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Abstract
Motivation: Understanding biological processes relies heavily on curated knowledge of physical interactions between proteins. Yet, a notable 
gap remains between the information stored in databases of curated knowledge and the plethora of interactions documented in the 
scientific literature.
Results: To bridge this gap, we introduce ComplexTome, a manually annotated corpus designed to facilitate the development of text-mining 
methods for the extraction of complex formation relationships among biomedical entities targeting the downstream semantics of the physical 
interaction subnetwork of the STRING database. This corpus comprises 1287 documents with �3500 relationships. We train a novel relation 
extraction model on this corpus and find that it can highly reliably identify physical protein interactions (F1-score¼82.8%). We additionally enhance 
the model’s capabilities through unsupervised trigger word detection and apply it to extract relations and trigger words for these relations from all 
open publications in the domain literature. This information has been fully integrated into the latest version of the STRING database.
Availability and implementation: We provide the corpus, code, and all results produced by the large-scale runs of our systems biomedical on 
literature via Zenodo https://doi.org/10.5281/zenodo.8139716, Github https://github.com/farmeh/ComplexTome_extraction, and the latest 
version of STRING database https://string-db.org/.

1 Introduction
The study of physical protein interactions forms a basis for 
understanding biological processes. These interactions are 
captured from experimental data (Licata et al. 2012, Orchard 
et al. 2014, Oughtred et al. 2021) or scientific articles 
(Meldal et al. 2019, Giurgiu et al. 2019, Gillespie et al. 2022) 
and are provided as periodically curated databases.

These curation efforts have been complemented by co- 
occurrence-based text mining in protein interaction data
bases, such as STRING (Szklarczyk et al. 2023) and 
HumanNet (Kim et al. 2021), to obtain more comprehensive 
networks. While this approach is powerful for linking mole
cules that function together, the fact that proteins are men
tioned together in text is not enough to infer that they also 
physically interact. Thus, earlier versions of STRING 
(Franceschini et al. 2012) employed a rule-based system to 
help with the extraction of such interactions.

In the field of biomedical natural language processing 
(BioNLP), the past two decades have witnessed significant 
progress, driven by the development of more sophisticated 

and accurate deep learning-based methodologies (Milo�sevi�c 
and Thielemann 2023) and manually annotated corpora. 
Building deep learning-based NLP and text mining systems 
typically involves a two-step process: self-supervised pretrain
ing of a model on an unannotated corpus with a language 
modeling objective, and fine-tuning the pretrained model on 
manually annotated data for a specific downstream task (e.g. 
relation extraction). Models based on the transformer archi
tecture (Vaswani et al. 2017) such as BERT (Devlin et al. 
2019) have been particularly effective, combining efficient 
training of large-scale models using GPU acceleration with 
state-of-the-art performance across a broad range of tasks. 
Recently, large language models (LLMs) trained for text gen
eration [e.g. GPT (OpenAI et al. 2024) or LLaMA (Touvron 
et al. 2023) models] have been explored for NLP tasks be
yond question answering, such as named entity recognition 
(NER; Wang et al. 2023) and relation extraction (RE; Wan 
et al. 2023). In this approach, the focus is on developing zero/ 
few-shot prompting techniques to build text mining and NLP 
systems, requiring at most a few training examples. However, 
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when it comes to the biomedical domain, recent extensive 
benchmarks show that this approach performs on average 
30% worse than BERT-based models (Jimenez Gutierrez 
et al. 2022, Chen et al. 2023, Jahan et al. 2023).

