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Abstract 

Animal movement plays a key role in many ecological processes and has a direct influence on an individual’s fitness 
at several scales of analysis (i.e., next-step, subdiel, day-by-day, seasonal). This highlights the need to dissect move-
ment behavior at different spatio-temporal scales and develop hierarchical movement tools for generating realistic 
tracks to supplement existing single-temporal-scale simulators. In reality, animal movement paths are a concatena-
tion of fundamental movement elements (FuMEs: e.g., a step or wing flap), but these are not generally extractable 
from a relocation time-series track (e.g., sequential GPS fixes) from which step-length (SL, aka velocity) and turning-
angle (TA) time series can be extracted. For short, fixed-length segments of track, we generate their SL and TA statis-
tics (e.g., means, standard deviations, correlations) to obtain segment-specific vectors that can be cluster into different 
types. We use the centroids of these clusters to obtain a set of statistical movement elements (StaMEs; e.g.,directed 
fast movement versus random slow movement elements) that we use as a basis for analyzing and simulating move-
ment tracks. Our novel concept is that sequences of StaMEs provide a basis for constructing and fitting step-selection 
kernels at the scale of fixed-length canonical activity modes: short fixed-length sequences of interpretable activity 
such as dithering, ambling, directed walking, or running. Beyond this, variable length pure or characteristic mixtures 
of CAMs can be interpreted as behavioral activity modes (BAMs), such as gathering resources (a sequence of dithering 
and walking StaMEs) or beelining (a sequence of fast directed-walk StaMEs interspersed with vigilance and naviga-
tion stops). Here we formulate a multi-modal, step-selection kernel simulation framework, and construct a 2-mode 
movement simulator (Numerus ANIMOVER_1), using Numerus RAMP technology. These RAMPs run as stand alone 
applications: they require no coding but only the input of selected parameter values. They can also be used in R 
programming environments as virtu​al R packa​ges. We illustrate our methods for extracting StaMEs from both ANI-
MOVER_1 simulated data and empirical data from two barn owls (Tyto alba) in the Harod Valley, Israel. Overall, our new 
bottom-up approach to path segmentation allows us to both dissect real movement tracks and generate realistic 
synthetic ones, thereby providing a general tool for testing hypothesis in movement ecology and simulating animal 
movement in diverse contexts such as evaluating an individual’s response to landscape changes, release of an indi-
vidual into a novel environment, or identifying when individuals are sick or unusually stressed.
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Introduction
One of the major challenges common to several sub-
fields of ecology (e.g., conservation biology, disease ecol-
ogy, resource ecology) is predicting how the movement 
of animals changes in response to landscape factors and 
the state or health of the individual [1–3]. Examples 
of change include the spatio-temporal distribution of 
resources vital to the existence of individuals [3, 4], the 
movement of animals released into new surroundings 
for the purposes of conservation [2, 5], or the move-
ment of individuals under stress or with infections [6, 7]. 
The dynamic resource example has led to the concept of 
resource tracking, which has become an active field of 
research in movement ecology [8–10]. Quantification of 
this process through models that link animal movement 
to resources will enable us to better predict the conse-
quences of global change on animal populations [11]. The 
stressed individual example may be critical to the con-
tinued existence of endangered species [12]. The third 
example may help us identify and selectively remove 
individuals that are sick, and hence reduce the risk of 
pandemic outbreaks [13].

Movement, whether simulated or real, generates com-
plex patterns that require various approaches to classify 
and comprehend. The primary approach to deconstruct-
ing this complexity, which has been ongoing for at least 
30 years [14–17], has been to organize the movement 
track of animals into two or more different movement 
modes, and to parse the movement tracks of animals into 
consecutive segments each representing a different mode 
of movement from the previous segment. The primary 
quantitative methods that have been developed to carry 
out this type of path segmentation have been behavio-
ral change point analysis (BCPA) [18–23] and hidden 
Markov methods (HMM) [24–28].

An alternative approach to path segmentation is to 
view movement tracks as a hierarchical organization 
of segments with levels that have relevance at different 
spatiotemporal scales of analysis [29–32] (Fig 1; also see 
Appendix A.1, SOF = supplementary online file). The 
value of an hierarchical approach is abundantly evident 
as an epistemological tool for deconstructing complexity 
(e.g., the construction of texts and genomes), but requires 
some building-block basis (e.g., letters for texts, codons 
for genetic coding of proteins), whether real or imagined, 
for the hierarchical construction [33].

In the context of movement tracks, the real building 
blocks are fundamental movement elements (FuMEs; 
[30]—e.g., for horses this may be walk, trot, cantor orand 
gallop elements that when strung in sequence constitute, 
walking trotting, cantering and galloping, etc.), but these 
cannot be extracted from relocation data, even when 
such data have a resolution on the order of seconds. 
Identification of individual FuMEs as a animal moves 
through space is likely to require either analyses of videos 
of the movements, inferences using accelerometers data 
collected from particular locations on the animals body 
[35], or other types of data collected from sufficiently 
fast sensors to identify the start and end of each type of 
movement element (e.g.,a wing beat of a bird [36]). In the 
absence of being able to identify actual FuMEs, we pro-
pose the identification of statistical movement elements 
(StaMEs) as the smallest achievable building block ele-
ments for the hierarchical construction of animal move-
ment tracks (Fig 1).

The purpose of this paper is to meet the following three 
goals: 

(a)	 Explore the potential of StaMEs as substitutes for 
FuMEs in providing a set of basic building block 

Fig. 1  A facile comparison of a hierarchical movement track segmentation scheme (second ribbon from bottom) with hierarchical text elements 
(bottom ribbon) suggestive of the scheme’s utility to provide a movement track narrative of an animal’s life history. The listed time scale 
(second ribbon from the top) roughly applies to medium to large vertebrates. The top ribbon indicates that fixed-time DARs provide an anchor 
for the segmentation scheme, below and above which clustering and change-point methods of analysis can be used to respectively identify sub 
and supra diel segments (also see Appendix A.2, SOF). The StaME approach explored in this paper, provides a basic set of elements that can be used 
to hierarchically construct higher order elements, such as CAMs, BAMs, and DARs [34]
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upon which next-level CAM segments of fixed size 
(number of steps), can be constructed and used to 
generate a further-level of variable-length behavio-
ral activity modes (BAMs) (Fig 1)

(b)	 Formulate a multi-mode canonical activity move-
ment (CAM) framework, based on the implemen-
tation of step-selection kernels, with switching 
among kernels influenced by landscape structure 
(cellular arrays of resources and topographic meas-
ures), environmental variables (e.g., temperature, 
precipitation), and internal variables (e.g., surro-
gates for hunger, thirst, or diel schedules)

(c)	 Provide a highly flexible, user friendly, freely avail-
able 2-movement-mode simulator in the form of 
a computer application package (Numerus Studio 
platform plus simulator application, both down-
loadable for free at links provided in Appendix 
C (SOF) and demonstrate its utility for move-
ment ecologists to generate multi-modal move-
ment tracks using step-selection methods and test 
hypothesis regarding mechanisms producing emer-
gent patterns of movement.

This paper should be seen as part of a larger body of work 
that includes the formulation of a general framework for 
hierarchical track segmentation, as summarized in Fig 1 
and discussed more fully in [30, 37]. In parallel, we are 
also generating measures that can be used to rigorously 
analyze bottom-up path segmentation methods using 
information theory measures of coding efficiency [34, 
38].

Empirically, the movement track of an individual over a 
landscape is generally represented by a sequence of loca-
tions that is recorded using GPS technology [39], ATLAS 
reverse GPS technology [40], acoustic receivers or other 
technologies [41]. From such sets of relocation points, 
also referred to as a “walk,” step-length (SL; also veloci-
ties when the sampling frequency is fixed) and turning-
angle (TA) time series can be extracted [30] (Appendix 
A.2, SOF). These time series can then be used to compute 
various derived quantities, such as radial and tangential 
velocities at each relocation point, and auto correlations 
of variables along segments of the movement track [18]. 
The statistics of such variables, computed for fixed short 
segments of track (e.g., 10–30 points), can then be used 
to categorize such segments into statistical movement 
elements (i.e., StaMEs previously called referred to as 
metaFuMEs in [30]).

These StaMEs can then be classified into a limited 
number of categories, as demonstrated in this paper 
(e.g.,short elements underpinning direct fast flight, brisk 
walking, meandering, and so on). A string of same cate-
gory StaMEs then constitutes a track segment that can be 

classified as a homogeneous or canonical activity mode 
(CAM) of a type defined by the underlying category of 
StaME (e.g., brisk walking might translate into bee-lining 
and meandering into searching behavior). Characteristic 
mixtures of CAMs, in turn, can be strung together into 
identifiable behavioral activity modes (BAMs; e.g., rest-
ing, foraging, heading to a known location while being 
vigilant), with several BAMs coming together each day 
to form a diel activity routine (DAR) [42, 43] (Fig 1. The 
DAR itself is a hierarchical segment that can be under-
stood in terms of an invariant 24-hour period for most 
animals, apart from some deep dwelling marine or cave-
dwelling species, because for most species it is a fun-
damental biological rhythm honed by evolution [44]. 
The periods of various exogenous environmental cycles 
around or beyond the diel period (e.g., lunar, seasonal, 
or tidal), though, can be quite variable in their effects on 
species, depending on the latitude [45], elevation [46] 
and the trophic levels (e.g., herbivore, predator, scaven-
ger) at which they function.

If the relocation sampling frequency is relatively high 
(i.e., approximately 5 or more relocation points per min), 
then the statistical properties of a segment of, say, 10–30 
consecutive points (e.g., the means of the velocities and 
others) can serve to construct a set of StaMEs, which may 
then be classified into a relatively small set of StaME cate-
gories and associated canonical activity modes. From our 
presentation here, it will become clear that StaMEs are 
dependent, firstly, on the resolution (i.e., frequency) of 
the relocation data and, secondly, on the number of con-
secutive points used to derive the statistics of our StaMEs 
(i.e., its duration). Since some of the measures and fea-
tures used to characterize movement track segments 
using relocation data are noticeably frequency dependent 
[15, 47], these will be influenced by the scale at which we 
define the underlying set of StaMEs used to reconstruct 
movement track segments of various lengths.

