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Aims Standard methods of heart chamber volume estimation in cardiovascular magnetic resonance (CMR) typically utilize simple 
geometric formulae based on a limited number of slices. We aimed to evaluate whether an automated deep learning neural 
network prediction of 3D anatomy of all four chambers would show stronger associations with cardiovascular risk factors 
and disease than standard volume estimation methods in the UK Biobank.

Methods 
and results

A deep learning network was adapted to predict 3D segmentations of left and right ventricles (LV, RV) and atria (LA, RA) at 
∼1 mm isotropic resolution from CMR short- and long-axis 2D segmentations obtained from a fully automated machine 
learning pipeline in 4723 individuals with cardiovascular disease (CVD) and 5733 without in the UK Biobank. 
Relationships between volumes at end-diastole (ED) and end-systole (ES) and risk/disease factors were quantified using uni
variate, multivariate, and logistic regression analyses. Strength of association between deep learning volumes and standard 
volumes was compared using the area under the receiving operator characteristic curve (AUC). Univariate and multivariate 
associations between deep learning volumes and most risk and disease factors were stronger than for standard volumes 
(higher R2 and more significant P-values), particularly for sex, age, and body mass index. AUCs for all logistic regressions 
were higher for deep learning volumes than standard volumes (P < 0.001 for all four chambers at ED and ES).

Conclusion Neural network reconstructions of whole heart volumes had significantly stronger associations with CVD and risk factors 
than standard volume estimation methods in an automatic processing pipeline.
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Introduction
Accurate estimations of chamber volume for the right (RV) and left 
ventricles (LV) and atria of the heart are necessary for evaluation of car
diovascular disease (CVD). Cardiovascular magnetic resonance (CMR) 
has been shown to achieve good performance in heart volume estima
tion.1 However, standard measurements include only short-axis slices 
for estimation of right and left end-diastolic (ED) and end-systolic 
(ES) ventricular volumes, by multiplication of slice areas with the inter 
slice distance, whereas right and left atrial volumes are estimated from 
two-chamber and four-chamber long-axis views using single plane and 
biplane ellipsoidal approximation formulae.2,3 A more robust and ac
curate method for estimating atrial and ventricular volume, which uti
lizes all the short- and long-axis slices from typical CMR acquisitions, 
may enable better characterization of relationships between disease 
and anatomy.

Deep learning methods have recently enabled the reconstruction of 
3D geometry and volume from sparse slices.4–7 A 3D U-Net was 
shown to accurately reconstruct left atrial shape and volume from two- 
chamber and four-chamber views8 and was recently extended to re
construct whole heart anatomy from short- and long-axis views.9

The aim of this study was to adapt and evaluate this method in a large 
cohort study (UK Biobank) using a fully automated pipeline. We hy
pothesized that the deep learning network volume estimates would 
show stronger associations with cardiovascular risk factors and pres
ence of CVD than standard volume estimates.

Methods
Data set
In this study, we used CMR cases from the UK Biobank under the terms of 
access approval number 2964. The UK Biobank is a population-based co
hort study including over 500 000 participants aged 40–69 years, recruited 
between 2006 and 2010 (UK10). The CMR imaging study protocol was 

described previously.11 Briefly, CMR images were acquired on a 1.5 Tesla 
scanner (MAGNETOM Aera, Syngo Platform VD13A, Siemens 
Healthineers AG, Erlangen, Germany) utilizing retrospective electrocardio
gram (ECG) gating. Short-axis cine images were acquired in a contiguous 
stack with slice thickness of 8 mm and spacing of 10 mm covering the LV 
and RV. Three long-axis cine slices were also acquired with 6 mm slice thick
ness, oriented in the four-chamber, two-chamber, and three-chamber views.

Short- and long-axis cine images were analysed automatically using 
Circle cvi42 version 5.11 release 1505 (Circle Imaging, Calgary, Canada). 
The software used a previously validated12 deep learning convolutional 
neural network and returned LV endocardial, LV epicardial, and RV endo
cardial contours for short-axis as well as three-chamber, two-chamber, 
and four-chamber long-axis views (Figure 1). Chamber volumes for the 
RV and LV and right and left atria were obtained from cvi42 reports, auto
matically generated from the machine learning contours. No manual cor
rection was performed. ED and ES frame numbers were identified from 
the cvi42 reports.

