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ABSTRACT
Background:  Idiopathic Pulmonary Fibrosis (IPF) presents a severe respiratory challenge with a 
poor prognosis due to the lack of reliable biomarkers. Recent evidence suggests that Endoplasmic 
Reticulum Stress (ERS) may be associated with IPF pathogenesis. This study focuses on uncovering 
ERS-associated biomarkers for IPF.
Methods:  Sequencing data from diverse datasets were analyzed, utilizing differential gene 
expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA). Endoplasmic 
Reticulum Stress (ERS)-related genes were extracted from the GeneCards database. Hub genes 
were identified through Protein-Protein Interaction (PPI) analysis. Diagnostic and prognostic 
models were developed using machine learning algorithms and validated across both training 
and validation sets. Additionally, techniques such as Cell-type Identification by Estimating Relative 
Subsets of RNA Transcripts and single-cell RNA sequencing were employed to identify potential 
IPF-related cells. These findings were further investigated to elucidate their underlying mechanisms 
through in vitro experiments.
Results:  Differentially expressed genes, WGCNA-identified blue module genes, and ERS-related 
genes extracted from the GeneCards database were intersected, and the resulting genes were 
used to construct diagnostic and prognostic models. Validation using multiple datasets indicated 
that both the diagnostic and prognostic models possess strong predictive capabilities. PPI analysis 
highlighted SPP1 as a potential hub gene in IPF. Moreover, M2 macrophages were found in 
higher quantities in the lung tissue of IPF patients, with a significant increase in SPP1-expressing 
M2 macrophages compared to the control group. In vitro experiments demonstrated that 
exogenous SPP1 inhibited the proliferation and migration of M2 macrophages and promoted 
apoptosis within a certain concentration range.
Conclusion:  This study identifies ERS-related biomarkers in IPF, highlighting SPP1 and M2 
macrophages. The resulting diagnostic and prognostic models offer strong predictive capabilities, 
unveiling new therapeutic avenues.
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Introduction

IPF is an enigmatic, chronic disease, marked by a 
relentless progression in interstitial lung scarring and a 
gradual decline in respiratory function [1]. This condi-
tion demonstrates a remarkable variability in its inci-
dence and prevalence across the globe. In a detailed 
study, it was found that in Asia-Pacific countries, the 
adjusted incidence rate per 10,000 people lies between 
0.35 and 1.30, while in Europe it ranges from 0.09 to 
0.49, and in North America, it spans from 0.75 to 0.93. 
Correspondingly, the prevalence rates per 10,000 peo-
ple in these regions are 0.57 to 4.51 in Asia-Pacific, 
0.33 to 2.51 in Europe, and 2.40 to 2.98 in North 
America [2]. It is important to note that the IPF exhib-
its considerable variation across different countries and 
regions, a disparity influenced by a range of factors 
such as healthcare conditions and statistical methodol-
ogies. A systematic literature review has even pointed 
out that the differences between various studies can 
amount to several hundredfold [3].

IPF shares clinical features with other interstitial 
lung disease (ILD) but requires different treatment 
approaches, underscoring the importance of accurate 
diagnosis. High-resolution computed tomography 
(HRCT) is critical for diagnosing IPF. A typical HRCT 
pattern of usual interstitial pneumonia, with other ILD 
causes excluded, confirms IPF [4]. If HRCT is inconclu-
sive but the diagnostic benefits outweigh biopsy risks, 
a lung biopsy may be necessary for clarification [4]. In 
some cases of IPF, patients encounter significant diffi-
culties in obtaining an accurate diagnosis, and like-
wise, their prognosis often remains unfavorable. A 
study indicate that the median survival time from the 
diagnosis of IPF to death is merely 2 to 3 years [5]. The 
elevated mortality rate among individuals with IPF can 
largely be attributed to acute exacerbations of the 
condition. Statistical analyses reveal that approximately 
46% of deaths related to IPF are precipitated by these 
sudden deteriorations [6]. Furthermore, a significant 
proportion of affected patients succumb within the 
initial month following an exacerbation, with the vast 
majority of the remaining cases resulting in mortality 
within the span of one year [6].

The Endoplasmic Reticulum (ER), a specialized 
organelle pivotal in eukaryotic cells, plays a central 
role in protein biosynthesis, folding, lipid biosynthesis, 
apoptosis, and calcium homeostasis [7]. The stability of 
the ER environment is essential for maintaining its 
physiological functions and ensuring overall cellular 
health. Disruptions to this stability can lead to endo-
plasmic reticulum stress (ERS), characterized by the 
accumulation of misfolded proteins within the ER. ERS 

is essentially a cellular mechanism to adapt to external 
environmental challenges, striving to reduce the 
buildup of unfolded proteins and restore normal cellu-
lar functions [7]. Nonetheless, persistent and excessive 
ERS can precipitate cellular dysfunction and apoptosis. 
Recent advancements in research have illuminated the 
role of ERS in influencing the progression of pulmo-
nary fibrosis. It does so by affecting various cellular 
processes, including alveolar epithelial cell apoptosis, 
epithelial-mesenchymal transition, differentiation of 
myofibroblasts, and the polarization of M2 macro-
phages [8]. Consequently, ERS is increasingly recog-
nized as a novel risk factor in the development of 
pulmonary fibrosis.