The effectiveness of the original BERT and other biomedical 
domain-specific BERT models (Lee et al. 2019, Lewis et al. 
2020) depends on the availability of manually annotated cor
pora for fine-tuning. Generating these corpora requires expert 
knowledge, making it a costly endeavor. Even when these cor
pora are available, their seamless integration in downstream 
tasks is far from straightforward. Existing manually annotated 
corpora of physical protein interactions either cannot be 
grounded in text (Krallinger et al. 2008), the manually anno
tated interactions are limited to sentence-level annotations, or 
they focus solely on human (Bunescu et al. 2005, N�edellec 
2005, Fundel et al. 2006; Pyysalo et al. 2007, Kim et al. 2009, 
Pyysalo et al. 2011). Moreover, the different definitions of com
plex formation among these corpora (Pyysalo et al. 2008) pose 
a substantial challenge in interoperability. For example, some 
corpora (Pyysalo et al. 2007, Kim et al. 2008, 2009, Pyysalo 
et al. 2011) include binding of proteins to DNA elements in 
their definition whereas some others do not (Fundel et al. 2006, 
Krallinger et al. 2008, Bunescu et al. 2005). In addition, these 
corpora differ in their definitions and annotations of named en
tities (Pyysalo et al. 2008). Considering all the limitations above, 
leveraging existing data for transfer learning for RE of protein– 
protein interactions quickly becomes a nonviable option given 
either the varied definitions for both relations and named enti
ties, the limited scope to one organism, the lack of grounding in 
text, or the fact that most available corpora contain only 
sentence-level annotations.

In this study, our primary objective was to develop a system 
to support the relation extraction of physical protein–protein 
interactions from the literature for the STRING database. For 
this purpose, we present ComplexTome, a new corpus anno
tated with complex formation relationships between biomedical 
entities. In this corpus, we overcome previous limitations, by 
targeting specific downstream semantics, and providing 
document-level annotations, grounded in text and not limited 
to a single organism. The annotated relations in ComplexTome 
include cases where the associated constituents are proteins, 
protein complexes, protein families, or chemicals, but not DNA 
elements. We have also built a relation extraction pipeline, 
trained it on ComplexTome to extract such relationships from 
the openly accessible biomedical literature, and created a trigger 
word detection system to aid in interpreting the results. We pro
vide the corpus, code, and all results produced by the large-scale 
runs of our system via Zenodo https://doi.org/10.5281/zenodo. 
8139716, Github https://github.com/farmeh/ComplexTome_ex 
traction, and the latest version of STRING https://string-db. 
org/.

2 Materials and methods
2.1 The ComplexTome corpus
2.1.1 Document selection for corpus annotation
The selection of documents for ComplexTome involved a 
three-step approach of selecting documents from

1) Existing corpora: Initially, we explored established cor
pora, particularly the BioNLP ST 2009 training and devel
opment datasets (Kim et al. 2009). From these datasets, 
we identified and selected a total of 135 abstracts featuring 

instances of complex formation events, from which we 
could potentially extract documents with the desired rela
tionship type present. As the definition and annotation of 
binding events for the BioNLP ST 2009 corpus were not 
compatible with the relationship annotation we were aim
ing for in ComplexTome, all existing annotations were dis
carded and the documents selected were reannotated from 
scratch. A comparison of binarized binding events from 
this corpus with our final annotations in ComplexTome 
showed that these two sets had less than 50% overlap, 
which supports our decision to reannotate everything from 
scratch for our corpus. Details on this comparison are pro
vided in Supplementary Material Section S1. 

2) Resources enriched in positive relationships: To broaden 
the corpus, and considering the limitations of other cor
pora discussed in Introduction section, we decided to ex
pand to other sources of documents for annotation, 
where relations of interest were expected to be present. 
Specifically, we curated 400 abstracts extracted from a 
collection of 66 757 publications used as evidence to 
support physical or genetic interaction entries in the 
BioGRID (Oughtred et al. 2021), IntAct (Orchard et al. 
2014), and MINT (Licata et al. 2012) interaction data
bases. Additionally, 400 paragraphs extracted from 
12 577 articles available as PubMed Central Open 
Access (PMC-OA) full-text articles were selected from 
the same databases. Documents used to annotate more 
than 20 interactions in the databases were removed 
from the selection pool as these interactions are usually 
extracted from supplementary tables and not the actual 
text of scientific articles. 

3) Resources enriched in negative relationships: We also 
selected 300 abstracts extracted from 21 941 papers used 
for pathway annotation in the Reactome pathway knowl
edgebase (Gillespie et al. 2022) and 50 abstracts extracted 
from 15 319 papers in BioGRID filtered to include only 
experimental associations for genetic interactions. 