Of the 45 683 participants with imaging studies available at the time of the 
study, we selected all participants with recorded CVD using hospital episode 
statistics and valid cvi42 reports. The following disease categories were de
fined based on codes ICD10, ICD9, and OPCS4: i) heart failure (HF); ii) myo
cardial infarction or ischaemic disease (MI-IHD); iii) ventricular arrhythmia 
composite (VAC) comprising ventricular arrhythmia or cardiac arrest or im
plantable cardiac defibrillator or sudden cardiac death; iv) conduction defect 
(CD) comprising bundle branch block or atrial or ventricular block; and v) at
rial fibrillation (AF). We also selected diabetes mellitus (DM), which has sig
nificant comorbidity with CVD. These disease categories represent a wide 
range of pathologies known to have relationships with volume changes in 
the heart.13 Systolic and diastolic blood pressure was adjusted in the presence 
of blood pressure–altering medication (+15 mmHg and +10 mmHg, respect
ively) and averaged across multiple manual and automated readings. We also 
randomly selected a corresponding number of individuals with no recorded 
disease and valid cvi42 reports as a reference group.

Volumes were indexed to body surface area (BSA) using the Du Bois 
formula.14,15
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Quality assessment
We performed outlier rejection to remove cases with differences between 
network predicted and standard LV and RV ED and ES volumes and ejection 
fraction (EF) beyond the 3*interquartile range (IQR) of the first and third 
quartiles (less than Q1 − 3*IQR or greater than Q3 + 3*IQR).

Deep learning network
The label completion network LC-U-Net described previously in Xu et al.9

was deployed for this study. Briefly, a 3D U-Net was designed to predict 
dense segmentation label maps (∼1 mm isotropic resolution) from sparse 
short- and long-axis slices. The input to the network is a 3D volume consisting 
of the sparse labels obtained from cvi42, whereas the CMR images are never 
used in the pipeline. The network reconstructs shapes in the missing slices 
and corrects for slice positioning errors and changes in breath-hold position 
between slices (Figure 2). Chamber volumes are then computed by summing 
the voxels of the dense segmentations and multiplying by the voxel volume.

The network was initially trained on sparse inputs obtained by 1400 cor
onary computed tomography data sets from the Scottish COmputed 
Tomography of the HEART (SCOT-HEART) trial,16 modified to resemble 
the Biobank MR data sets by simulating the placement of the short-axis and 
long-axis slices and adding random errors in slice positioning and breath- 
hold position to simulate motion. For this study, the pre-trained network 
was deployed on Biobank sparse label maps, obtained by combining short 
axes and two-, three-, and four-chamber long-axis slices, as automatically 
segmented by Circle (Figure 1).

Statistics
To study the associations between volumes and risk factors, we considered 
three types of analysis: 

• Univariate correlations between volumes and risk factors and disease 
[age, sex, systolic blood pressure, BSA, body mass index (BMI), AF, 
HF, MI-IHD, DM, CD, and VAC] were compared using R2 and 
−log(P). Note that −log(P) is used in PheWAS analyses in large cohort 
studies.13 The Bonferroni correction was applied, considering 88 num
bers of individual tests (α* = 0.05/88).

• Multivariate linear regression was performed using all the aforemen
tioned factors to predict volume in both ES and ED frames.

• Logistic regression was performed, considering the response variable 
positive if the estimated volume was above median value and negative 
if below. Predictor variables were the same as above. A five-fold cross 
validation was performed.