In this investigation, we aim to integrate transcrip-
tome and single-cell sequencing data with sophisti-
cated bioinformatics and machine learning algorithms 
to uncover potential pathogenic genes in IPF. By con-
ducting cellular assays, we seek to elucidate the 
impacts of these genes on specific cell types. Identified 
within the framework of Predictive, Preventive, and 
Personalized Medicine, these novel biomarkers have 
the potential to significantly enhance IPF diagnostics 
and prognostics, presenting possible targets for tar-
geted prevention and personalized treatment strate-
gies. This approach is expected to enrich our 
understanding of IPF pathogenesis and facilitate the 
development of patient-specific therapeutic interven-
tions, potentially reducing the clinical impact of this 
complex disease.

Materials and methods

Data processing

For this investigation, transcriptomic data from patients 
diagnosed with IPF and healthy controls were meticu-
lously curated from the Gene Expression Omnibus 
(GEO) database. The selection criteria included: (1) a 
minimum sample size of 20 to ensure statistical robust-
ness, (2) a clear clinical diagnosis of IPF, excluding 
other forms of interstitial lung diseases, and (3) sam-
ples originating from human lung tissues. Following 
the acquisition of raw datasets meeting these criteria, 
the ‘limma’ package [9] was used for normalization, 
with a log2 transformation applied to stabilize vari-
ance across expression levels. In instances where mul-
tiple probes corresponded to a single gene, average 
expression levels were computed to ensure data integ-
rity. To mitigate batch effects inherent in integrating 
data from multiple sources, the combat function [10] 
in the ‘sva’ package was applied, minimizing inter-batch 
discrepancies. This detailed approach ensured a 
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reliable dataset specifically tailored to exploring the 
molecular intricacies of IPF in human lung tissues.

Differentially expressed genes (DEGs)

Genes were designated as differentially expressed 
genes (DEGs) based on the criterion of an absolute log 
fold change (logFC) value of 1 and an adjusted P-value 
less than 0.05.

Weighted gene co-expression network analysis 
(WGCNA)

WGCNA [11] was applied to identify hub genes rele-
vant to IPF. The process began with the identification 
and removal of missing values and outliers. A soft 
thresholding power was determined according to the 
scale-free topology criterion, essential for network con-
struction. Hierarchical clustering was then used to 
identify gene modules, which were subsequently cor-
related with phenotype data. This allowed for the dif-
ferentiation of modules related to IPF from those of 
healthy controls. The association of individual genes 
with IPF was quantified by calculating gene signifi-
cance (GS) based on their correlation with the pheno-
type. Moreover, module membership (MM) was 
assessed by evaluating the correlation between the 
module eigengenes and gene expression patterns, 
thereby highlighting significant genes within key 
modules.

Protein-protein interaction (PPI) networks

Genes related to ERS were obtained from GeneCards: 
The Human Gene Database (https://www.genecards.
org/) [12]. An intersection analysis was performed 
between these ERS-related genes, genes from WGCNA, 
and DEGs. The intersecting genes were subjected to 
PPI analysis using the STRING database (https://
string-db.org/) [13]. Interaction networks were visual-
ized using Cytoscape software (version 3.8.2). Degree 
centrality for each gene within the network was calcu-
lated, identifying those with the highest degree values 
as central hub genes pertinent to IPF.

Functional enrichment analysis

Disease Ontology (DO) [14], Gene Ontology (GO) [15], 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[16] analyses were conducted to explore the biological 
implications of identified genes. DO analysis revealed 
disease associations, offering insights into pathological 

significance. GO categorization elucidated gene roles 
across biological processes, cellular components, and 
molecular functions. KEGG pathway mapping high-
lighted participation in metabolic and signaling path-
ways. These integrated analyses provided a 
comprehensive understanding of the genes’ functional 
and disease-related contexts.

Immune infiltration analysis

Cell-type Identification By Estimating Relative Subsets 
Of RNA Transcripts (CIBERSORT) [17] employs linear 
support vector regression to deconvolute expression 
matrices, estimating the abundance of 22 distinct 
immune cell types. This method was applied to ana-
lyze the immune cell composition in lung tissues from 
patients with IPF and healthy controls, facilitating a 
detailed exploration of immune involvement in IPF.

Construction of the diagnostic model

A series of sophisticated machine learning algorithms 
were employed to construct a diagnostic model capa-
ble of distinguishing IPF patients from healthy con-
trols. The model development utilized techniques such 
as Lasso with Stepwise Generalized Linear Models 
(Stepglm), Support Vector Machines (SVM), glmBoost, 
Ridge Regression, Elastic Net (Enet), Random Forests 
(RF), and their various combinations. Each algorithm 
underwent rigorous cross-validation to ensure robust-
ness and accuracy.

Construction of the prognostic model

A comprehensive array of statistical and machine 
learning methodologies was employed to develop a 
prognostic model for assessing the outcomes of 
patients with IPF. The model integrated advanced 
techniques such as Survival Support Vector Machine 
(survival-SVM), CoxBoost, Ridge Regression, Lasso, 
Supervised Principal Components (SuperPC), Elastic 
Net (Enet), Partial Least Squares Cox regression (plsR-
cox), Random Survival Forests (RSF), and Stepwise Cox 
regression with various selection strategies. These 
methods were strategically combined to enhance the 
model’s accuracy and reliability.