During steps 2 and 3, we used a dictionary-based named 
entity recognition (NER) method (Jensen 2016), to detect 
protein entities within the large document pools and re
stricted the selection to abstracts containing a moderate num
ber of detected protein entities (between 2 and 40). We 
selected documents with at least two entities as this is a pre
requisite for relation extraction, while we put a threshold to 
40 entities as our initial observations, showed that documents 
with more entities than that are usually documents with long 
lists of named entities, with no relations of interest present 
therein. To prevent over-representation of commonly men
tioned protein entities and entities from specific species, 
abstracts featuring highly mentioned proteins were limited to 
comprise at most 2% of the selected documents. All docu
ments in ComplexTome were annotated using the BRAT 
rapid annotation tool (Stenetorp et al. 2012).

2.1.2 Named entity annotation
We annotated four named entity (NE) types, namely Gene 
or Gene Product (Protein hereafter), Chemical which 
encompasses standalone chemicals that are not part of larger 
chemical/protein entities, Complex for entities describing 
stable assemblies of two or more macromolecules, in which 
at least one component is a protein, and Protein_Family, 
for entities which represent an evolutionarily conserved 
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group of gene/proteins or a group of entities with the same 
function. To assist the manual annotation process of NEs, we 
used automated NER (Jensen 2016) for the detection of 
Protein entities in our corpus.

In the scientific literature, it is common to encounter alter
native names referring to identical entities. We have systemat
ically recorded these equivalent names in ComplexTome. 
This practice is crucial for accurate evaluation, as it allows 
relationships stemming from either entity to be recognized as 
valid (Kim et al. 2009). To allow for easy filtering of the NEs, 
we used five entity attributes to mark NEs in our corpus: 
“Mutant”, “Fusion”, “Non-coding”, “Small protein post- 
translation modification”, and “Blocklisted” (for a descrip
tion of these attributes, refer to our annotation documenta
tion https://katnastou.github.io/annodoc-physical-protein- 
interaction-corpus/).

2.1.3 Relationship annotation
In ComplexTome, we identified explicit mentions of physical 
protein interactions and annotated these as undirected binary 
relationships with the type Complex_formation. We 
added annotations for any statement implying the existence 
of a complex, but not statements explicitly denying the for
mation of a complex. A relationship annotation example is 
shown in Fig. 1.

The annotations were performed by two domain experts, 
ensuring accurate relationship identification. Moreover, to 
establish consistent annotation guidelines and maintain anno
tation quality, we conducted an interannotator agreement 
(IAA) analysis by independently annotating a set of abstracts 
during the two initial steps of document selection. The pro
cess encompassed four rounds of independent annotations 
with at least 20 documents selected and annotated per round. 
We calculated Cohen’s kappa (Cohen 1960) after each round 
of IAA to assess annotation consistency and corpus quality. 
For comprehensive details on the annotation rules followed 
to produce the corpus and on the annotation process itself, 
we refer readers to the annotation documentation provided 
to the annotators (see Section 2.1.2). This documentation 
served as a reference to ensure a shared understanding of the 
rules among annotators and contributed to maintaining the 
overall quality of annotations.

2.2 Relation extraction system
We have developed a relation extraction system that is capa
ble of extracting Complex_formation relations between 
Protein named entities, as stated in biomedical texts. We 
cast the task of relation extraction as binary classification, 
predicting whether a Complex_formation relation has 
been stated for the two candidate NEs in the given input text 
(i.e. a positive label) or not (i.e. a negative label).