Movement, of course, does not occur in a vacuum and 
the statistics of the movement elements are going to be 
affected by landscape factors (e.g., slope and roughness 
of the terrain) and various environmental conditions 
(e.g., resources, temperature, wind, ocean currents, etc.) 
[48–50]. The effects of such factors will induce additional 
variation or noise in the statistics of StaMEs of different 
types. If all we have is a movement relocation time series 
without the benefit of covariate variables to provide con-
text, then ignoring such covariates will add some noise to 
the process of identifying an underlying set of movement 
track StaMEs. If such data are available, then different 
sets of StaMEs can be identified for segments occur-
ring for particular ranges of covariate values. Otherwise, 
modifications to the StaME statistics can be made under 
the assumptions that for each type of StaME identified 
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for the track as a whole, modifications are needed when 
particular covariate conditions exist (e.g.,terrains that 
exceed a steepness threshold or when prevailing winds 
exceed a wind velocity threshold).

Elaborating on goal c.), our application is called ANI-
MOVER_1 (ANImal MOVEment RAMP; the “1” antic-
ipates future elaborated versions) and the acronym 
RAMP refers to Numerus’ highly flexible Runtime Alter-
able Modeling Platform technology [37]. We stress that 
this application platform is not a general programming 
environment and does not require any coding experi-
ence. However, it allows the user to set parameter values 
and, if desired, to overwrite critical lines of default code 
pertaining to landscape generating algorithms and agent 
movement rules to meet the user’s specific needs. As in 
integral part of this paper, we thus discuss why the con-
struction of our ANIMOVER_1 RAMP facilitates analy-
ses of movement pathways by ecologists compared with 
the effort needed to code up movement simulations from 
scratch using current programming platforms, such as 
Netlogo [51]. In addition, we focus on issues relating to 
parameter selection and running the model, as well as 
classifying StaMEs derived from both simulated and real 
data into a limited number of types (in our case 8 catego-
ries using hierarchical clustering methods). The real data 
relate to the movement data of barn owls (Tyto alba) in 
the Harod Valley, Israel, as more fully discussed in other 
contexts elsewhere [43, 52, 53].

Model framework
Arrays and movement kernels
In this paper, we focus on two dimensional models, 
which of course is only appropriate for some species (e.g., 
most terrestrial species) but not others (e.g., deep div-
ing marine species or birds use thermals to gain height). 
For some birds, such as the barn owl data analyzed in 
Sect. 5.3 of this paper, accurate tracking in 3 dimension 
is infeasible and the height component of their flight is 
much smaller than the surface two dimensional compo-
nents of their flight. Our model is thus implemented on 
a landscape represented by an nrow × ncol cellular array 
such that cell(a, b) has value cab,t at time t: i.e.,

Also, the topology of this array can be selected to be 
topology = torus (top-bottom and left-right continu-
ity identification) or plane (top, bottom, left and right 
boundaries).

Each cell is identified both by its location (a, b) in the 
array, and by Euclidean coordinates (xcella , ycellb ) at the 

(1)A(t) =
{
cab,t

∣∣a = 1, · · · , nrow, b = 1, · · · , ncol
}

lower left corner of cell(a, b). Depending on the units 
used to measure our Euclidean landscape, we define 
increments �x and �y such that nrow�x and ncol�y pro-
vide the desired dimensions for our landscape. Scaling 
is important when considering how far individuals are 
likely to move in one unit of time when in different move-
ment modes and thus the scaling of time is linked to the 
scaling of space in real applications. In theoretical studies 
not linked to empirical data, however, it will be conveni-
ent to set �x = �y = 1 and to set a parameter �scale = 10 
to scale space with respect to time such that the greatest 
distance an individual is likely to travel in one time step is 
given by �scale�x.

The model simulates movement of an individual over 
this landscape, with one step executed at each tick t of the 
simulation clock for t = 0, · · · , ntime . If an individual is at 
a point (xidt , yidt ) at time t and moves to cell(a, b), where its 
new location is now (xidnext, yidnext) = (xcella , ycellb ) , then the 
distance moved, denoted as ρab(xidt , yidt ) is defined as

The angle of heading, denoted as θab(xidt , yidt ) ∈ [−π ,π ] , 
as measured from the positive horizontal (i.e., the axis 
x ≥ 0 ), is defined in terms of the so-called atan2 function 
as

 Whenever the angle of heading is reported as ranging 
on [0, 2π ] , it should be transformed to range over [π ,π ] 
to ensure that computations of the turning angle and its 
absolute values are computed correctly (see Eq. A.2 in 
the Appendix A.2, SOF).

Movement from current locations (xidt , yidt ) to a set of 
neighboring cells(a, b) is computed in terms of kernels 
Kα , α = 1, · · · , nstame belong to a set K , where each ker-
nel Kα is defined as the rim of the sector of a circle cen-
tered on the origin, with rim dimensions rmin

α  and rmax
α  

and sector angle 2ψα (Fig 2A) and includes an additional 
parameter tsα that influences the amount of time spent 
consecutively using kernel Kα:

(2)ρab(x
id
t , y

id
t ) =

√
(xcella − xidt )

2 + (ycellb − yidt )
2

(3)

θab(x
id
t , yidt ) =




arctan
( ycellb −yidt
xcella −xidt

)
if xcella > xidt

π
2 − arctan

( xcella −xidt
ycellb −yidt

)
if ycellb > yidt

−
π
2 − arctan

( xcella −xidt
ycellb −yidt

)
if ycellb < yidt

arctan
( ycellb −yidt
xcella −xidt

)
± π ifxcella < xidt

undefined ifxcella = xidt and ycellb − yidt
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Of course, if rmin
α = 0 , then the rim is actually a sector 

(slice) of a circle of radius rmax.
The kernels Kα become step-selection functions K̃α

t  
when anchored at time t at a point (xidt , yidt ) with head-
ing angle θt and ‘time spent in current movement mode’ 
variable tst  (Fig 2B). They are associated with a set of 
movement rules R�α

(params) , �α ∈ {1, · · · , nrule} , where 
“params” are any parameters in the procedure that it is 
convenient to highlight. In particular, params includes a 
switching parameter t̂sα that controls the probability of 
switching out of the current kernel as a function of tsα 
and neighborhood cell value parameter ĉnbhα  : i.e.,

Landscape and individual dynamics
The initial set of landscape values A(0) (Eq. 1) can either 
be read in or generated using an algorithm that, for 
example, either assigns cell values at random or gener-
ates patches of high valued cells in a matrix of low-value 
cells and even barrier cells in more complex versions of 
the model than presented here. We have implemented 
an algorithm for constructing either of these two cases 
using three parameters and default starting values of 
cab,0 = 0 or 1: a parameter value pseed for laying down 
the first cells in patches at random, a parameter pcont for 
building patches into neighborhoods, and a parameter 
ncont for controlling the expected sizes of these patches. 
At the start of a simulation an individual animal has 

(4)
K =

{
Kα = K

(
rmin
α , rmax

α ,ψα

)∣∣∣α = 1, · · · , nstame
}

(5)
K̃α
t

(
rmin
α , rmax

α ,ψα; x, y, θ ,R�α
(t̂sα , ĉnbhα )

)
= Kα at time t, anchored at(x, y, θ)and associated with

step-selection ruleR�α
(t̂sα , ĉnbhα )for some �α ∈ {1, · · · , nrule}, α = 1, · · · , nstame

a state h0 , which is a representation of, for example, 
stored energy.

Patchy landscape generation
To initialize the landscape either read in an initial land-
scape file A(0) (Eq. 1) or select one of the following two 
algorithms designated as RAMpatch0  and RAMpatch1  , fol-
lowing procedures laid out in the Section 4 (RAM is an 
acronym for Runtime Alternative Module and will be 
described in more detail later).

Fig. 2  Kernels (A area in blue) are specified in terms of the rims of sectors of circles with subtending angle 2ψ and inner and outer rim radii 
r
min and rmax respectively. Kernels become step-selection functions when located at a point (x, y), provided an angle of heading θ (B), placed 

on a landscape (C) with cells of different levels of attraction or repulsion (green, yellow, and white squares) and admissibility (all cells that overlap 
with the kernel), and associated with a step selection rule R

Randomly located regular patches ( RAMpatch0  ) 

L.1	Default state: Set all cell values cab,0 = 0 for 
a = 1, · · · , nrows , b = 1, · · · , ncols

L.2	Lay down an initial set of patch seeds by switching 
the value of cell(a, b) from cab,0 = 0 to cab,0 = 1 
with probability pseed for a = 1, · · · , nrows , 
b = 1, · · · , ncols.

L.3	For a = 1, · · · , nrows , b = 1, · · · , ncols if cab,0 = 1 
then switch all cells that lie within a Moore 
neighborhood of radius ncont to cell(a, b) to 1. 
This includes cells that may already have been 
switched to 1 because of their proximity to some 
other cell that has already been switched to 1.
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Randomly located irregular patches ( RAMpatch1  ) 

L.4	Default state: Set all cell values cab,0 = 0 for 
a = 1, · · · , nrows , b = 1, · · · , ncols

L.5	First pass: Lay down an initial set of patch 
seeds by switching the value of cell(a, b) from 
cab,0 = 0 to cab,0 = 1 with probability pseed for 
a = 1, · · · , nrows , b = 1, · · · , ncols.

L.6	Second pass: For a = 1, · · · , nrows , b = 1, · · · , ncols 
if cab,0 = 0 , and the sum of the values of cell(a, 
b)’s 4 neighbors (von Neumann neighborhood) is 
sum4(cab) then switch cell(a, b) from cab,0 = 0 to 
cab,0 = 1 with probability 1−

(
1− pcont

)sum4(cab)

L.7	Additional passes: Repeat step (c) ncont times 
(with the second pass corresponding to ncont = 1

).

The the default for the initial value h0 of an individual is set 
10. Other values can be entered as discussed in the simula-
tion parameter setup below.

We note that if pcont = 0 , then cells in the array are ran-
domly assigned a value 1 with probability pseed

Dynamic updating
The cell array values cab,t and individual value ht for 
t = 0, · · · , ntime are updated to account for the possibility 
that the individual gathers or extracts resources from cells 
as it moves over the landscape. This extraction may only 
take place during the implementation of some movement 
modes but not others.