Single cell sequencing analysis

The GSE122960 dataset [18], which includes single-cell 
sequencing data from patients with IPF and control 
groups, was utilized to explore potential pathogenic 

https://www.genecards.org/
https://www.genecards.org/
https://string-db.org/
https://string-db.org/
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genes and their interactions within specific cell types 
associated with IPF. Initial quality control measures 
established thresholds for the minimum number of 
cells and features per cell, ensuring data integrity, 
while evaluating the expression of mitochondrial and 
ribosomal genes to identify low-quality cells. Following 
quality control, the LogNormalize method in Seurat 
[19] was applied for data normalization, and highly 
variable genes indicating substantial biological varia-
tion were identified. To integrate data from various 
samples and reduce batch effects, dimensionality 
reduction was conducted using the Harmony algo-
rithm [20, 21]. Cell clustering analysis was performed 
utilizing the FindNeighbors and FindClusters functions 
with a range of resolution parameters. Clustree visual-
ization was used to determine the optimal clustering 
resolution [22]. Specific marker genes for each cell 
cluster were then identified, and the distribution of 
cell clusters was visualized in t-distributed Stochastic 
Neighbor Embedding (t-SNE) low-dimensional space. 
The analysis concluded with manual annotation based 
on known marker genes to refine cell type identifica-
tion. This comprehensive examination of the cellular 
and molecular landscape of IPF facilitated insights into 
the disease’s pathogenesis.

Cell culture

In this investigation, the RAW 264.7 macrophage cell 
line, purchased from the Cell Resource Center, Peking 
Union Medical College (Resource Number: 
1101MOU-PUMC000146), was employed. Cultivation 
was conducted in DMEM-H supplemented with 10% 
fetal bovine serum (FBS). To generate M2 polarized 
macrophages, cells were treated with IL-4 (20 ng/mL) 
for 48 h, resulting in a predominantly round morphol-
ogy [23]. Post-polarization, cells were maintained in 
serum-free RPMI-1640 for up to 72 h to preserve the 
M2 phenotype. This protocol facilitated the examina-
tion of M2 macrophage functions in our study, offer-
ing valuable insights into their role in immune 
responses.

Cell Counting Kit-8 (CKK8) assay

The Cell Counting Kit-8 (CCK-8) assay (Beyotime, 
Shanghai, China) was employed with rigorous adher-
ence to protocol details to ensure a precise assess-
ment of cell viability. The procedure commenced with 
essential preparatory steps, including the pre-warming 
of DPBS (Servicebio, Wuhan, China), high-glucose 
DMEM culture medium (Hyclone, Logan, UT, USA), and 

trypsin (Gibco, Grand Island, NY, USA), alongside pre-
heating the cell culture incubator and sterilizing the 
workspace with UV light. Observations under an 
inverted microscope confirmed the cells were in an 
optimal state for trypsin-EDTA digestion, creating a 
single-cell suspension. Following centrifugation and 
resuspension in culture medium supplemented with 
fetal bovine serum (BI, Beit HaEmek, Israel), the cells 
were accurately counted and seeded into 96-well 
plates. The CCK-8 solution was carefully added to each 
well, avoiding bubble formation that could interfere 
with optical density (OD) measurements. After incuba-
tion to facilitate color development, the OD at 450 nm 
was measured, providing a quantitative evaluation of 
cell viability.

5-Ethynyl-2’- deoxyuridine (EDU)

The BeyoClick™ EdU-555 Cell Proliferation Assay Kit 
(Beyotime, Shanghai, China) was used to evaluate cell 
proliferation. Cells were seeded in 6-well plates, with 
cover slips added as needed. After overnight incuba-
tion, specific treatments were applied. A 2X EdU work-
ing solution was prepared by diluting the 10 mM EdU 
stock with culture medium at a 1:500 ratio to achieve 
a final concentration of 10 μM. The pre-warmed 2X 
EdU solution was then added to the wells, and cells 
were incubated for approximately 2 h. Following EdU 
incorporation, cells were fixed, washed, permeabilized, 
and washed again. The Click reaction mixture was 
applied, incubated in darkness for 30 min, and fol-
lowed by additional washing. If necessary, cell nuclei 
were stained with Hoechst 33342. Fluorescence detec-
tion using microscopy or flow cytometry assessed cell 
proliferation based on the intensity of EdU incorpora-
tion, indicated by Azide 555 fluorescence.

Transwell assay

Cell migration was assessed using a transwell assay. 
Preparation began with warming DPBS (Servicebio, 
Wuhan, China), culture medium (Hyclone, Logan, UT, 
USA), and trypsin (Gibco, Grand Island, NY, USA) in a 
37 °C incubator, followed by UV sterilization of the 
workspace for 30 min. Under an inverted microscope, 
cells were confirmed to be in optimal condition before 
being digested into a single-cell suspension with 
0.25% trypsin-EDTA (Gibco, Grand Island, NY, USA). 
After centrifugation, cells were resuspended in 
serum-free medium and counted. Cell concentrations 
were adjusted for seeding in 24-well plates with tran-
swell inserts (Chemicon, Temecula, CA, USA) at various 
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densities. After 18-24 h of incubation, non-migrated 
cells were removed from the upper membrane. 
Migrated cells on the lower membrane were fixed with 
methanol, stained with crystal violet, and washed with 
PBS. Migration was quantitatively analyzed by photo-
graphing and counting the cells on the lower mem-
brane using a specific microscope setup.