The system is based on deep neural networks with an ar
chitecture consisting of a pretrained transformer encoder, fol
lowed by a decision layer with a softmax activation function. 
The system can utilize existing pretrained language models 
that are currently available in the Hugging Face repository 

(https://huggingface.co/), allowing us to benchmark different 
models and use the best available model for the task. 
Training, validation, and prediction files can be provided to 
the system in BRAT standoff format (as well as a custom 
JSON format). The system supports two input representation 
methods: marking and masking the NEs (Mehryary et al. 
2020) and it can be trained with a wide variety of hyper- 
parameters including maximum sequence length (MSL), 
learning rate, mini-batch size, number of training epochs, and 
random seed. During the training on the ComplexTome 
training data, pretrained weights of the encoder are fine- 
tuned, while randomly initialized weights (such as the 
weights of the decision layer) are learned from scratch. After 
each training epoch, evaluation metrics are calculated on the 
development set and used for hyper-parameter optimization. 
We do not use any early stopping rule, instead, we train a net
work for the specified number of epochs (given as a hyper- 
parameter) but use model weights of the epoch which has 
yielded the highest F1-score. For implementation, we use 
Python programming language with TensorFlow and 
transformers libraries. Supplementary Material Section 
S3.1 provides more information about the relation extraction 
system architecture and the transformer models used in this 
work and why they were chosen.

2.2.1 Preprocessing, input representation, and 
example generation
As biomedical texts typically contain more than one candi
date NE pair and can be very long, not fitting within the max
imum input tokens of transformer models, we process each 
input document as follows.

1) Marking or masking the entities: To inform the classifier 
which two particular NEs constitute a pair at a time for 
label prediction, we transform the text by encoding the 
entities in the input document, either using a marking 
approach or a masking approach, utilizing the language 
model’s “unused” tokens for this aim. Additionally, we 
prepend a [CLS] token, representing the snippet start, 
and append a [SEP] token to the tokens, representing 
the end of snippet, before feeding them to neural net
work models. 

2) Tokenization, distance calculation, and example genera
tion: For each candidate NE pair, after transforming the 
text (marking/masking), we tokenize the text, and if the 
two entities can fit into a window with a size less than or 
equal to the specified MSL, we generate a machine learn
ing example for the pair. The pair can have a positive, or 
a negative label (for training) or can be unlabeled (dur
ing prediction). 

Our preprocessing approach provides two benefits: Since 
we are not performing any sentence boundary detection, the 
system is able to train with and predict cross-sentence rela
tions. In addition, there will be no problem in dealing with 
long texts, since we rely on a window (sequence of sub- 
tokens) that can always be fed to the transformer encoder. 
Supplementary Material Section S2 provides more details and 
a few examples for all steps described here.

2.2.2 Baseline system
For comparison, we also developed a baseline system with 
the same architecture as the main relation extraction 

Figure 1. Illustration of the relationship representation in ComplexTome. 
A Complex_formation relationship between a Protein (“MDC1”) and 
a Complex (“anaphase-promoting complex/cyclosome”) participant has 
been identified by the annotators in the example above.
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system, except using the original BERT-base-cased 
transformer-encoder (Devlin et al. 2019). We use the same 
training and evaluation method and experimental setup for 
the baseline system and the main relation extraction system.

2.2.3 Experimental setup
We performed a document-based split of ComplexTome to 
generate separate training, development, and test sets, which 
consisted of 772, 258, and 257 documents, respectively. We 
train the system on the training set and optimize it on the 
development set. We use a grid search to try different trans
former models and find the optimal values of hyper- 
parameters. To minimize the effect of initial random weights 
on evaluation scores (Mehryary et al. 2016), we repeat each 
experiment four times and compare different experiments 
based on the average and standard deviation of the F1-scores. 
Each experiment consists of training a relation extraction sys
tem with different initial random weights but with the same 
transformer encoder weights and the exact set of hyper- 
parameters on the training set and evaluating the model on 
the development set. The held-out test set was only used once 
for the final evaluation of our best system. Supplementary 
Material Section S3.2 provides a list of tested models and hy
per-parameters.

Even though our corpus contains four NE types (Protein, 
Chemical, Complex, and Protein_Family), and 
Complex_formation relationships can occur between any 
two NEs, for the real-world application for which the system 
was intended for, i.e. extracting Protein-Protein interac
tions for STRING database v12, the system had to deal with 
texts including only Protein entities, which are not 
“blocklisted”. Hence, to have a realistic optimization approach 
for large-scale prediction, we filtered out all non-Protein enti
ties and Protein entities with the “blocklisted” attribute (and 
their relations) from the development and test sets. In contrast, 
in order to assess whether we could leverage the full potential of 
relationship annotation in our corpus, during training we per
formed several experiments with different training schemes. 
More details on the experimental setup are provided in 
Supplementary Material Section S4.