Here we account for changes in these values as fol-
lows. The individual’s value ht changes over time as it 
acquires resources when occupying cells of value cab,t > 0 . 
It also incurs a cost κsub per unit distance moved at each 
time step. Each time an individual occupies a cell(a, b) 
it removes some resources f remove . If we assume that 
removal is a resource density independent process, with 
f remove = min{κadd, cab,t} then the following updating 
rules for the value-state of individuals (h) and cells (c) and 
parameters κadd ∈ [0, 1] and κsub apply: 

In moving from   (xidt , yidt ) at time t to cell we have the 
resource density-independent process

We can make this extraction dependent on the density of 
resource using the form of f remove =

κaddcab,t
κadd+cab,t

 , which is 
familiar to those who model consumer-resource interac-
tions [54]. We can also allow for growth of the resource 
back to its carrying capacity of 1 at a a rate κgrw when 
completely removed (e.g., for grasses this represents 
regrowth from an intact root-stock, etc). Finally we can 
also make the cost of travel size (energy value) dependent 
on a suitable scaling constant κscl ≥ 1 and multiplying 
κsubρab(x

id
t , y

id
t ) by, for example, 1+ht

κscl+ht
 . In this case, as 

limht→∞
ht+1

ht+κscl
→ 1 and at ht = 0 we obtain the factor 

1
κscl

< 1 . In this case, we obtain the equations:
In moving from   (xidt , yidt ) at time t to cell (a,b), we have 

the resource density-independent process

We note that the simulation will stop either at t = ntime 
or at tstop if h(tstop) = 0.

In addition to the state value h of the individual, we will 
also keep track of the time tst  it has spent in its current 
movement mode. Thus, we will update tst  as follows

(6)

hnext =max
{
0, ht +min

{
κadd, cab,t

}
− κsubρab(x

id
t , y

id
t )

}

cab,next =cab,t −min
{
κadd, cab,t

}

(7)
hnext =max

{
0, ht +

κaddcab,t

κadd + cab,t
−

(
ht + 1

ht + κscl

)
κsubρab(x

id
t , y

id
t )

}

cab,next =min
{
1, cab,t + κgrw

(
1− cab,t

)}
−

κaddcab,t

κadd + cab,t
for a currently occupied patch cell(a, b)

cab,next =min
{
1, cab,t + κgrw

(
1− cab,t

)}
for all unoccupied patch cell(a, b)

(8)t
sα
t+1 =

{
0 every time the individual switches its movement mode from α′toα

t
sα
t + 1 if the individual remains in the same movement mode α
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Thus at the start of the simulation, no matter the starting 
kernel, we initialize ts(0) = 0.

Movement kernels
In our Numerus ANIMOVER_1 RAMP, we limit the 
implementation to at most two movement modes and 
hence two StaME kernels Kα , α = wp,bp . More specifi-
cally, we use α = wp to produce within-patch movement 
tracks and α = bp to produce between patch movement 
tracks. In addition, when α = bp we employ a vision ker-
nel Kvis(0, r

max
wp ,π/2) which allows an individual to see 

patches peripherally and in front of it to the maximum 
radius of its next α = bp movement-mode step.

Kernel parameters
In general we expect within patch steps to be smaller 
than between patch steps, and within patch turning to be 
larger than between patch turning, although we have the 
flexibility to set up contrary scenarios. For each of the 
two movement modes at the start of a simulation, values 

for the triplets 
(
rmin
wp , rmax

wp ,ψbp

)
 and 

(
rmin
bp , rmax

bp ,ψbp

)
 are 

set up. If our expectation is followed, then we rmax
wp < rmax

bp  

and ψbp < ψwp will hold. We may also expect rmin
wp = 0 if 

the individual may choose to remain in the same cell for 
more than 1 time period and rmax

bp = rmin + 1 or 2 if 
within patch movements are considerably less than 
between patch movement where we suggest setting 
rmax
bp = 10 . We again stress that the user has the flexibility 

to set and scale this values arbitrarily.
All that remains in implementing the algorithm 

depicted in Fig 3, is specification of the parameters 
needed to implement our step-selection functions (SSFs, 
[55–57]) K̃wp and K̃wp using the rules R�wp

(t̂swp , ĉnbhwp ) 
and R�bp

(t̂swp , ĉnbhwp ) that are specified next (the last of 
these parameter arguments applies to RAMupdate1  , but not 
RAM

update
0  ). We note that these procedures are coded 

as the default RAMs for our Numerus ANIMOVER_1 
RAMP. Other procedures, possibly using integrated step 
selection analysis (iSSA, [58]) or methods that include 
direction-biasing external points of attraction or repul-
sion [59], may be included by the user.

Step‑selection cells and probabilities
The step-selection rules R�α

 are procedures for updating 
the next location, angle of heading, and time spent in the 
current movement mode 

(
xnext, ynext, θnext, t

s
next

)
 , as well as 

the kernel αnext to be used next. This is done in terms of the 
individuals current location, angle of heading and spent 
time (xidt , yidt , θt , tst ) , and its current movement mode, as 
driven by the kernel implementation K̃α

t  . In our case we 
have two sets of rules, one that specifies within patch 
movement ( Rwp(t̂

swp , ĉnbhwp ) ) and one that specifies between 
patch movement ( Rbp(t̂

sbp , ĉnbhbp ) ). These rules include situ-
ations where the topology of the landscapes is a bounded 
rectangle and normal search fails to find a next location.

Fig. 3  Algorithm used to simulate movement after the structural 
parameters ntime (index t), nrow (index a) and ncol (index b) been 
entered, along with the topology of the landscape, the initial 
landscape values 

{
cab,0|∀(a, b)

}
 , the initial state value h0 

of the individual, and the parameter triplets 
(
r
min
wp , rmax

wp ,ψwp

)
 

and 
(
r
min
bp , rmax

bp ,ψbp

)
 that define the two kernels Kwp and Kbp 

respectively. Implementations K̃wp and K̃bp require the specification 
of step-selection procedures Rwp(t̂

swp , ĉnbhwp ) and Rbp(t̂
sbp , ĉnbhbp ) 

respectively. The latter employs an additional kernel Kvis that controls 
how the individual scans the landscape when it is moving 
between patches. The START, STOP, and APPLY commands, 
along with the flow arrows are show in different colors for additional 
clarity. The details of step selection procedures Rwp(t̂

swp , ĉnbhwp ) 
and Rbp(t̂

sbp , ĉnbhbp ) can be found in Appendix A.3, SOF

Fig. 4  A relocation time series W (Eq. 12) is plotted 
in the xy-plan with computed velocities vt (Eq. A.2, SOF) 
and turning angles �θt in red (Eq A.4) for a segment of µ points 
at times τ = t , t + 1, · · · , t + µ− 1 . These values, or others (e.g., vpert  
and vtant  ; see Eq. A.5 and [18]) can then be used to compute statistical 
elements Segz (Eq. 13) from a series of consecutive elements 
containing µ relocation points as, for example, in Eq. 13
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In computing our step-selection procedures we will 
make use of the set Cαt (xidt , yidt , θt) defined as follows:

We will also make use of the following sets of probabilities

Finally, we will make use of the probabilities pα(ts) of 
continuing to use StaME Kα when having used this 
StaME for the past ts time steps

An outline of the implementation of step selection proce-
dures Rwp(t̂

swp , ĉnbhwp ) and Rbp(t̂
sbp , ĉnbhbp ) is provided in 

Fig 3 with details provided in Appendix A.3 (SOF).

Movement paths and StaME extraction
A movement track, whether simulated or empirical, in 
the first instance has a representation as a relocation time 
series of ntime points—i.e., a walk

Such tracks can be generated using simulations models, 
as we discus in some depth in the next section. In the 
case of empirical data, though, data preprocessing and 
filtering [60] are needed to get rid of spurious or prob-
lematic points or fill in missing points. From walk Eq. 12, 
both velocity and turning-angle time series can be gener-
ated, as outlined in Appendix A.2 (SOF) and elsewhere 
[30]. Various other statistics (e.g., travel distance, net dis-
placement) can be extracted as well and used as variables 
to define a set of basic statistical movement elements 
(StaMEs), following methods described next.

Creating StaMEs
The method described here to create StaMEs uses the 
velocity (V) and turning-angle ( �� ) time series derived 
from walk W, as described in Eq. A.1–A.4 (Appendix A.2, 
SOF). All points in our empirical time series that pro-
duced unrealistically large velocities were then removed. 
Although the putative maximum sustained flying speeds 
of barn owls have been observed in the range of 6–8 m/s 
(17.9 mph) [61, 62], to be conservative, we only removed 
points that represented unrealistically speeds. In our 

(9)
C
α
t (x

id
t , y

id
t , θt) =

{
cab,t

∣∣cell(a, b) overlaps with K̃α
t

}
, α = wp or bp

(10)P
α
t (x

id
t , y

id
t , θt) =

{
pab =

cab∑
cell(a,b)∈Cα

t

∣∣∣∣∀ cell(a, b) ∈ C
α
t

}
α = wp or bp

(11)pα(t
s) =

e−4
(
ts−t̂sα

)

1+ e−4
(
ts−t̂sα

) α = wp or bp

(12)W =
{(

t; xidt ), y
id
t

)∣∣t = 0, ..., ntime
}

case, this amounted to a handful of points with velocities 
in excess of 75 m/s (168 mph); and we note that the aver-
age speed of the fastest 1 min segments in our analysis 
below (Table 2) turns out to be a credible 3-4 m/s.

In the case of our simulated data, we normal-
ized the entries of our cleaned V and �� time 

series by dividing each of the entries vt in V by 
vmax = maxt=1,··· ,ntime{vt ∈ V } ( = 10 in our simulations) 
and dividing each of the entries in �� by 2π to obtain 
variables on the ranges [0, 1] and [−1/2, 1/2] respectively. 
In the case of our empirical data, we only normalized the 
turning angles since the velocities had the physical units 
m/s and we wanted to reflect this in our results.