Regression models from the caret package v. 6.017 in R 4.3.218 were used.
Signed differences in volume were compared between the network and 

standard estimation from the Circle report files using paired t-test for nor
mally distributed data, Wilcoxon rank sum test for non-normal data, and 
Pearson’s χ2 test for categorical data. Normality was tested using the χ2 

test at a 95% confidence level. A P-value of 0.05 was considered significant. 
Area under the curve (AUC) for each logistic regression model (volume es
timated from the network vs. standard estimates) was compared with the 
de Long test from the pROC package v.1.18.5.19

Results
Data set
A total of 4776 cases with CVD and 5795 randomly selected reference 
cases were included. After quality control (QC), we obtained a cohort 
of 4723 CVD cases and 5733 healthy individuals. The study population 

Figure 1 Example of cvi42 obtained LV endocardial, LV epicardial, and RV endocardial contours for short-axis as well as two-chamber, three- 
chamber, and four-chamber long-axis views. Contours are used to create a 3D sparse volume input. This figure contains images reproduced by 
kind permission of UK Biobank.
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characteristics are summarized in Table 1. The characteristics of the 
cases rejected after quality control are reported in Supplementary 
data online, Table S1.

Volume estimates indexed by BSA from the network and standard 
methods are summarized in Table 2 (see Supplementary data online, 
Table S2, for rejected cases). Bland–Altman plots are shown in 
Figure 3. The network predicted volumes were larger than the standard 
estimates for all chambers at both ED and ES. Both methods found sig
nificantly greater volumes in the CVD group than the no-CVD group 

for LV end-diastolic volume index (EDVI), RV EDVI, and RA end-systol
ic volume index (ESVI). LA EDVI was significantly smaller in the no-CVD 
group for both methods, but RA EDVI was smaller (P < 0.001) in the 
no-CVD group only for the network estimate. LA ESVI was significantly 
larger (P = 0.014) in the CVD group for standard method but not sig
nificantly different between groups for the network method.

Univariate associations
Figure 4 compares the univariate association of volumes with risk and 
disease factors between network and standard estimations. The 
x-axis shows each individual predictor, and the y-axis shows the 
strength of correlation found between each factor and the volume va
lues. In most comparisons, the −log(P) was bigger for network esti
mated volumes compared to standard estimated volumes, suggesting 
stronger univariate associations. In all associations between network 
estimated volumes and age and BSA, the P-value was 0 to machine pre
cision. The quantitative results can be found in Supplementary data 
online, Table S3.

Multivariate associations
The Dumbbell chart in Figure 5 shows an overview of the multivariate 
regression model results, by plotting the −log(P) values for each vol
ume. Detailed results of the multivariate regression are shown in 
Table 3. The R2, −log(P), and F-values show overall regression statistics, 
which demonstrate a higher overall correlation between the network 
estimated volumes and the risks and disease factors than for the stand
ard estimated ones for all chambers. Most predictors in Table 3 show 
higher −log(P) values for the network over the standard volumes, indi
cating stronger relationships.

Logistic regressions
Table 4 and Figure 6 show the results of the logistic regression. Table 4 is 
a summary of the AUC values achieved by the two logistic regression 
models trained with the network and the standard estimations, re
spectively. Network volumes had significantly higher AUC for every 
chamber at ES and ED. Figure 6 shows the relevant difference between 
each individual predictor in the regression through odds ratios. The nu
merical results are reported in Supplementary data online, Table S4. 

Figure 2 Method pipeline. Sparse volumes are fed into the LC-U-Net at inference time to reconstruct dense volumes. (A) ES frame. (B) ED frame.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Study population characteristics

CVD No CVD
n = 4723 n = 5733

Age (years) 67 (7) 63 (8)

Male 3208 (68%) 2961 (52%)

Weight (kg) 83 (16) 77 (17)

Height (m) 171 (9) 170 (11)

BMI (kg/m2) 28.3 (4.6) 26.4 (4.2)

SBP (adjusted, mmHg) 147 (21) 138 (20)

DBP (adjusted, mmHg) 86 (12) 82 (11)

Atrial fibrillation (AF) 1011 (21%)

Heart failure (HF) 339 (7.2%)

MI or IHD 2212 (47%)

DM 1490 (32%)

Conduction defect (CD) 615 (13%)

SCD, VA, or ICD 138 (2.9%)

Continuous values are presented as ‘mean (standard deviation)’ and categorical values 
as ‘size (percentage)’. All rows P < 0.001 for difference between CVD and no-CVD 
groups. 
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure: MI, 
myocardial infarction; IHD, ischaemic heart disease; DM, diabetes mellitus; SCD, sudden 
cardiac death.
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Table 2 Volume indices estimated from the network and from standard methods