Apoptosis detection

In this apoptosis assay, the Annexin V-APC/PI Double 
Staining Kit (Invitrogen, 88-8007, Carlsbad, CA, USA) 
was utilized to identify apoptotic cells. The procedure 
began with diluting 10X Binding Buffer to 1X with 
ultrapure water. Cells were then trypsinized (Gibco, 
25200-072, Grand Island, NY, USA) to form a single-cell 
suspension, washed with PBS (Servicebio, Wuhan, 
China), and subsequently with 1X Binding Buffer. Cells 
were resuspended in 1X Binding Buffer to achieve a 
concentration of 1–5 x 106 cells/mL. To each 100 μL of 
cell suspension, 5 μL of Annexin V conjugated with a 
fluorescent dye was added, followed by incubation in 
the dark at room temperature for 10 min. After a wash-
ing step with 1X Binding Buffer, cells were resuspended 
in 200 μL of the same buffer, and 5 μL of PI staining 
solution was added. The prepared cell suspensions 
were kept at 2-8 °C in the dark and analyzed within 4 h 
using a flow cytometer (Beckman CytoFLEX, Beckman 
Coulter, Brea, CA, USA). Data analysis was conducted 
with Beckman’s CytExpert software, providing a 
detailed assessment of cell apoptosis levels.

Statistical analysis

All statistical analyses in this study were performed 
using R software version 4.3.1. To compare differences 
between two groups, the Student’s t-test was used. 
For comparisons involving more than two groups, 
one-way ANOVA was applied, followed by post hoc 
tests to assess pairwise differences if the ANOVA was 
significant. Survival curves were generated using the 
Kaplan-Meier method, with prognosis-related differ-
ences assessed via the log-rank test. X-tile software 
[24] was used to determine cut-off values for survival 
groups. Diagnostic efficacy was evaluated using the 
Area Under the Receiver Operating Characteristic (ROC) 
Curve (AUC) and accuracy. Prognostic efficacy was 
assessed using time-dependent ROC curves and the 
concordance index (C-index). Graphs were created 
using both R software and GraphPad Prism 6 (GraphPad 
Software, La Jolla, CA, USA). A p-value of less than 0.05 
was considered statistically significant.

Results

Data processing and identification of DEGs

In this investigation, sequencing data were meticu-
lously curated from a comprehensive dataset within 
the GEO database, encompassing seven individual 
series that feature lung tissue from both IPF patients 
and matched controls: GSE24206, GSE32537, 
GSE53845, GSE68239, GSE92592, GSE150910, and 
GSE110147. Furthermore, our study expanded to 
include datasets endowed with prognostic insights, 
namely GSE70866, GSE28221, and GSE93606, with 
sample origins traced to bronchoalveolar lavage fluid 
and blood. Survival outcomes, including overall sur-
vival (OS), were gathered from the GSE70866 data-
sets. Data concerning transplant-free survival (TFS) 
were collected from the GSE28221 datasets, and 
progression-free survival (PFS) metrics were retrieved 
from the GSE93606 datasets. The basic information of 
the included datasets is shown in Table S1. A rigor-
ous normalization process was applied to the data-
sets prior to their amalgamation to effectively 
eliminate discrepancies attributable to batch effects. 
This meticulous approach is visually substantiated in 
Figure 1A and B, where pre-merger data dispersion 
underscored the presence of significant batch-related 
variance, which was conspicuously resolved 
post-integration. The ensuing differential expression 
analysis culminated in the identification of 320 dis-
tinct DEGs (Figure 1C and D).

WGCNA and identification of hub genes

Prior to conducting WGCNA on the merged dataset, 
we initially confirmed the absence of outliers at a den-
drogram height of 90 (Figure 2A). Subsequently, we 
determined a soft-thresholding power (β) of 3 for the 
WGCNA (Figure 2B), identifying a total of eight mod-
ules (Figure 2C). Notably, the blue module exhibited a 
significant positive correlation with IPF (correlation 
coefficient = 0.72, p-value = 2e-87) (Figure 2D). 
Furthermore, within this module, a significant correla-
tion was observed between GS and MM (correlation 
coefficient = 0.87, p-value < 1e-200) (Figure 2E). 
Subsequently, we intersected genes from the blue 
module identified through WGCNA, DEGs, and genes 
associated with ERS sourced from the GeneCards data-
base. This comprehensive approach yielded 85 hub 
genes (Figure 2F). The gene expression patterns and 
chromosomal locations of these hub genes between 
IPF and control groups were visualized and contrasted 
in Figure 2G and H. This analysis revealed that these 

https://doi.org/10.1080/07853890.2024.2409352
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genes are distributed across all chromosomes except 
for Y, 21, and 22.