Next, we parsed the normalized velocity and turn-
ing-angle time series into z = 1, · · · , nseg segments 
each of length µ (Fig 4) with regard to t: in segments 
with missing points (these points may be filled in 
using an appropriate interpolation method) we kept 
the same length of segment and just adjusted for the 
reduced number of points (the errors from such miss-
ing points are likely to be inconsequential when the 
number missing is a few percent or less). The total 
number of segments so obtained was nseg = ⌊n

time−1
µ

⌋ , 
with some points left over when ntime − 1 was not 
exactly divisible by µ.

We then calculated a set of statistics related to the µ 
normalized (in the simulated data only) velocities (equiv-
alent to step lengths) and turning angles for each of the 
segments z in our time series data. Although various sets 
of statistics can be used (such as persistent and tangential 
velocities [18]), we settled upon mean velocities Vz and 
mean absolute turning angles |��|z for each segment 
and associated standard deviations SDV

z  and SD|��|
z  . Also 

to pick up any possible circular motion type biases in 
movement, we computed a normalized net displacement 
( �ρ ) statistic for each segment (i.e., the distance between 
the first and last points of each segment divided by quan-
tity equal to the the number of points multiplied by the 
mean step-length). Specifically, for velocity and turning-
angle means and standard deviations (SD) (normalized 
where appropriate), as well as net displacements, we 
defined a set of segments Sµ (note below that vmax = 1 
for the empirical data and µ is adjusted for segments with 
missing points)
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Mapping StaME centroids to kernels
We first applied our segmentation procedure Eq.  13 to 
data obtained from simulating the movement of an indi-
vidual using a single kernel Kα = K (rmin

α , rmax
α ,ψα) on 

an unstructured (static, homogeneous) landscape. If one 
generates a segmentation set Sµ (Eq. 13) from these sim-
ulation data, then using a variety of kernels with different 
admissible rmin

α  , rmax
α  and ψα values, one can build up a 

discrete map represented by the function

We note that we have not subscripted the quanti-
ties in the image of this mapping with the parameter 
µ . The reason is that the difference in values obtained 
for different values of µ are just variances associated 
with sampling and therefore are not consequential. 
However, we maintain the subscript µ on the map-
ping itself to remind ourselves that a value needs to 
be selected before this set can be generated. We also 
note, in the case of an unbiased walk, the statistic �ρ  
may be ignored, because the realized movement has no 
prevailing circular bias to its motion. Under these cir-
cumstances, �ρ  is perfectly correlated with the other 
statistics defining each segment because clockwise and 
counterclockwise movements are equally likely. Addi-
tionally, values obtained should be relatively insensitive 
to µ when µ and the length ntime of the track itself are 
sufficiently large to ensure that the law of large num-
bers is at play.

We then applied this segmentation procedure to data 
obtained from an ANIMOVER_1 two-kernel patch simu-
lations ( Kwp and Kbp ). Once the segmentation set Sµ had 
been generated (Eq. 13), we carried out a hierarchical clus-
ter analysis using Ward’s method (Appendix A.4, SOF) to 
obtain a set of k centroids represented by the set

(13)

Sµ =

{
Segz

(
Vz , SD

V
z , |��|z , SD

|��|
z ,�ρ

z

) ∣∣ z = ⌊
t

µ
⌋ + 1, t = 0, · · · , nseg − 1

}
such that

Vz =

∑t+µ−1
τ=t vτ

vmaxµ
with st. dev. SDV

z , |��|z =

∑t+µ−1
τ=t |�θτ |

2πµ
with st. dev. SD|��|

z

and �ρ
z =

√
(xidt+µ − xidt )

2 + (yidt+µ − yidt )
2

µVz

(14)

F
hom
µ :

(
r
min
α , rmax

α ,ψα ,
)

�→
(
V α , SD

V
α , |��|α , SD

|��|
α ,�ρ

α

)

for all possibleKα

As in the case of quantifying selected points of the dis-
crete map Fhom

µ  , so can we quantify selected points of a 
discrete map Fpatch

0,µ,k  by computing k centroids in the set 

X
patch
0,µ,k  from simulations of ANIMOVER_1 using different 

combinations of Kwp and Kbp kernels (i.e., step-selection 
procedures Rwp and Rbp ) with individuals moving over 
generated landscapes Lpatch

0  . This mapping, in terms of 
the parameters used to generate it, can be expressed by:

In our computations, we selected our cluster number k 
to be 8 rather than 2, (see Appendix A.4, SOF, for details) 
even though we only had two movement modes. The 
reason for this is that some segments in our segmenta-
tion process will be mixtures of the two modes rather 
than homogeneous strings of points generated by either 
one or other of the two modes (see Fig C.1, Appendix C, 
SOF) while we expected only 2 of the 8 clusters to con-
tain relatively homogeneous movement mode segments. 
Of course, the extent to which mixed versus pure move-
ment mode segments arises depends both on the length 
of segments and the frequency at which the two move-
ment modes switch between each another. The shorter 
the segments, or the less frequent the switching, the 
more likely any segment represent a series of locations 
generated by a single movement mode.

We can use our simulation model to numerically con-
struct a mapping Fpatch

0,µ,k  of a set 
(
rmin
α , rmax

α ,ψα

)
 of kernel 

arguments onto a set of selected cluster centroid statis-
tics 

(
V ια , SD

V
ια , |��|ια , SD

|��|
ια ,�

ρ
ια

)
 , as outlined in 

(15)

X
patch
0,µ,k =

{{(
V ι, SD

V
ι, |��|ι, SD

|��|
ι,�ρ

ι

)
|

ι = 1, · · · , k
}
Kwp,Kbp,L

patch
0

∣∣∣

∀ combinations of Kwp,Kbp,L
patch
0

}

(16)F
patch
0,µ,k :

(
Kwp,Kbp,L

patch
0

)
�→ X

patch
0,µ,k
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Appendix B (SOF). By way of illustration, we generate one 
point of the map Fhom

µ  in this paper. The range of values 
that may be useful to generate in a multi-point construc-
tion of this map will depend on the kind of empirical to 
which this mapping is fitted. Such an exercise is, thus, best 
left to a detailed study that explores the structure of given 
set of empirical movement data, such as an extended set of 
the owl data discussed below—a set containing data col-
lected from at least several tens of individuals (e.g., as in 
[43, 52]).

Numerus RAMPs
In the mid-2000’s s Grimm et al. [63] proposed an Over-
view, Design concepts and Details (ODD) protocol for 
the presentation of agent and individual-based mod-
els (ABMs and IBMs). A recent update of this protocol 
Grimm et  al. [64] identifies 7 elements (3 overview, 1 
design, and 3 description) needed to provide a coherent 
presentation of the study that conforms to the central 
tenant of science that “materials and methods must be 
specified in sufficient detail to allow replication of results 
Grimm et al. [64].” In Appendix D (SOF), we present an 
ODD protocol for the development of ANIMOVER_1, 
following Grimm et  al. [64]’s ODD element numbering 
scheme.

We stress, though, that our study is about more than 
just building a simulation model to be used to simulate 
a known process using a currently available coding plat-
form such as R or Python. In Sects. 2 and 3 we have 
presented a modeling framework that contains novel fea-
tures regarding how concepts from step-selection func-
tion theory [55], when combined with a set of flexible 
rules that allow one to compute the probability of switch-
ing movement kernels (each of which represents a par-
ticular behavioral mode) in terms of local environmental 
factors, as well as internal clock variables, provides for 
the construction of a more versatile simulation model 
than, to the best of our knowledge, currently exists.

In the rest of this section, we present details that 
emphasize the utility, flexibility, and ease of use of our 
application platform ANIMOVER_1, based on its imple-
mentation of Numerus’ RAMP (runtime alterable model 
platform) technology and note that these RAMPs require 
not coding on behalf of the users unless they would like 
to change selected parts of that code pertaining genera-
tion of landscape patch structure or the functional forms 
of resource extraction from patches (see Sect.  4.2 for 
details). Although, ANIMOVER_1 itself is restricted to 
switching between two kernels that respectively imple-
ment within-patch (wp) and a between-patch (bp) move-
ment modes, from the more general formulation of Sects. 
2 and 3, it is clear that future versions of ANIMOVER_# 
can be developed that allow switching among many more 
modes of movement. It will also become clear in our 
presentation that although ANIMOVER_1 is not a gen-
eral programming environment and does not require 
any coding experience to implement it, it does provide 
the user with considerable flexibility to implement sec-
tions of code pertaining to landscape patch structure 
initialization and to equations used to update the agent’s 
and landscape cells’ current states (i.e., the user may 
substitute the code in the runtime-alterable modules—
RAMs—described below that implement Eqs. 6 or 7 for 
their own customized versions of these computations).

Finally, we emphasize that ANIMOVER_1 is a freely 
downloadable Numerus RAMP application that can be 
either be implemented using the Numerus Studio Plat-
form, also downloadable for (links provided in Appendix 
C, SOF). We also note that Numerus RAMPs can be used 
in R programs as “virtual R packages,” as described at the 
Numer​ous RAMP webpa​ge.

RAMP construction
The java-based Numerus Model Builder Designer (NMB 
Designer) Platform was used to code the model and then 
generate a RAMP (runtime alterable model platform) 

(See figure on next page.)
Fig. 5  ANIMOVER_1 console as viewed in the Numer​us Studio application. Labels A–N in brown are added for purposes of exposition. A: Pull 
down menus to load files. B: Run time controls allow for a reset in the middle or end of the run, step by step view of the changes (panels I 
and J), or automated run for full simulation time using parameters in panel E C: Color coded sliders used to change parameter values at the start 
of or during a run (orange: landscape initialization; yellow: kernel parameters; lilac: consumer resource interactions; green: saving output; turquoise: 
parameter and monitoring windows). D: Button to open the parameter windows E & F. E: A form where various parameters that control the size 
and scaling of the run are set. F: A set of forms to enter between (bp) and within (wp) patch kernel parameters (angles in degrees). G: The 
wheel is used to select the RAMupdate to be used. H: A viewer of the whole landscape with inset that can be observed as magnified in viewer I. I: 
A mouse-manipulable viewer of the landscape (panel H) that can be moved (using right click and move) and zoomed. Shown in I. are the current 
location (red dot), five patches (green pixels, lighter one previously exploited), and the current kernel (orange and lilac pixels). J: A plot of the value 
ht of the agent over time. K: Record of current day and within day iteration with additional L: activity log and M: log switch. N: Switches and buttons 
to save end-of-run output

https://wiki.numerusinc.com/index.php/Ramp_User_GuideRamp_Platform_Overview
https://www.numerusinc.com/studio/
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Fig. 5  (See legend on previous page.)
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our Numerus ANIMOVER_1 Application (with future 
versions 2, 3, etc. planned to include multidimensional 
landscapes, additional movement modes, and interacting 
individuals). The application takes the form of a portable 
file that, as described elsewhere [37, 65], and is played on 
the free downloadable NMB Studio application.