Network P-value Standard P-value

CVD (n = 4723) No CVD (n = 5733) CVD (n = 4723) No CVD (n = 5733)

LV EDVI (mL/m2) 83 (16) 85 (19) <0.001 78 (16) 81 (20) <0.001

LV ESVI (mL/m2) 39 (10) 39 (11) 0.12 33 (11) 32 (11) 0.2

RV EDVI (mL/m2) 88 (16) 92 (23) <0.001 77 (15) 82 (22) <0.001

RV ESVI (mL/m2) 43 (10) 45 (14) 0.010 33 (9) 34 (12) 0.044

LA EDVI (mL/m2) 30 (13) 27 (8) <0.001 17 (12) 14 (7) <0.001

LA ESVI (mL/m2) 50 (14) 50 (12) 0.5 36 (14) 35 (12) 0.014

RA EDVI (mL/m2) 36 (15) 34 (11) <0.001 26 (14) 25 (11) 0.3

RA ESVI (mL/m2) 57 (16) 59 (17) <0.001 43 (16) 45 (16) <0.001

P-value shown between CVD and no-CVD group for both methods.

Figure 3 Bland–Altman plots for each volume to show difference between standard and network measurements. Each scatter point is coloured 
according to the number of neighbouring points (density map).
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Figure 4 Manhattan plot showing the strength of correlation between volumes and single predictors. The height of each data point denotes the 
negative logarithm of the univariate correlation P-value between each volume and predictor. The Bonferroni threshold for multiple comparisons 
(α = 0.05/88) is shown as a dashed horizontal line. Sex and BSA have been removed for visualization purposes (−logp = inf). Results are included in 
Supplementary data online, Table S3. Log scale is applied to y-axis.

Figure 5 Dumbbell chart of −log(P) of the overall multivariate regression model (overall cases in both groups).
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These results highlight some significant results in the logistic regression 
for the network predicted volumes that are not found in the standard 
ones, especially for the LA ED and ES volumes and for most EF plots.

Discussion
In this study, we evaluated an automated method for whole heart 
chamber volume quantification from short- and long-axis slices, which 
are typically acquired in all CMR exams. Heart volumes are currently 
computed from CMR slices using geometric assumptions, including 
regular ellipses for the atria and slice summation for the ventricles.3

The assumptions may lead to inaccuracies; for example, apical and basal 
anatomy is not well captured by short-axis slices,20 which are typically 
much thicker than the in-plane resolution (6–8 mm vs. 1–2 mm). 
Advances in deep learning networks enable accurate reconstruction 
of 3D anatomy from sparse data, as demonstrated in our previous pa
per,9 where we introduced and validated a neural network (LC-U-Net) 

to reconstruct dense volumes from CMR slices. On a test set including 
200 samples from SCOT-HEART, we found signed differences in vol
ume between network predictions and ground truth segmentations 
of 0.4 ± 2.6 mL for LV volume, 2.7 ± 4.4 mL for RV volume, −1.0 ±  
4.0 mL for LA volume, and 1.3 ± 6.3 mL for RA volume. The promising 
performance led us to investigate the effect that LC-U-Net predictions 
have on volumes by calculating associations with risk factors and using a 
large cohort study such as the UK Biobank.

In the present work, we employed the pre-trained model validated 
on SCOT-HEART data to predict 20 890 3D heart volumes, including 
both healthy and diseased individuals during ED and ES.

To ensure that the network was robust against common CMR arte
facts and acquisition, during training on the original data, motion arte
fact was simulated by a 2D in-plane translation of the heart with 
three different levels of Gaussian standard deviation for offsets in 
each direction: tiny (0.5 mm), small (2.0 mm), and standard (3.5 mm). 
Uniaxial motion was applied in all three axes, and, for each slice, one 
set of motions was applied to the reference shape and its intersection 
with the slice plane was considered as the simulated segmentation of 
the slice. Moreover, the most apical and basal short-axis (SAX) slices 
were removed (probability 0.5) and labelled PA as RV in the input 
SAX slice (if present).9

We performed univariate, multivariate, and logistic regression on 
those to establish correlations with the risk and disease factors, and 
we compared the results with the same analysis performed on volumes 
from a standard automatic pipeline by the widely available software cvi42.