2.3 Trigger detection system
While detecting Complex_formation relations between 
biomedical entities in the scientific literature is a task of para
mount importance to the scientific community, it is even 
more beneficial if, for each Complex_formation relation 
extracted from a text snippet, there was a system that could 
also highlight the most important word or phrase in the text 
snippet that explicitly or implicitly denotes the relation. In 
the BioNLP community, such words or phrases are called 
“trigger words” (hereafter “triggers”) and were popularized 
as part of the biomedical event representation of the BioNLP 
Shared Task 2009 on Event Extraction (Kim et al. 2009). In 
the context of Complex_formation extraction, triggers 
can be as simple as “bind” or as complicated as “tandem af
finity purification”.

Traditionally, “trigger detection” (automatic recognition 
of the keywords/phrases behind the extraction of events or 
relations) has been defined as a supervised NER task, relying 
on manually annotated data for training and evaluation. 
However, with the help of model explanation methods, such 
as Integrated Gradients (Sundararajan et al. 2017) and SHAP 
(SHapley Additive exPlanations) values (Lundberg and Lee 

2017), we aim to automatically find the triggers in an unsu
pervised fashion. The general idea here is to apply such meth
ods to calculate and assign a score to each token of the input 
with regard to its contribution to the predicted label 
(Complex_formation in our case), and by ranking the 
tokens based on their scores, we can obtain the token(s) with 
the highest contribution to the label for the extracted rela
tions. We hypothesize that these tokens will frequently corre
spond to the triggers. Naturally, this is done only for 
Protein-Protein pairs with a positive label, i.e. when the 
model has predicted that there is a Complex_formation 
relationship between two candidate NEs in a given input 
text, as by definition, triggers are the words or phrases that 
explicitly state or imply the existence of a relationship be
tween two NEs.

While using model explanation methods to attribute im
portance scores to input tokens has previously been applied 
in areas like sentiment analysis (e.g. identifying keywords in 
movie reviews; Dewi et al. 2022), its application to automatic 
trigger detection, as presented in this manuscript, is novel.

2.3.1 Experimental setup
Model explanation methods are generally used to provide 
useful insights about how a trained model works. Therefore, 
the design and development of the trigger detection system 
started once we had obtained the final neural network model 
for Complex_formation extraction.

While such methods are unsupervised, not requiring any 
manually annotated data for training, we still needed manually 
annotated data to evaluate and compare approaches, since there 
is no guarantee that the token(s) with the highest contribution 
to a positive label is the trigger we aim to recognize. Therefore, 
we focused on the positive pairs of the ComplexTome develop
ment set. We first split this set into two equally sized sets (based 
on the number of documents), hereafter a trigger development 
set, and a trigger test set. We then excluded those infrequent 
positive examples from the two sets that do not fit into a win
dow of 128 tokens, since this is the best MSL found during 
hyper-parameter optimization, and our best model has been 
trained with this restriction for real-world application. After fil
tering, there are 284 and 275 positive Protein-Protein pairs 
in the trigger development and test set, respectively, for which 
we aim to recognize triggers.

The two sets were subsequently given for annotation to an 
expert, with the annotation task of highlighting trigger text 
spans for each positive pair. If two or more text spans were 
considered as equivalently valid triggers, they were all anno
tated as triggers for a Protein-Protein pair, but we em
phasize that correctly recognizing and showing only one of 
the triggers to the end-user in such cases is sufficient. The sec
tion “Trigger word annotation” in the annotation guidelines 
(https://katnastou.github.io/annodoc-physical-protein-interac 
tion-corpus/) provides details with interesting examples.