The flexibility of NMB RAMPs, beyond manipulating 
parameter values using its sliders (Fig 5E and F) and win-
dows (Fig 5E and F), is facilitated by its runtime alterable 
modules (RAMs, Figs. 5G, and 6). These RAMs provide the 
user with the ability to chose alternative formulations of 
component parts of the model just priori to rerunning a 
current simulation or recode those component parts with 
alternate expressions. Thus, for example, in updating the 
value equations ht and cab,t , the RAMP uses the default 

RAM
update
0  , which codes Eq. 6, as a default procedure, or 

the user can select RAMupdate1  , which codes Eq.  7, as an 
alternate procedure (Fig.  6). In addition, the user can 
create a second alternative RAM by opening a new RAM 
window and inserting and saving code for customized 
equations, although parameters beyond the three already 
available as sliders at the console will have to be given 
fixed values (i.e., no new sliders can be created or added 
outside of upgrading the RAMP using the Numerus 
Designer Platform).

RAMs
Two or more versions of the RAMs listed below exist: first 
a default version (RAM0 ), a selectable alternative version 

Fig. 6  A1: The location on the ANIMOVER_1 console (G. in Fig 5) where the particular RAM to be implement in the current run is selected using 
the numbered roller. A2: The windows of the Default RAM showing the code that implements Eq. 6. B1: This shows the roller selected to position 
2 to implement the Extraction RAM expressed in Eq. 7. Position 1 refers to a form of the equations not discussed in the text. B2: The windows 
of the Extraction RAM showing the code that implements Eq. 7. The “+” sign at the bottoms of windows A2 and B2 allow the user to open a window 
for the user to supply their own customized code for updating the state of the individual ht and cells array values cab,t

https://www.numerusinc.com/studio/
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(RAM1 ), and perhaps additionally higher numbered ver-
sions or extemporaneously created versions, versions 
that can be added just prior to initiating a run of the 
model, and saved for future use. Thus, for example, Eq. 6 
for the value dynamics of individuals and cells are coded 
up as default RAMupdate0  , while the more elaborate density-
dependent version of these equations (Eq.  7) are coded 
up as RAMupdate1 .

ANIMOVER_1 includes the following RAMs:

Initial landscape RAMs
RAM

patch
0  (default) This RAM lays down a patchy land-

scape using rules L.1–L.3 to create irregularly-shaped 
(stochastic) patches stochastically placed at a speci-
fied density. It requires parameter values pseed to 
define the patch density, and ncont and pcont to gen-
erate the patch size and level of irregularity. Patches 
will be larger and more squarish when Moore is 
selected over von Neumann neighborhood.
RAM

patch
1  (alt 1) This RAM lays down a patchy land-

scape using rules L.4–L.7 to create regularly shaped 
patches (cubes using Moore neighborhood, dia-
monds using von Neumann neighborhood) stochas-
tically placed at a specified density. It requires param-
eter values pseed to define the patch density, and ncont 
to generate patch size.
RAM

patch
2···  Available to the user for coding customized 

methods for creating initial landscape structures.
Resource Extraction RAMs
RAM

val
0  (default): This RAM updates the values ht and 

cab,t using Eg 6 and requires parameter values κadd 
and κsub.
RAM

val
1  (first alternative): This RAM updates the values 

ht and cab,t using Eg 7 and requires parameter values 
κadd , κsub and κgrw.

Parameter setup
The following set of parameters are needed to simu-
late the model. We also include some information on 
how our application console may be used to input 
some of the parameter values. Once this is done for 
those parameters that are either read in as a FILE 
(Fig 5A), entered prior to the simulation using a FORM 
(Fig 5E, F), specified using a PULLDOWN menu, or 
ignored—in which case DEFAULT values will be used, 
the Numerus ANIMOVER_1 will create a parameter 
values data file that can be download, edited and re-
uploaded as needed. Other parameters will be entered 
and flexibly changed using a SLIDER (Fig 5C). Some 

of the these sliders will reflect values that are entered 
using a FORM while others will not be reflected in the 
form, but saved internally when the current simula-
tion job is saved by the Numerus Studio Application 
Platform.

P.1  Size and scope parameters (FORMS). These are: nrow 
(index a), ncol (index b), ntime (index t) and topology = 
torus or plane (PULLDOWN). We note that we have 
fixed nstame = 2 (index α ), Entry of these numbers and 
topology type respectively specify the dimensions of the 
cellular array, the length of the simulation, and whether 
the simulation takes place on a torus or a bounded plane.

P.2 Scaling parameters�x,�y (FORMS or DEFAULT). 
Entry of these two Cartesian scaling values are used to 
assign the x-y coordinate values (xcella , ycellb ) to each of the 
cells ( a = 1, · · · , nrow , b = 1, · · · , ncol ) in the simulation 
space A . The default values for this are �x = �y = 1.

P.3 Cellular arrayA(0) (FILE) or generating parameters  
pseed , pcont and ncont (SLIDERS). This is an appropriately 
configured data file (e.g., csv text) that will up uploaded 
to the application to provide the initial state of all the 
cells in the simulation space or the initial landscape will 
be generated using the specified parameters algorithm 
L.2.

P.4 Kernel definition parameters Kα ,α = wp and bp (FORM 
and SLIDERS). Enter the three arguments for each 
of two kernels: i.e., 

(
rmin
α , rmax

α ,ψα

)
 , α = wp and bp, 

respectively.
P.5 Kernel implementation parameters for ˜Kα (SLIDER).  

Enter the arguments 
(
t̂sα , ĉnbdα

)
 for the step-selection pro-

cedures Rα , α = wp and bp.
P.6  Initial values (various). The initial time is automati-

cally taken to be t = 0 . The initial location and angle is 
computed from the selection of values (a, b) entered 
(FORM) or ignored (DEFAULT) and an initial value for 
the heading direction θ0 is entered (FORM) or ignore 
DEFAULT). The default starting cell is a = ⌊nrow/2⌋ , 
b = ⌊ncol/2⌋ , and default angle of heading is θ0 = 0 . The 
actual starting location is thus (xcella , ycellb ) . The initial 
value h0 for the individual must be entered (Form) or will 
be 10 (DEFAULT).

P.7  Initial kernel wp or bp (PULLDOWN). This will set 
the initial condition α0

P.8  Update parameters κadd, κsub, κgrwandκscl (SLID-
ERS). The first two of these parameters are used in Eq. 6 
or all four in Eq. 7 for updating ht and cab,t.

P.9    Step selection rule parameters t̂swp , t̂sbp , ĉab,wp, ĉab,bp 
(SLIDERS). The first two will be integer value sliders 
between [1, 1000], while the second two will be values to 
1 dp between [0,5].
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Simulation setups and units
If landscape pixels are �x = �y = 10 m and 
nrow = ncol = 500 then our 250,000 pixel landscape is 
52 = 25 km2 . If the units of t are 1 m intervals, then in a 
day an individual will move up to 1440 = 60× 24 times. If 
an individual walks at a persistent speed of 5 km per hour, 
which is 50003600 = 1.39 m/s, then an individual can cross 
either the length or breadth of our landscape in 1 h, and a 
single pixel in 14 secs. In this case, the a maximum radius 
of rmax = 4 would suffice, although a movement ker-
nel covering short sprints would have a maximum radius 
of 4 or 6 times this value. For theoretical studies, bound-
ary effects can be avoided during simulations by setting 
topology=torus (which makes the left and right col-
umns of cells in the landscape array neighboring columns, 
and the top and bottom rows of cells neighboring rows).

Model output
During the course of a simulation, one can visual observed 
the run as it progresses in window I (Fig 5) of the ANI-
MOVER_1 console. One can also observe the sequence 
of movements for the current day stage of the simula-
tion in window L if switch M is in the “On” position (Fig 
5). At the end of the run a CSV file is automatically saved 
if switch N is in the “Yes” position or if the “Save to CSV” 
button N is pressed after the run is complete. The saved 
CSV file is headed by a list of all the parameter settings for 
the run. It also has the following columns of data consecu-
tive generated at step of the model simulation: day, within-
day step, x-location, y-location, distance moved angle of 
head (degrees), agent-state (resources), movement mode 
(bp or wp) (Fig C.1, SOF). An example of this output can 
be found in Two_Kernel_Movement.csv (SOF) with 
a graphically depicted subset explained in Appendix C.1 
(Output Data, SOF). In addition, links to downloading 
ANIMOVER_1 and to a RAMP Users Guide can be found 
in Appendix C.2 (SOF).

Illustrative examples
One point in the mapping of Fhom

µ

By way of illustration, we used ANIMOVER_1 to construct 
1 point in the mapping Fhom

µ (K ) (Eq. 14). Specifically, we 
used the kernel K (0, 6,π/2) to simulate the movement of 
an individual for 1500 steps over a homogeneous land-
scape. Using a µ = 15 points segmentation interval we 
generated the set S15 (Eq.  13) and then calculated the 
means of the statistical variables of the interest to obtain (
V , SDV , |��|, SD|��|

)
= (3.38, 1.23, 0.27, 27.6) . Thus 

we identified one point in the mapping Fhom
µ  (Eq.  14): 

specifically,

(17)F
hom
15 : (0, 5,π/2) �→ (3.38, 1.23, 0.27, 0.15)

where we reiterate that we did not compute the displace-
ment variable because it is non-informative due to the 
lack of a circular bias to the motion. Other points in the 
mapping can of course be constructed, as outlined in 
M.1–4 above. The range of parameters use to compute 
the structure of Fhom

µ  depends on the range of the image 

space 
(
V , SDV , |��|, SD|��|

)
 that needs to be covered. 