We found that, when evaluating the volumes, the network consist
ently predicted larger values than the standard method. We believe 
this to be due to inherent limitations of the mathematical formulae 
used in standard methods. The bi-planar approach adopted often leads 
to underestimation of volumes, especially in the LA,8,21 while in the ven
tricles, the outflow tracts are difficult to quantify in short-axis images.22

Our results also showed that network estimates may contain more 
diagnostic information over traditional estimates. The multivariate lin
ear regression results showed that all chamber volumes had higher cor
relations with risk and disease factors when obtained from network 
predictions, with the highest benefit demonstrated for LA volumes 
(Figure 5).
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Table 3 Results of multivariate regressions

LV EDV LV ESV RV EDV RV ESV LA EDV LA ESV RA EDV RA ESV

R2 0.64/0.61 0.56/0.49 0.67/0.63 0.64/0.57 0.39/0.25 0.40/0.26 0.41/0.35 0.43/0.37

−log(P) 2331/2095 1863/1525 2529/2217 2319/1923 1126/628 1135/685 1168/958 1263/1041

F 1722/1457 1863/1526 1965/1590 1708/1282 620/310 626/342 649/507 718/562

Age 151/158 51/37 155/127 112/49 53/22 1/5 15/11 3/0

Sex 202/136 180/136 297/208 Inf/256 32/4 27/7 77/74 74/74

BSA Inf/Inf Inf/253 Inf/Inf Inf/297 176/54 255/111 201/154 282/213

BMI 52/53 33/19 64/46 48/18 11/2 27/0 60/67 113/115

SBP (adj) 23/19 2/1 7/7 1/7 8/6 20/20 0/2 1/1

AF 5/5 1/0 2/3 4/6 242/233 86/81 174/126 61/42

HF 11/13 37/36 0/0 6/3 22/24 7/9 10/6 3/2

MI + IHD 7/7 2/3 23/24 22/26 1/0 4/1 5/8 12/15

DM 88/76 45/33 105/90 72/55 30/12 62/32 34/29 62/43

VA 4/4 7/5 0/0 0/0 0/1 1/1 0/0 1/0

CD 10/8 15/15 0/0 2/1 1/2 1/0 0/0 2/1

R2, −log(P), and F show overall regression statistics. Individual predictors show −log(P) for multivariate model. All results are network/standard. Events where the network has a higher 
value are highlighted in bold; the opposites are highlighted in italics.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Results of logistic regressions

AUC (network) AUC (standard) P-value

LV EDV 0.918 [0.912–0.923] 0.902 [0.897–0.908] <0.001

LV ESV 0.909 [0.903–0.915] 0.885 [0.878–0.891] <0.0001

RV EDV 0.928 [0.923–0.932] 0.910 [0.904–0.915] <0.0001

RV ESV 0.923 [0.918–0.928] 0.904 [0.898–0.910] <0.0001

LA EDV 0.862 [0.855–0.869] 0.733 [0.723–0.742] <0.0001

LA ESV 0.829 [0.821–0.837] 0.757 [0.748–0.766] <0.0001

RA EDV 0.877 [0.870–0.884] 0.845 [0.834–0.853] <0.0001

RA ESV 0.852 [0.844–0.859] 0.829 [0.821–0.834] <0.0001

AUC shows overall test set results and P-value from de Long test; 95% confidence 
intervals are included in square brackets.
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Correlations between single factors and volumes were shown by 
the univariate and logistic regression results. The former found stron
ger associations between (i) ventricle volumes at ES with age and BMI 
and (ii) atrial volumes at ED with AF and systolic blood pressure, when 
using network estimations. The standard estimations unveiled higher 
correlation between LA volumes at ES and BMI (Figure 4, 
Supplementary data online, Table S3). The logistic regression high
lighted correlations between EF in the atria and DM and between 
LV measures and AF, which showed more significant odds ratios 
than in the standard counterparts (Figure 6, Supplementary data 
online, Table S4). This supports the use of network estimates to quan
tify cardiac structure more accurately in the evaluation of disease. 
Also, relationships with sex and DM were stronger in the network 
predicted metrics than the traditional in all chambers, indicating the 
benefit of network estimates in cohort studies with large patient 

