
indexes (δ) suggest more favorable orbital energy matching
between the bridging ligands and U in 1 compared to Pu in 2
(Figure 4; Figures S27−S29). However, we note that the
decrease in coordination number from 14 in 1 to 13 in 2 also
contributes to the decrease in δ. Owing to the change in
coordination number, the values shown in Figure 4 represent
the sum of δ per ligand instead of an average, but the individual
values are presented in Figure S30. Unlike the bridging ligands,
the sum of the δ values for the chelating ligands are similar for
both Pu and U.

In summary, we have described the synthesis of
Pu2(H3BPtBu2BH3)6 (2), the first example of a structurally
characterized Pu(III) borohydride complex. The single-crystal
XRD data collected for 2 allowed for the first experimental
comparison of borohydride complexes with different trivalent
actinides. The combined structural and theoretical data
suggests that covalent metal−ligand bonding with tBu-PDB
generally decreases in the order U > Pu > lanthanides.
Evidence of greater metal−ligand covalency with U over Pu
was revealed in calculations of the bridging metal−ligand
bonds, but the differences between U and Pu were more subtle
with chelating tBu-PDB ligands. Efforts to expand these
analyses to include Np and transuranium complexes with
other borohydride ligands are currently underway.
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