Interpolation can also be used, where desired to estimate 
points that are contained within the nodes of the lattice 
structure used to compute the mapping at discrete points 
in the range space (as discussed in Appendix B, SOF).

A two‑movement mode simulation
We carried out a two-movement mode simulation on a 
patchy landscape that we manually stopped after 69,525 
model steps. The parameters that we used for this simu-
lation were:

Size and scaling nrow = 300 , ncol = 300 , 
ntime = 100, 000 (as an upper limit) and topology 
= torus, �x = �y = 1

Landscape generator Initialization algorithm = Irreg-
ular, Neighborhood = Moore, pseed = 0.1 (resource 
density), pcont = 0.7 (clumping density) and ncont 
(clumper pass count)
Kernel parameters Within patch: rmin

wp = 0 , rmax
wp = 1 , 

ψwp = 90, t̂swp = 30, ĉnbdwp = 1.5 ; Between patch 
rmin
bp = 9 , rmax

bp = 10 , ψbp = 30, t̂sbp = 10, 000, ĉnbdbp = 4

Update parameters κadd = 0.4 , κsub = 0 , κgrw = 0.03 
and κscl = 1.0

Under pure between-patch (bp) movement on a homo-
geneous landscape, given that rmin

bp = 9 and rmax
bp = 10 , 

we should expect V bp after normalizing by Vbp ≈ 10 to 
be in the range [0.9, 1]. Also given that the turning 
should, on average (since ψwp = 30 degrees) be around 
(0.5× 30)/180 ≈ 0.083 . We carried out such a simulation 
over 100,000 steps and obtained V = 0.95 , SDV = 0.03 , 
|��| = 0.08 , SD|��| = 0.05 , and �ρ = 0.83 , which are 
almost identical to the values for the 10-step segmenta-
tion of the data that has the largest V  value or fastest 
speed as reported in the Table (i.e., cluster C = 1 for 
which V = 0.95 , SDV = 0.04 , |��| = 0.08 , 
SD|��| = 0.05 , and �ρ = 0.86 ). Thus the segments in 
this cluster from our two movement mode simulation are 
very close to what we obtain when we simulate pure one-
mode between-patch movement. The cluster with the 
largest V̄  in our 30-step segmentation (cluster C = 8) 
does not fit nearly as well, presumably because many 



Page 15 of 24Getz et al. Movement Ecology           (2024) 12:67 	

fewer pure bp movement segments arise in this case 
compared with the 10-step segmentation case.

This last conclusion is reinforced by looking at the 
mean proportion of wp kernel steps associated with 
the segments of the different clusters reported in right-
most column of Table 1. Thus only 1% of the 811 cluster 
1 (largest V  ) segments of length 10 steps were gener-
ated by a wp kernel, while the mean proportion of wp 
kernel steps associated with the two largest V  30-step 
segments were clusters 8 and 6 with reported propor-
tions 0.12 and 0.18 in clusters 6 and 8 respectively. At 
the other end of the velocity spectrum, the two small-
est velocity 10-step segment clusters 3 and 4 reported 
a mean of 0.90 and 0.93 wp segments, while in the 
30-step segment case the two smallest velocity clusters 
2 and 4 reported a mean of 0.85 and 0.89 wp segments 
respectively. This result reinforces our earlier comment 
and obvious result (see Fig C.1, Appendix C, SOF) that 
segments with fewer steps provide a greater proportion 
of pure step-type StaMEs than those based on more 
steps.

The remaining seven 10-step segment clusters and 
six 30-step segment clusters contained segments that 
included mixtures of wp and bp, ranging from averages 
of a quarter to three quarters of each type in the seg-
ments of each cluster. This calls into question what the 
optimal number of base segment clusters and, hence 
number of StaME types should be. For example, to what 
extent should we merge clusters reporting similar seg-
ment statistics? The results reported in Table  1 suggest 
that for the 10-step segmentation perhaps clusters 3 and 
4 could be combined, although they are well-separated by 
their mean relative net-displacement value ( �ρ = 0.18 
versus 0.44 respectively). This is true of many clusters in 
the 30-step case. For example, ignoring the value of �ρ  
suggests that clusters 6 + 8, 5 + 1 + 3, and 2 + 4 might be 
combined to yield four distinct clusters, but in each case 
the variable �ρ  provides some cause for separation. In 
general, however, the optimal number of StaMEs will be 
data dependent. Additionally, finding the optimal num-
ber requires that we develop suitable measures so that 
such questions can be answered with some rigor. Such 
measures are currently being developed in the context of 
an information theory formulation of CAM construction 
using StaMEs as a set of building block segments [34].

A random selection of 130 segments from each of 
the 8 clusters in the case of the 10-step segmentation 
are plotted in Figs A.2–A.9 (Appendix A, SOF, where 
we note that the actual size of segments across pan-
els is not comparable because the axes in each panel 
have been automatically set by our plotting routines. 
From these illustrations it is clear that the fastest cluster 
( C = 1 ; Fig A.2, Appendix A, SOF) consist primarily of 

unidirectional lines, as is characteristic of between-patch 
movement, with some small deviations and occasional 
changes in direction. This is in contrast with the small-
est cluster ( C = 4 ; Fig A.5) that has a number of seg-
ments switching directions by π/2 every couple of steps, 
as is characteristic of in-patch foraging. The difference 
between segments C = 6 (Fig A.7) and C = 8 (Fig A.9), 
which have virtually the same average speeds (Table  1) 
and similar average turning angles look quite different: 
the start and end points are relatively close with spiky 
profiles ( C = 6 ) or far apart with much more open pro-
files ( C = 8).

Empirical data example
We analyzed relocation data obtained from two barn 
owls (Tyto alba), using an ATLAS reverse GPS tech-
nology system that was set up in the Harod valley in 
northeast Israel [52]. The relocation data for both indi-
viduals, an adult female and a juvenile male (GG41259 
and GG41269 in the original data set and individuals with 
IDs 29 and 31 in [43]), were collected a frequency of 0.25 
Hz (i.e., one point every 4 s) during a several week period 
in the late summer of 2021. We used a 15-step segmen-
tation, which corresponds to segmenting the movement 
track into one minute sequences. We then performed a 
hierarchical cluster analysis with 8 clusters, described in 
Appendix A.4 (SOF) and obtained the results illustrated 
in Fig 8. The centroid statistics obtained for each cluster 
are provided in Table 2. Unlike the simulated results were 
we normalized the velocities to lie between 0 and 1, the 
velocities in Table 2 have the units of meters per second. 
Also, recall that the absolute values of average turning 
angles ( �� ) are proportions of π while the net displace-
ments ( �ρ  ) are the distances between the start and end 
points of each segment as a proportion of the sum of the 
lengths of the 15 consecutive steps that make up each 
segment.

We see from Table  2 that the average speeds of the 
cluster of fastest (i.e., largest) segments for the adult 
female and juvenile male (C =  8 in both cases) are 2.80 
and 2.55 m/s respectively. For both individuals, we see 
in Table 2 that these “fastest clusters” (as represented by 
V̄  ) are around 3 times faster than the next fastest clusters 
(compare first and second rows of values in Table 2), with 
the fastest clusters containing only 5–6% of all segments. 
For both individuals the bulk of the segments have 
speeds that lie around the geometric means of the fastest 
and slowest clusters of segments (i.e., between 0.35−0.8 
m/s), are very similar in size but these intermediate speed 
clusters highly variable in their shape: some are relatively 
open (say, net displacement �̄ρ ≥ 0.3 ) and some are rela-
tively closed (say, net displacement �̄ρ < 0.2 ). The slow-
est clusters of the adult female and juvenile male have the 
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relatively low speeds of 0.10 and 0.15 m/s respectively, 
but these slowest adult female segments are much more 
open on average ( C = 7 , �̄ρ = 0.44 ) than the juvenile 
male segments ( C = 6 , �̄ρ = 0.08 ). The reason for this 
requires a much closer look at the locations of these seg-
ments on the actual landscape where they occurred.

Depictions of 130 randomly selected segments from 
each cluster for the Adult female and Juvenile male seg-
mentation cases can be seen in Figs A.10-A.17 and Figs 
18-A.25 (Appendix A, SOF) respectively. These depic-
tions cannot be compared across segments for size 
because the axes in each panel of each figure have been 
automatically generated by our plotting routines. They 
also do not provide any landscape details. Such consider-
ations remain a subject for future studies once analyses of 
the movement tracks of multiple individuals of each type 
have been undertaken.

As somewhat expected, a distinct correlation is evi-
dent between the mean speed and mean turning angle 
of a segment. This expresses itself through the lower 

triangular distribution of points in the mean-speed/
mean-turning-angle plots in Fig 8. This correlation also 
appears in the simulated data as well, but it is much less 
obvious: it is indicated by the negative slope of a band of 
points (Fig 7) rather than by a triangular distribution of 
points. The band implies that segments with lower speed 
in the simulation data have larger turning angles, while in 
the empirical data, lower speed still allows for a range of 
turning angles.

Discussion
The information that can be extracted from the move-
ment path of an individual is akin to decoding a string 
of highly degraded symbols without an accompanying 
Rosetta stone to interpret the meaning of these symbols. 
In fact, interesting albeit superficial commonalities and 
differences can be drawn between reading a book and 
“reading” the life-time track of an animal’s story from 
its birth to its death. In a book, pages are spatially well-
defined objects, as are the temporally well-defined diel 

Fig. 7  Results of a hierarchical cluster analysis (with number of clusters k = 8 ) performed on both 10-point (upper and lower left panels, ν = 10 ; 
see Fig 4) and 30-point (upper and lower right panels, ν = 30 ) segmentation of the simulation data generated with parameters specified for our 
two movement mode simulation (also see Fig C.1, Appendix C, SOF). The two top panels are plots of the clusters in PC1/PC2 space and the two 
lower panels are plots in Mean-speed/Mean-turning-angle space. A color spectrum is used to depict the smallest (blue end) to largest (red end) 
of segments within clusters. The centroid arguments of each cluster (Eq. 15) are listed in Table 1. The colors have been selected to reflect a spectral 
scale of the largest to smallest mean speed for each cluster’s centroid, though the cluster numbers (Column C in Table 1) are set by the clustering 
algorithm. Depictions of 130 randomly selected segments from each cluster for the 10-step segmentation case can be seen in Figs A.2–A.9 
(Appendix A, SOF)
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activity routines of the lifetime track of an animal (Fig 
1). Canonical activity mode (CAM) segments within a 
behavioral activity mode (BAM) are like words in a sen-
tence, while BAMs within a diel activity routine (DAR) 
are like the sentences on a page. Unlike a book, however, 
where every letter is clearly visible, the letters (FuMEs) of 
an animal track are not at all visible, only hints of letters 
at regularly “spaced” (in time) intervals. Thus, instead of 
being able to see the words as we can in any book, we can 
only conjure up poor images of ersatz words in the form 
of StaMEs (Statistical Movement Elements, Fig 1). The 
book metaphor for lifetime tracks, however, is too simple 
in one very important way: books start with blank pages 
upon which letters are then printed. Tracks are gener-
ally imposed upon highly structured rather than blank 
landscape and the underlying landscape structure plays a 
decisive role in determining the spatiotemporal charac-
teristics of the tracks that are imprinted on it. [66–68].