data. We therefore expect that clinical studies of sex differences in 
diabetes would need fewer participants to demonstrate a target effect 
size. To illustrate this, in Table 5, we show differences between men 
and women in the diabetic subcohort. The sex differences are gener
ally greater for the network estimates than the standard estimates in 
this group. For example, a power calculation of the number of parti
cipants needed for a study of sex differences in LV EDVI in diabetes 
would need 38 men and 38 women for the network estimation 
method (80 vs. 71 with the higher standard deviation seen in men 
of 14 mL/m2) and 72 men and 72 women for the standard estimation 
method (68 vs. 75 with the higher standard deviation seen in men of 
15 mL/m2) to detect a difference at alpha of 5% and 80% power.

Overall, we found stronger associations between heart chamber vo
lumes and CVD and risk factors using network estimates than with 
standard volume estimates. The ability to more readily distinguish effect 

Figure 6 Odds ratios for comparison between results of the logistic regression model using estimate volumes by standard and network methods. 
The BSA predictor in ED and ES volumes has been removed for visualization purposes (see Supplementary data online, Table S4, for complete results).
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sizes enables study of disease interactions with higher precision. These 
results support automated computation of volumes using deep learning 
networks, which can be performed in routine CMR exams.

Limitations and future work
The main limitation of this work lies in the lack of 3D ground truth for 
volumes in the UK Biobank, so the reconstructed shapes by the 
LC-U-Net could not be validated. However, the network was previous
ly validated in a test set from the SCOT-HEART CT study against 3D 
ground truth segmentations. Also, we did not attempt to propensity 
match or stratify reference cases with disease cases in this study, or 
evaluate comorbidities, since our objective was to compare deep learn
ing and standard volumes in a diverse cohort rather than identify spe
cific disease characteristics. Future study with more disease cases 
could identify relationships disentangled from comorbidities. In this 
study, we rejected cases with high differences between network pre
dicted and standard LVED, RVED, LVES, RVES, and EF. We observed 
the rejected cases would often include examples with large ventricles 
(see Supplementary data online, Figure S1), showing that the network 
might need further training on such cases to guarantee better adapta
tion. Supplementary data online, Figure S1, shows an example of a re
jected case in which the prediction was obviously smaller than the 
slice data. To ensure that this would not compromise the performance 
of our regression experiments, we further tested consistency between 
groups with low and high EFs or groups with small and high LVEDV by 
stratifying the cohort based on median values and performing the multi
variate regression analysis as in the main study. The results can be found 
in Supplementary data online, Tables S5–S8, and they confirm the find
ings of higher correlation in the network estimated volumes for all 
subgroups.

Furthermore, the contours obtained from cvi42 could undergo fur
ther QC as in Ruijsink et al.,23 which, if done, could possibly boost the 
results of the regression models for both standard predicted volumes 
and network predicted. Finally, the availability of certain disease cohorts 
is limited in UK Biobank, since it comprises largely healthy participants. 
Further validation of these methods in disease cohorts is required. This 
could be performed by applying network and standard methods to re
peated scans and estimate and compare variance (follow-up exams are 
underway as part of the UK Biobank imaging substudy). Similarly, it 
would be possible to apply the reconstruction throughout the cardiac 
cycle to obtain full dense segmentations at every acquired frame. The 
3D segmentations could also be used as an updated ground truth for 
training networks to make automatic segmentations more reliable. 
These could also lead to further studies on 3D strain and shape analysis, 
which were not considered here.

Conclusion
Stronger relationships between heart chamber volumes and disease 
and risk factors were obtained using a deep learning volume recon
struction compared with standard volume estimates, in the CMR UK 
Biobank study. Deep learning estimates of volumes may provide 
more information for diagnosis and prognosis than standard estimates.

Supplementary data
Supplementary data are available at European Heart Journal - 
Cardiovascular Imaging online.
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