2.3.2 Trigger detection methods
We experiment with two commonly used model explana
tion methods:

1) Layer integrated gradients (LIG), as implemented in the 
Captum library (https://captum.ai/), which is a variant of 
the integrated gradients method that assigns an importance 
score to a desired layer’s outputs of a trained neural net
work model, for every token in the input snippet. 
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2) SHapley Additive exPlanations (SHAP) values (https:// 
github.com/shap/shap), which is a method commonly 
used for explaining the predictions of a machine learn
ing model. SHAP calculates a value that represents the 
contribution of each token in the input snippet to the 
model outcome, thus the values reflect the importance of 
each token with regard to the label. 

Our best relation extraction model was obtained by fine- 
tuning a pretrained RoBERTa model (Lewis et al. 2020) on 
the ComplexTome training set. This is consistent with the 
top-performing teams in the recent DrugProt relation- 
extraction track of BioCreative VII using pre-trained 
RoBERTa models (Miranda-Escalada et al. 2023). By feeding 
trigger development set examples as input to the model and 
applying the LIG method on the outputs of the embedding 
layer and the 24 hidden RoBERTa layers in this model, we 
obtain 25 vectors for each development set example. By dis
carding [CLS], [SEP], and “unused” tokens and then simply 
choosing the token with the highest score in each vector as 
the predicted trigger, we obtain 25 different predictions for 
each development set example. Therefore, we form 25 differ
ent prediction sets of the development set (each based on a 
particular layer in the model), which can further be evaluated 
against the gold standard. Similarly, by applying the SHAP 
method, we obtain one set of predictions. Initial experiments 
showed slight differences when feeding the inputs with and 
without the [CLS] and [SEP] tokens. Therefore, we tried both 
types of inputs for the SHAP method. In total, we obtained 27 
predicted sets for the development set triggers, which we then 
compared against the gold standard and calculated evalua
tion scores. To further improve the results, we also defined a 
set of post-processing heuristic rules, targeting and removing 
irrelevant tokens from the vectors before choosing the tokens 
with the highest score as predicted triggers. Supplementary 
Material Section S5 provides further details about our trigger 
detection methods.

2.3.3 Baseline method
For comparison, we also develop a simple baseline method. 
In this method, we first obtain the list of all words or phrases 
that are highlighted as triggers in the trigger development set. 
Then, for each Complex_formation relation in the trigger 
development set, we define two windows around the two 
candidate NEs (the window size in sub-tokens is an optimiz
able parameter, ranging from 1 to the maximum possible 
value for the trigger development set). Based on the selected 
window size, for each word or phrase in the list, we search 
the windows with regular expressions, and if we can match a 
word or phrase against a span in the texts of two windows, 
we annotate the span as a recognized trigger.

3 Results and discussion
3.1 Corpus statistics
ComplexTome is a high-quality corpus, supported by the fact 
that we attained over 90% agreement over four rounds of IAA, 
with a Cohen’s kappa of 0.91 in the last round of IAA—an al
most perfect agreement between the two annotators (McHugh 
2012). ComplexTome comprises 1287 documents with 
�300 000 words. There are 3486 Complex_formation rela
tionships in the corpus, ensuring a rich and diverse collection of 
relations for training neural network models for the relation 

extraction task. Over 96% of these relationships are intra- 
sentence (i.e. within sentence boundaries), while less than 4% 
cross sentence boundaries. This is in line with statistics from 
other publicly available biomedical corpora with document-level 
annotations, where cross-sentence relations constitute <5% of 
the relations annotated therein (Bj€orne et al. 2009, Mehryary 
et al., 2018, Miranda-Escalada et al. 2023). There is a large num
ber of NEs in the corpus, namely 20 228 Protein, 2185 
Chemical, 1500 Complex, and 3019 Protein_Family enti
ties. Notably, we gave the “Blocklisted” attribute to 795 entities 
during annotation and later properly filtered them out for the 
training and development of the relation extraction model. 
Supplementary Material Section S6 presents the distribution of 
NEs and relations in the ComplexTome corpus.