In some ways, our Rosetta stone is our simulation 
model. It allows us through simulations to see how differ-
ent kernels produce segments with particular sets of sta-
tistics. We illustrated this in Sect. 5.1 where we showed, 
for example, that a kernel with minimum- and maxi-
mum-step-length and range-of-turning-angle parameters 
values rmin = 0 , rmax = 5 , and ψ = π/2 creates a cluster 
of segments whose centroid has mean step-length and 
turning-angles (standard deviations in parenthesis) of 
3.38 (±1.23) and 0.27π (±0.15π ) (Eq. 17).

More ambitiously, we could numerically construct 
2-patch mappings, as defined in Eq.  16, where Table  2 
represents the set of centroids X patch

0,µ,k  (Eq.  15) obtained 
under a hierarchical 8-cluster, µ = 15 point-segmen-
tation of the simulated data (using RAMpatch0  ) when the 
arguments of this mapping are (see Eq.  17) the simula-
tion parameters listed in Sect.  5.2. In the case of trying 
to match movement modes to empirical relocation data, 
we can use the actual landscape associated with those 
data, plus set selection functions fitted to different parts 
of the landscape (e.g., movement within and between 
areas where particular types of activities take place). This 
appears to be a challenging process where it remains to 
be seen in future studies how the methods discussed in 
this paper can be applied to identifying putative move-
ment modes that appear to be used by individuals when 
moving across real landscapes and carrying out a range 
of activities.

When comparing the diversity of the clusters obtained 
from the adult female (AF) and juvenile male (JM) barn 
owl tracks, as reported in Table 2, with that of the simu-
lated data, as reported in Table 1, its clear that our StaME 
approach has the potential to match real with simulated 
data. For example, when using 10-step segments the 
range of values is nearly 10-fold for velocity, 4 to 5-fold 
for absolute turning-angle, and 8-fold for relative net-dis-
placement. For the 30-step segments these fall to 6-fold 
for velocity, 3-fold for absolute turning-angle, and 6-fold 
for relative net-displacement. Comparable ranges for the 
barn owl are around 5-fold for velocity (somewhat less for 
the AF and more for the JM), around 3-fold for absolute 
turning-angle, and 8–10 fold for net displacement (lower 
end for AF, upper end of JM). Thus our simulations show 
a greater velocity range and a greater absolute turning-
angle range, but a smaller relative net-displacement range 
than our barn owl data. The larger barn owl net-displace-
ment range arises because the owls typically return home 
each day, but displacement to another resting site occurs 
on some days [43]. To capture this behavior in our ANI-
MOVER_1 simulator, we would need to add a movement 
kernel that is biased to move in the direction of a homing 
beacon at certain times during the diel cycle.

Table 1  The centroid arguments (Eq. 15) obtained from 
a hierarchical cluster analysis (with k = 8 clusters labeled 
C = 1, · · · , 8 , see legends in Fig 7) analysis of 10- and 30-step 
segmentation of our two movement mode simulation output

∗All numbers are dimensionless due to normalizations (see text for details)
†This is the average of the standard deviations reported for each segment in the 
cluster
‡This is the standard deviation of the normalized net displacement across all 
segments in the cluster

The column “Prop. wp” lists the mean and standard deviation of the proportion 
of with-in to between patch kernels (i.e. wp

wp+bp
 ; see Fig C.1, Appendix C, SOF) 

averaged across all segments in each cluster. The results are listed in descending 
size of average speed (V̄) for the centroid of each cluster. Depictions of 130 
randomly selected segments from each cluster for the 10-step segmentation 
case can be seen in Figs A.2–A.9 (Appendix A, SOF)

C # Segs. (%)
V ± SDV

†

|��| ± SD|��|
†
�ρ ± SD�ρ ‡ Prop. wp

10− step segs∗

1 811 (11.7) 0.95±0.04 0.08±0.05 0.86±0.14 0.01±0.04

7 694 (10.0) 0.84±0.21 0.28±0.25 0.14±0.11 0.51±0.10

2 776 (11.2) 0.75±0.33 0.18±0.18 0.79±0.13 0.27±0.15

8 546 (7.9) 0.38±0.40 0.27±0.23 0.81±0.08 0.66±0.16

6 838 (12.1) 0.38±0.38 0.33±0.25 0.11±0.06 0.75±0.10

5 1057 (15.2) 0.37±0.36 0.31±0.23 0.46±0.14 0.71±0.17

3 987 (14.2) 0.12±0.10 0.35±0.23 0.18±0.07 0.90±0.10

4 1243 (17.9) 0.10±0.07 0.34±0.23 0.44±0.12 0.93±0.08

30− step segs∗

8 138 (6.0) 0.91±0.15 0.14±0.14 0.27±0.14 0.18±0.17

6 51 (2.2) 0.86±0.20 0.12±0.12 0.82±0.09 0.12±0.10

7 306 (13.2) 0.71±0.36 0.25±0.24 0.17±0.12 0.48±0.16

5 416 (18.0) 0.53±0.41 0.25±0.23 0.49±0.09 0.52±0.13

1 463 (20.0) 0.40±0.39 0.27±0.23 0.70±0.10 0.63±0.15

3 361 (15.6) 0.39±0.39 0.31±0.25 0.14±0.10 0.74±0.07

2 246 (10.6) 0.20±0.26 0.33±0.23 0.29±0.11 0.85±0.06

4 336 (14.5) 0.15±0.18 0.35±0.23 0.08±0.05 0.89±0.06
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The challenge should not be underestimated when 
it comes to demonstrating how a bottom-up StaME 
approach to constructing and analyzing movement track 
structures, when combined with fitting auto-regressive 
models (AR(p) where p is the depth of the time delay 
dependence), can be used to fit models to movement 
patterns at the subdiel and diel scales. Stochastic dif-
ferential equation (SDE) methods have typically been 
used to estimate macro level quantities emerging from 
the movement behavior of individuals and populations, 
such as home range, speed, and distance travelled [69, 
70]. To keep things simple, however, these methods avoid 
the complexities of dynamic background environments, 
which are known to greatly influence movement behav-
ior [71]. Bottom up hierarchical modeling approaches, 
however, by linking movement to environment using 
step-selection functions [55], provide a direct way of 
incorporating environmental covariates into movement 
behavior. This behavior is complicated by the fact that an 

individual’s internal state variables (motivations linked to 
time-of-day and time-of-year factors, hunger, thirst, fear, 
etc.) are also critically important [72] Ultimately these 
factors will need to be included in simulation models 
used to predict the movement patterns of individuals at 
the level of diel and subdiel movement patterns. Incor-
poration of these, which remains a challenge for future 
studies, will require fitting auto regressive models to 
the sequencing of CAMs with movement mode switch-
ing probabilities that are functions of all critical covari-
ates that individuals use to decide on where to move next 
as their movement track relocation time series unfolds 
under various environmental conditions.

Of course, other approaches to simulating move-
ment have been developed, several of which are math-
ematically more sophisticated than the approach we 
take. Some of these treat movement as continuous-
time SDE process for which Brownian motion (purely 
random movement) and Orstein-Uhlenbeck processes 

Fig. 8  Results of cluster analysis ( k = 8 ) performed on segmentation of the tracks of two different barn owls. As in Fig 8 The two top panels 
are plots of the clusters in PC1/PC2 space and the two lower panels are plots in Mean-speed/Mean-turning-angle space. A color spectrum 
is used to depict the smallest (blue end) to largest (red end) of segments within clusters. The centroid arguments of each cluster (Eq. 15) are 
listed in Table 2. The colors have been selected to reflect a spectral scale of the largest to smallest mean speed for each cluster’s centroid, 
though the cluster numbers (Column C in Table 2) are set by the clustering algorithm. Note that mean speed, as plotted here is 10 times smaller 
than the mean speeds V̄  recorded in Table 2: this resizing was made to avoid extra zeros after the decimal points the in the Table. Also note 
that the triangular distribution of points in bottom two graphs arises because smaller turning angles are associated with the occurrence 
of segments with faster average speeds. Depictions of 130 randomly selected segments from each cluster for the Adult female and Juvenile male 
segmentation cases can be seen in Appendix A (SOF) in Figs A.10–A.17 and Figs A.18–A.25 respectively
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(directionally correlated random walks) and modifica-
tions thereto (e.g., velocity correlated walks, central 
attractors, etc.) [73–77] are examples. Others repre-
sent movement in terms of partial differential equations 
some random components that switch between gradient 
following search (advection plus random noise) and ran-
dom search [78] or discrete approaches using integrated 
step-selection functions [79]. In addition, machine 
learning methods have been shown to outperform SDE 
models for predicting the next location of individuals in 
some systems [80].

It is worth noting that spatio-temporally continu-
ous models are from a computational point of view also 
discrete in requiring discretization schemes to generate 
numerical solutions. In such cases, however, the aim is to 
keep the discretization small enough and solution meth-
ods robust enough so the associated discretization errors 

do not affect interpretations of outcomes. Formulating 
movement models discretely, as we have, with regards to 
space and time avoids the issue of what is an appropriate 
solution method, but introduces both philosophical and 
practical issues regarding differences in discrete- versus 
continuous-time representations of ecological processes 
[81], particularly since data always discretized in one way 
or another [82]. Additionally, discrete time, space, and 
variable trait formulations of ecological processes facili-
tate the incorporation of idiosyncratic details that elude 
the more rigorous formulation of continuous variable 
formulations. This is particularly true when it comes to 
turning model formulations into computational code for 
analysis through numerical simulation. Such formula-
tions are naturally facilitated when movement is embed-
ded into network structures [83, 84] or is modeled as 
taking place on cellular arrays [85–88].