Functional enrichment analysis

Our study’s functional enrichment analysis on 85 hub 
genes (Table S2) uncovered significant links to a range 
of diseases per DO, including cardiovascular disorders, 
pulmonary conditions, and systemic diseases like dia-
betes (Figure 3A). GO findings show these genes are 
involved in crucial BP including cytosolic calcium ion 

concentration regulation and cellular proliferation, 
affecting CC like neuronal cell bodies and extracellular 
matrix, MF analysis highlighted their role in G 
protein-coupled amine receptor activity (Figure 3B). 
KEGG pathway analysis connected these genes to 
essential signaling and metabolic pathways, underscor-
ing their influence across various biological functions 
and disease mechanisms (Figure 3C). The PPI network, 
depicted in Figure 3D, identifies five genes with the 
highest degree of connectivity, indicating key roles 
within the network. These genes—titin (TTN), integrin 

Figure 1. D ata preprocessing and identification of differentially expressed genes. The box plot and principal component analysis 
elucidate the overall gene expression profiles (A) before and (B) after the normalization process. These results substantiate the 
effective removal of batch effects. Volcano plot (C) and heatmap (D) display the differentially expressed genes, highlighting sig-
nificant variations in gene expression.

https://doi.org/10.1080/07853890.2024.2409352
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subunit alpha 2b (ITGA2B), CD38 molecule (CD38), 

brain-derived neurotrophic factor (BDNF), and secreted 

phosphoprotein 1 (SPP1)—all exhibit degree values 

exceeding five, with SPP1 registering as the most 

interconnected gene.

Immune infiltration analysis

Utilizing CIBERSORT to analyze the merged dataset, we 
obtained the proportional representation of 22 immune 
cell types in both IPF patients and the control group 
(Figure 3E). The analysis revealed a higher percentage 

Figure 2.  WGCNA results. (A) Dendrogram of sample clustering from the combined dataset alongside corresponding clinical infor-
mation (indicating IPF or control group). (B) Determination of the soft-thresholding power in WGCNA, with the left side presenting 
scale-free index analysis for various soft-thresholding powers (β), and the right side depicting the analysis of mean connectivity 
for various soft-thresholding powers. (C) Dendrogram of genes based on clustering using the topological overlap matrix measure, 
with the color band displaying results obtained from automatic single-block analysis. (D) Heatmap illustrating the correlation 
between module eigengenes and clinical traits (IPF or healthy control group), with the turquoise module selected for further 
analysis. (E) Scatter plot of gene significance versus module membership in the blue module. (F) Venn diagram showing the 
intersection of genes among the three analyses. (G) Chromosomal locations of candidate hub genes. (H) Manhattan plot of can-
didate genes.
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of naïve B cells, memory B cells, plasma cells, activated 
CD4 memory T cells, follicular helper T cells, regulatory 
T cells (Tregs), gamma delta T cells, M0 macrophages, 
M2 macrophages, resting dendritic cells, and resting 
mast cells in the lung tissues of IPF patients compared 
to the control group. Conversely, naïve CD4 T cells, 
resting CD4 memory T cells, resting NK cells, activated 
NK cells, monocytes, activated dendritic cells, eosino-
phils, and neutrophils were found in higher quantities 
in the control group. No statistical differences were 
observed in CD8 T cells, M1 macrophages, and acti-
vated mast cells between the two groups.

Construction of the diagnostic model

In this study, a diagnostic model was constructed uti-
lizing five datasets, each with a sample size exceeding 
30. The variable combinations for each algorithm are 
listed in Table S3. The GSE150910 dataset served as 
the training set, while GSE32537, GSE53845, GSE110147, 
and GSE92592 were used as the test sets. The models 
constructed using seven different algorithms achieved 
an average AUC of 0.989. However, since the 
Lasso + NaiveBayes algorithm required the fewest 

variables, with only 19, it was selected for constructing 
the diagnostic model. This methodology resulted in a 
perfect AUC of 0.989 for the training set and an 
impressive average accuracy of 0.989 for the five sets 
(Figure 4A). Moreover, the AUC for both the training 
and test datasets consistently surpassed the 0.95 
threshold, reflecting the robustness of the model 
(Figure 4B–F). A comprehensive analysis was further 
facilitated by the confusion matrix, which delineated 
the distribution of true positives, false positives, true 
negatives, and false negatives across the training and 
test cohorts (Figure 4B–F), thereby providing an 
in-depth evaluation of the predictive capabilities of 
the model.

Construction of the prognostic model

The GSE70866 dataset was utilized as the training set, 
while GSE28221 and GSE93606 served as test sets, to 
construct prognostic models for IPF using various indi-
vidual and combined machine learning algorithms. 
The variable combinations for each algorithm are listed 
in Table S4. It was found that RSF algorithms yielded a 
notably high average c-index of over 0.706 (Figure 5A). 

Figure 3. F unctional enrichment and immune infiltration analysis. (A) Disease ontology analysis of hub genes. (B) Gene ontology 
analysis of hub genes, covering biological processes, cellular components, and molecular functions. (C) Kyoto Encyclopedia of 
Genes and Genomes pathway analysis for core genes, identifying significant pathways involved. (D) The Protein-Protein Interaction 
network displaying the top five genes with the highest degree of connectivity and their interactions with other genes. (E) 
Differential analysis of immune cell infiltration between IPF and control group lung tissues, illustrating variations in immune cell 
presence.

https://doi.org/10.1080/07853890.2024.2409352
https://doi.org/10.1080/07853890.2024.2409352
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Figure 4. D eveloped and validated through a machine learning-integrated approach for constructing diagnostic models. (A) a 
comprehensive suite of 113 diagnostic models was meticulously evaluated for accuracy across all training and test datasets. 
Receiver operating characteristic curves and confusion matrices for the models were generated for (B) GSE150910, (C) GSE32537, 
(D) GSE53845, (E) GSE92592, and (F) GSE110147 datasets, illustrating the performance and predictive validity of each diagnostic 
model in distinguishing IPF cases from controls.