Given the complex shapes of the segments plotted in 
Figs A.2-A.25 (Appendix A, SOF), the hierarchical clus-
tering approach that we have taken to parsing the move-
ment track segments into categories may not be the best 
approach. Supervised and unsupervised deep-learning 
approaches provide less forced and more powerful ways 
to extract clusters, particularly those targeted at time 
series data [89–94]. In terms of supervised, deep-learning 
approaches, convolutional neural nets (CNNs) of appro-
priate types may be trained using segments simulated by 
ANIMOVER_1 over real landscapes, obtained through 
the application of various sets of movement rules, as 
a way of generating the training sets [95]. Once trained 
these CNNs can then be used to classify empirical data 
segments thereby providing some insights into the types 
of movement rules that may have been used by actual 
individuals when moving over the landscapes in ques-
tion. Further, we note that rectangular looking elements 
illustrated in Figs A.4 and A.5 are a function of the scale 
of the discretized landscapes over which trajectories are 
simulated or, for that matter analyzed, in terms of the 
smallest step size invoked or time interval used to record 
consecutive locations. However, no matter what scale is 
selected, the smallest StaMEs—i.e., those associated with 
resting behavior—will be limited by both the level of dis-
cretization used in simulating data or the errors associ-
ated with measuring locations using GPS or reverse GPS 
technologies [96]. In addition, the scale of discretization 
is ultimately limited by the consistency/stability trade-off 
of numerical computations [97]. It should also be added 
that various measures can be taken to correct errors 
associated with the measurement of locations using tech-
niques to smooth out data or apply Kalman filtering, but 
this may lead to some loss of temporal resolution in the 
underlying data (e.g.,see [21]).

Table 2  The centroid arguments (Eq. 15) obtained from 
a hierarchical cluster analysis (with k = 8 clusters labeled 
C = 1, · · · , 8 , see legends in Fig 7) analysis of a segmentation of 
tracks from two different barn owls

†This is the average of the standard deviations reported for each segment in the 
cluster
‡This is the standard deviation of the normalized net displacement across all 
segments in the cluster

The results are listed in descending size of average speed (V̄) (m/s) for the 
centroid of each cluster. The turning angles are proportions of π , and the 
displacement are proportions as described in the methods. Depictions of 130 
randomly selected segments from each cluster for the Adult female and Juvenile 
male segmentation cases can be seen in Appendix A (SOF) Figs. A.10–A.17 and 
Figs.  A.18–A.25 respectively

C  Segments
V ± SDV

†

|��| ± SD|��|
†

�ρ ± SD�ρ ‡

 # (%) (m/s) (units π) (proportion)

Adult female

8 4530 (5.2) 2.80±1.81 0.24±0.23 0.79±0.12

5 11655 (13.3) 1.07± 0.68 0.18±0.15 0.13±0.06

4 12670 (14.4) 0.79± 0.52 0.25± 0.22 0.27±0.06

1 19641 (22.4) 0.76±0.47 0.27±0.25 0.10±0.04

6 9278 (10.6) 0.71±0.54 0.33±0.28 0.42±0.08

2 11639 (13.3) 0.69±0.42 0.36±0.31 0.73±0.03

3 10450 (11.9) 0.61±0.38 0.39±0.30 0.22±0.04

7 7895 (9.0) 0.61±0.36 0.46±0.31 0.12±0.05

Juvenile male

8 3622 (5.8) 2.55±1.75 0.24±0.23 0.77±0.12

7 2679 (4.3) 0.76±0.64 0.35±0.28 0.49±0.06

3 3553 (5.7 0.72±0.45 0.16± 0.15 0.09±0.04

2 7730 (12.4) 0.59±0.40 0.24±0.21 0.28±0.07

4 9446 (15.1) 0.51±0.31 0.44±0.32 0.08±0.04

1 21029 (33.6) 0.50±0.30 0.28±0.24 0.12±0.06

5 5956 (9.5) 0.50±0.33 0.41±0.30 0.29±0.06

6 8484 (13.6) 0.46±0.27 0.38±0.29 0.16±0.05
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Conclusion
In the absence of suitable high frequency data, insights 
into the ecological underpinnings of the movement 
tracks are currently being obtained by studying them 
the hierarchical level of behavioral activity modes 
(BAMs), [21], diel activity routines (DARs) [42, 43, 98] 
and above [99, 100]. The reason for this is its fixed tem-
poral length of 24 h, which makes it possible to segment 
in a relatively unambiguous way. The only ambiguity 
is what point in time during the diel period should be 
fixed as the start/end point for each DAR. This problem 
has been discussed elsewhere [101, 102]. Additionally, 
DARs can be strung together to obtain supra-diel con-
structs (Fig 1) such as the extent of seasonal range of 
individuals [32, 103], and beyond this to classifying the 

syndromic movement behavior from whole or abbrevi-
ated lifetime tracks [100].

Next steps to follow on from the work presented here 
likely include studies to evaluate the most appropriate 
clustering methods to be used to classify segmentation 
types at different levels of segmentation (e.g., StaMEs to 
LiTs, Fig 1). It should also include studies of how a bot-
tom-up StaME approach to constructing and analyzing 
movement track structures, when combined with fitting 
auto-regressive models (AR(p) where p is the depth of 
the time delay dependence), can be used to fit models to 
higher order segments, particularly variable length BAMs 
and how this compares with the more direct approach of 
identifying BAMs using behavioral change point analysis 
(BCPA) and hidden Markov models (HMM).

Table 3  Indices and symbols used to formulate the model’s structure

Symbols Explanation Ref.

Indices and periods

a = 1, · · · , nrow Row and column indices to denote landscape cell(a, b) Eq. 1

b = 1, · · · , ncol

t = 0, · · · , ntime , tstop Index and number of time steps in global simulation, stop time if agent value drops to 0 Fig. 3

µ , z = 1, · · · , nseg Number of consecutive points in a StaME segment, index for and number of segments in a DAR Fig. 4

α = 1, · · · , nstame StaME index and number Eq. 4

� = 1, · · · , nrule , R� , R�α
Rule index and number, step-selection rules, α-specific rule Eq. 5

ι, · · · , k Cluster index (iota) and number of clusters Eq. 15

Structures

(xcella , ycell
b

) , �x , �y , �scale Locations of cell(a, b) on the landscape, row and column distances between consecutive cells, 
and the time-space scaling constant

A(t) , cab,t , (x idt , y
id
t ) , θt The state of cellular array A , of cellab , and location and angle of heading of the agent at time t Eq. 1

p
seed , pcont , ncont Parameters used to generate a patchy landscape RAM

patch

ρab(x
id
t , y

id
t ) , θab(x

id
t , y

id
t ) Distance between the individuals current location and a cell (xcella , ycell

b
 ) and angle of heading 

to this cell
Eq. 2-3

Kα , K , rmin
α , rmax

α , ψα StaME kernels, kernel α and its min & max SL (step length, aka velocity), and TA (turning-angle) 
range arguments

Eq. 4

K̃
α
t (args) , θt R�α

 , t̂sα , ĉnbhα
Movement kernel α at time t and angle of heading angle of heading, step-selection rule, mode 
switching and neighborhood-value parameters

Eq. 5

ht , t
sα
t  , hnext , ccb,next Agent value at time t, time spent in current movement mode α , agent and cell interim values Eq. 6-8

κadd , κsub , κgrw , κscl Parameter values used in cell and agent updating equations Eqs. 6 and 7

C
α
t (x

id
t , y

id
t , θt) The set of all cells that overlap with kernel K̃αt (args) Eq. 9

P
α
t (x

id
t , y

id
t , θt) The set of probability values for cells that overlap with kernel K̃αt (args) Eq. 10

pα(ts) , t̂sα Probability that an individual in mode α for period tsα continues in this mode, the α mode switch-
ing function parameter value

Eq. 11

W, V, �� Stochastic walk, velocity (aka step length:SL) and turning-angle (TA) relocation time series Eqs. 12, A.1–A.3

Segz , Sµ , Vz , SDV
z  , |��|z , SD

|��|
z  , �ρ

z
Segment z, set of segments, segment specific average velocity and standard deviation, average 
turning angle and standard deviation, net displacement

Eq 13

F
hom
µ

Mapping of the parameters of kernel Kα onto the centroid of all segments generated by a walk 
using this kernel on a homogeneous landscape

Eq. 14

X
patch

0,µ,k  , Fpatch

0,µ,k (args)
Set of centroids from a hierarchical cluster analysis of a 2-mode patchy landscape simulation 
using RAMpatch

0  , and resulting discrete mapping from the relevant parameter space to the cen-
troid space

Eq. 15-16
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Over the next decade we can expect exponential 
increases over time in the availability of high-frequency 
movement relocation time series for many different spe-
cies, reflecting both growing interest in the topic, and 
technological improvements in tracking methods. This 
increase, together with the increasing computational 
power of server clusters, the use of parallel processing, 
and improvements and extensions to our ANIMOVER_1 
simulator will make the methods discussed in this paper 
for deconstructing diel activity routine tracks into 
StaMEs more reliable and easier to implement. Addi-
tionally, deep learning methods and possibly some other 
machine learning methods [91–95, 104] that are able to 
account for complexities in the shapes of the segments 
arising from our analysis (e.g., see Figs A.2-A.25 in 
Appendix A, SOF) may be more useful for categorizing 
segments than the hierarchical clustering approach used 
here. It will also facilitate using StaMEs to bring move-
ment canonical activity modes (CAMs) and higher level 
behavioral activity modes (BAMs) or movement syn-
dromes [32, 105] into sharper focus using various time 
series forecasting techniques [106, 107] and more sophis-
ticated movement simulation algorithms.

Glossary
For the convenience of the reader we provide a glossary 
of indices and symbols in Table 3.
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