10 Y. LIAO ET AL.

Therefore, the RSF algorithm was selected to construct 
the prognostic model and compute endoplasmic retic-
ulum stress score (ERSS) for each sample. Utilizing 

X-tile software to stratify IPF patients from all three 
datasets into high and low-risk groups (Figure 5B–D), 
we observed that patients in the high-risk group had 

Figure 5. D eveloped and validated through a machine learning-based integrative approach for constructing prognostic models. 
(A) a comprehensive analysis involving 97 prognostic models assessed the C-index of each model across all training and test 
datasets. Kaplan-Meier curves and time-dependent ROC curves were generated for datasets (B) GSE70866, (C) GSE28221, and (D) 
GSE93606. (E) Comparison of prognostic models and 15 published signatures.
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significantly worse prognoses than those in the low-risk 
group in three datasets. The risk index demonstrated a 
potent ability to predict prognoses, showing particular 
strength in the GSE70866 dataset for forecasting 1-, 2-, 
and 3-year outcomes. However, its predictive power 
was somewhat limited in the test sets GSE28221 and 
GSE93606 (Figure 5B–D).

To further compare the predictive ability of our 
model with other models, we reviewed 15 studies [25–
40] related to IPF that provided variables and coeffi-
cients for prognostic models (Table S5). Based on the 
content of these 15 studies, we calculated the respec-
tive risk indices. As shown in Figure 5E, for the 
GSE70866 dataset, the ERSS computed by our model 
demonstrated the best predictive ability, with a signifi-
cantly higher C-index than those of other studies. For 
the GSE28221 dataset, our model’s C-index ranked 
fourth, and for the GSE93606 dataset, our model’s 
C-index ranked fifth. Overall, the model developed in 
this study exhibits strong prognostic capability.

Single cell sequencing analysis

In the single-cell sequencing analysis, rigorous quality 
control was initially conducted to ensure that each cell 
had a minimum of 200 detectable features (Figure 
S1A). This threshold was established to confirm cell 
viability and exclude any dead or dying cells, as well 
as empty droplets, while also ensuring that the pro-
portion of mitochondrial and ribosomal genes 
remained at acceptably low levels. The original t-SNE 
visualization is displayed in Figure S1B. Subsequently, 
we applied the Harmony integration method (Figure 
S1C) to mitigate batch effects and variability stemming 
from different experimental conditions and datasets. 
The post-harmonization results for the combined sam-
ples are presented in Figure 6A, and those specific to 
the IPF and control groups are depicted in Figure 6B. 
The single-cell data’s cluster dendrogram (Figure S1D) 
and the principal component (PC) stability analysis 
(Figure S1E) conducted via the Harmony algorithm 
indicated that the clustering results were particularly 
stable at PC 17, revealing 28 distinct clusters (Figure 
6C). The 28 clusters were categorized into eight cell 
types: epithelial cells, macrophages, endothelial cells, B 
cells, monocytes, tissue stem cells, NK cells, and T cells 
(Figure 6D). Heat map showing the top 5 marker gene 
across the six cell types (Figure 6E).

Subsequent to utilizing the PPI network for initial 
gene prioritization, we analyzed the top five genes 
with the highest degree values. We discovered that 
SPP1 and CD38 were upregulated in the lung tissues 
of patients with IPF, while TTN and BDNF were 

downregulated (Figure 6F). However, ITGA2B did not 
exhibit significant differential expression between the 
IPF and control lung tissues. Feature plots elucidated 
the expression patterns of these five genes across 
eight identified cell types (Figure 6G). Notably, SPP1 
was significantly overexpressed in M2 macrophages 
and exhibited substantial statistical differences in 
expression compared to all other cell types except B 
cells (Figure 6H). The expression differences among the 
remaining four cell types for these genes were not 
particularly pronounced. Additionally, by employing 
the median expression level of SPP1 as a cutoff, we 
categorized cells into high and low expression groups 
(Figure S1F). It was evident that M2 macrophages with 
high SPP1 expression were more prevalent in patients 
with IPF than in the control group.

Results of cell experiments

Previous research identified SPP1 as a potential bio-
marker for IPF patients [41]. This study aims to clarify 
the relationship between SPP1 and M2 macrophages 
through various biological experiments. Using data 
from the GSE32537 dataset, the relationship between 
SPP1 and clinical characteristics in IPF patients was 
analyzed. Higher SPP1 levels were found in patients 
under 60 (Figure S2A) and in males (Figure S2B), but 
smoking status (Figure S2C) was not associated with 
SPP1 expression. Additionally, higher SPP1 expression 
correlated with lower FVC % pred (Figure S2D), but 
not with DLCO % pred (Figure S2E). The impact of 
SPP1 on M2 macrophages was examined using a con-
centration gradient of 0, 0.5 ng/ml, 1 ng/ml, and 2 ng/
ml. Results from the CCK8 assay indicated that the 
addition of SPP1 notably slowed the cell viability of 
M2 macrophages, although there was no significant 
difference in cell viability across the SPP1 concentra-
tion gradient (Figure 7A). In contrast, the Transwell 
assay revealed a decrease in M2 macrophage migra-
tion rate with increasing concentrations of SPP1 (Figure 
7B). The EDU assay suggested a significant reduction 
in the proliferation rate of M2 macrophages upon 
SPP1 addition (Figure 7C). The Apoptosis Detection 
assay showed that the apoptosis rate of M2 macro-
phages significantly increased with SPP1 concentra-
tions of 0.5 ng/ml and 1 ng/ml; however, a decline was 
observed at a concentration of 2 ng/ml (Figure 7D).

Discuss

Multiple bioinformatics techniques, including differen-
tial analysis and WGCNA, were utilized to analyze data 
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Figure 6. S ingle-cell sequencing results. (A) t-distributed Stochastic Neighbor Embedding (t-SNE) visualization of the 12 samples. 
(B) t-SNE plots comparing normal and IPF samples. (C) t-SNE representation of the 28 cell clusters. (D) Cell types were delineated 
based on marker gene profiles. (E) Heat map displaying the top 5 marker genes across 8 cell types. (F) Comparative analysis of 5 
hub genes between IPF and control groups. (G) Feature plots illustrating the expression of the 5 hub genes across 8 cell types. 
(H) Differential comparison of the 5 hub genes among the 8 cell types, highlighting the variance in gene expression patterns.



Annals of Medicine 13

from various GEO datasets. By integrating ERS-related 
target genes from GeneCards, candidate genes associ-
ated with IPF were identified. Over 100 combined 
machine learning algorithms were employed to con-
struct gene signatures with strong diagnostic capabili-
ties and prognostic models, which were validated 
using both training and test sets. Single-cell sequenc-
ing analysis revealed the gene architecture and expres-
sion patterns at the cellular level, highlighting cellular 
heterogeneity. A higher proportion of M2 macrophages 
expressing SPP1 was observed in the lung tissue of IPF 
patients compared to controls. To further elucidate the 
relationship between SPP1 and M2 macrophages, a 
series of cellular experiments were conducted. The 
findings indicate that SPP1 significantly impacts the 

proliferation, migration, invasion, and overall viability 
of M2 macrophages.

While IPF can be diagnosed through distinctive 
imaging findings and clinical presentations, a subset of 
patients still requires histopathological biopsy for 
definitive confirmation. Consequently, there is an 
ongoing quest for diagnostic biomarkers for IPF. For 
instance, a previous investigation revealed that SPP1 
alone could distinguish between IPF patients and 
healthy individuals, as well as differentiate IPF patients 
from those with lung cancer [41]. However, the diag-
nostic performance of SPP1 alone was relatively low. In 
a recent piece of research, scholars utilized RF to cre-
ate a three-gene signature associated with circadian 
rhythms, employing GSE150910 as the training 

Figure 7. C ellular experiment results. (A) Growth curves were monitored using the cell Counting Kit-8 (CCK-8) assay under various 
SPP1 concentration conditions. (B) Transwell experiments indicated the migratory capacity of cells at different SPP1 concentrations. 
(C) Results of 5-Ethynyl-2’-deoxyuridine (EDU) incorporation under various SPP1 concentrations. (D) Apoptotic cells were identified 
using the Annexin V-APC/PI Double Staining Kit across different SPP1 concentration conditions.
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dataset. However, the AUC was only 0.905, with 
another validation set yielding an AUC of merely 0.767 
[42]. Another study engaged GSE32537 as the training 
dataset, formulating a gene signature through LASSO 
regression and SVM, achieving an AUC of 1, but with 
a relatively limited overall sample size [43]. While lever-
aging sequencing data alongside machine-learning 
algorithms presents substantial benefits in diagnosing 
IPF, notable challenges persist. These include issues 
related to data quality, model interpretation, and their 
translation into clinical practice. Thus, forthcoming 
studies should concentrate on enhancing both the 
interpretability and clinical applicability of these models.

The prognostic model demonstrated significant 
advantages compared to 15 previously established 
models [25–40]. The training set used bronchoalveolar 
lavage fluid (BALF) samples, while the validation sets 
used blood samples, presenting both limitations and 
benefits. A key limitation is the variability in biomarker 
expression between BALF and blood, which may affect 
the model’s generalizability. BALF samples, obtained 
directly from the lungs, may more accurately reflect 
local pathological processes, explaining the model’s 
superior performance. However, blood samples are 
easier to obtain and less invasive, making them more 
practical for routine clinical use. Notably, our model, 
trained on BALF, performed well in blood-based vali-
dation sets, indicating that certain biomarkers are con-
sistently expressed in both sample types. While BALF 
provides a more precise medium for detecting 
lung-specific changes, blood-based biomarkers offer 
valuable prognostic information. Additionally, the pre-
vious models based on Cox regression are simpler to 
apply in clinical settings. In contrast, the RSF algo-
rithm, despite its power, has poorer interpretability 
and requires more computational resources, which can 
hinder its clinical adoption. Therefore, improving the 
interpretability and usability of the RSF algorithm is 
essential for its integration into clinical practice.

Elevated SPP1 concentrations across various fibrotic 
organs indicate its potential as a biomarker for fibrosis. 
Studies consistently show that SPP1 levels rise in 
serum and bodily fluids during the early stages of 
fibrogenesis, correlating with the progression of organ 
fibrosis [44–48]. This highlights SPP1’s utility as an 
early, non-invasive indicator for diagnosing and assess-
ing fibrosis. However, relying on a single biomarker to 
differentiate and predict fibrosis prognosis is impracti-
cal due to patient-specific and disease-specific factors. 
Therefore, a panel of biomarkers is more effective in 
improving diagnostic and prognostic accuracy. 
Integrating SPP1 into such panels could provide cru-
cial insights. For example, a study showed that a 

combination of plasma MMP-7, Surfactant Protein D, 
and SPP1 effectively distinguished IPF from other 
non-IPF interstitial lung diseases [49]. Additionally, a 
progression index using four biomarkers (OPN, MMP-7, 
Intercellular Adhesion Molecule-1, and Periostin) out-
performed the conventional GAP score in predicting 
disease progression over 12 months [33]. Another study 
demonstrated that plasma biomarkers, including SPP1, 
could predict TFS in IPF patients undergoing antifi-
brotic therapy, showing higher thresholds compared 
to those not receiving such treatments [50]. Moreover, 
previous research found that SPP1 promotes lung 
fibrosis by regulating the PI3K/AKT signaling pathway, 
leading fibroblasts to secrete more fibrotic proteins, 
and knocking down SPP1 can reduce the severity of 
lung fibrosis in mice [31]. Thus, SPP1 is a promising 
biomarker for fibrotic diseases, aiding in early identifi-
cation, severity assessment, progression monitoring, 
and treatment evaluation.

Recent studies have identified macrophages as 
immune cells with diverse origins, deriving from both 
blood monocytes and embryonic sources, and possess-
ing self-renewal capabilities [51, 52]. In the lungs, mac-
rophages are categorized into Alveolar Macrophages 
(AMs) and Interstitial Macrophages (IMs) [53]. AMs are 
key in immune responses, eliminating pathogens and 
recruiting immune cells [54]. while IMs maintain 
immune homeostasis and promote fibroblast prolifera-
tion, affecting tissue fibrosis and inflammation [55]. 
Both AMs and IMs can differentiate into M1 or M2 
macrophages, with M1 involved in inflammatory dam-
age and M2 facilitating fibrotic remodeling [56]. M2 
macrophages, known for their role in tissue repair and 
fibrosis, secrete anti-inflammatory cytokines like IL-10 
and TGF-β, and express markers such as arginase-1 
(Arg-1) [57]. Modulating the arginase-ornithine path-
way can reduce fibrosis [58]. TGF-β is crucial in fibrosis, 
promoting fibroblast activity and collagen deposition, 
and creating a cycle that exacerbates fibrosis [59]. 
However, some studies show different results; for 
instance, bosutinib increased M2 macrophages but 
resisted fibrosis [60]. and human mesenchymal stem 
cell treatment increased M2 macrophages yet sup-
pressed fibrosis progression in neonatal mice [61].

Previous research has shown that SPP1 promotes 
fibrosis in fibroblasts. Current single-cell sequencing 
data reveals a significant presence of M2 macrophages 
with high SPP1 expression in the lung tissue of IPF 
patients. Studies have also found high SPP1 expression 
in macrophages in the lower lobes of IPF lungs [62] and 
highlighted the role of CXCL4-driven SPP1+ macro-
phages in fibroblast activation and fibrosis progression 
[63]. These findings led us to hypothesize that SPP1 
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might promote M2 macrophage proliferation and migra-
tion while inhibiting apoptosis. However, our experi-
ments indicated that SPP1 suppressed M2 macrophage 
proliferation and migration and promoted apoptosis 
within a certain concentration range. This unexpected 
result could be due to a negative feedback mechanism 
in the body or the differences between in vitro and in 
vivo environments, including receptor expression, cell 
activation states, and other signaling molecules. Further 
research is necessary to elucidate these mechanisms 
and better understand SPP1’s role in M2 macrophage 
function and pulmonary fibrosis.

Our study has its limitations. Firstly, the data used for 
constructing both diagnostic and prognostic models 
were sourced from public databases, without further 
validation using our own sequencing data. Additionally, 
the prognostic model’s predictive performance in the 
test set was somewhat lacking. Secondly, the data uti-
lized in our analysis originated primarily from Western 
countries, lacking representation from regions such as 
Asia and Africa, which might limit the global applicabil-
ity of our findings. Lastly, our study did not include ani-
mal experiments, and the cellular experiments 
conducted were relatively simplistic, not providing fur-
ther evidence on the specific pathways through which 
SPP1 influences pulmonary fibrosis progression via M2 
macrophages. Therefore, future studies will require more 
prospective clinical trials and detailed in vivo and in 
vitro experiments to substantiate our conclusions.

Conclusion

In conclusion, by leveraging sequencing data from 
comprehensive datasets, this study meticulously 
crafted and thoroughly validated custom diagnostic 
and prognostic models for IPF using machine learning 
algorithms. The research identified SPP1 as a potential 
key gene in IPF, with significant expression in M2 mac-
rophages within the lung tissue of IPF patients. In vitro 
experiments revealed that SPP1 inhibits the prolifera-
tion and migration of M2 macrophages and promotes 
apoptosis. Further large-scale, well-designed experi-
ments are needed to substantiate these findings.
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