3.2 Relation extraction
3.2.1 System evaluation
We used grid search to find the optimal values of hyper- 
parameters and compare different pre-trained transformer 
encoders, using the methodology described above. Our best 
result was achieved using the RoBERTa-large-PM-M3- 
Voc encoder (Lewis et al. 2020), a 24 layer RoBERTa-based 
language model, pretrained on biomedical and clinical texts, 
and using the following hyper-parameter values: MSL¼ 128, 
lr¼ 3e−6, training_epochs¼11, minibatch_size¼ 5. This ex
periment resulted in 86.8% average precision, 82.1% average 
recall, and 84.3% average F1-score on the ComplexTome de
velopment set. Table 1 shows the details of the four models 
used in this experiment and the evaluation scores measured 
on the development set (Table 1).

Our best model achieves 85.5% F1-score on the development 
set and 87.3% precision, 78.8% recall and 82.8% F1-score on 
the held-out test set. We have selected this particular model for 
large-scale execution and for providing the text-mined 
associations for the physical subnetwork of STRING v12.

3.2.2 Baseline evaluation and comparison
Similarly to the main relation extraction system, we used grid 
search and found MSL¼128, lr¼5e-6, training_epochs¼ 12, 
and mini-batch size¼ 5 to be the optimal hyper-parameter val
ues, resulting in the highest average F1-score on ComplexTome 
development set when using BERT-base-cased transformer 
model. Table 2 shows the comparison of the baseline 
system with the main relation extraction system on the 
development set.

As shown in Table 2, while the baseline system with 
75.3% average F1-score has a moderately good performance 
on the task, it is 9 percentage points behind the main relation 
extraction system (84.3% average F1-score). Since both sys
tems use the same training and evaluation setup, this shows 

Table 1. Performance of the best experiment on the ComplexTome 
development set.a

Precision (%) Recall (%) F1-score (%)

Model-1 88.8 79.4 83.8
Model-2 82.8 83.6 83.2
Model-3 86.9 82.4 84.6
Model-4 88.5 82.8 85.5
Average 86.8 82.1 84.3
std 2.8 1.8 1.0

a The best model (highlighted in gray, with F1-score ¼ 85.5%) is used 
for large-scale prediction on the entire literature.
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how selecting a good pretrained transformer encoder can im
prove the performance on the task. For a detailed comparison 
between RoBERTa and BERT models, and to obtain more in
formation about the transformer models used in this work, 
refer to Supplementary Material Section S3.

3.2.3 Manual error analysis
We present an analysis of the errors produced by the best re
lation extraction model on the test set, grouped into catego
ries in Table 3. For a detailed overview of all errors, refer to 
Supplementary Material Section S7. We provide instructions 
on comparing the documents in the annotated corpus and the 
model predictions in a BRAT server in our annotation guide
lines. We also provide views of these comparisons as image 
files via Zenodo.

We identified five error categories, with none appearing to 
be the primary cause of errors observed in the test set. The first 
category is “ambiguous keyword”, which involves words like 
“association” that can describe both physical interactions and 
other types of relationships. This makes it hard to assign an ac
curate relationship label, resulting in both FPs and FNs. “Rare 
keyword” pertains to relationships between NEs that annota
tors have identified based on their biological knowledge, but 
which are indicated by phrases or words that are seldom en
countered in the literature (e.g. non-covalent association) and 
thus result mostly in FNs. “Convoluted text excerpt” refers to 
text segments characterized by syntactic intricacies, including 
complex sentences and cross-sentence relationships, which are 
inherently difficult to understand, in some cases even for 
humans. A separate error type related to this is “co-reference 
resolution”. These errors arise when it is unclear, based on syn
tax, which subject(s) a specific Complex_formation rela
tionship corresponds to, and produce FPs as well as FNs.

Finally, “annotation error” corresponds to cases where the 
annotators have made specific mistakes—often stemming from 
ambiguity—and these require fixing upon clearer examination. 
Recalculation of the statistics after excluding annotation errors 
lead to an increase in precision (89.7%), recall (80.1%), and 
F1-score (84.7%), representing a slight improvement compared 
to the original observations on the test set.

3.3 Trigger detection
3.3.1 System evaluation
For large-scale relation extraction, we had trained a 
TensorFlow-based model that achieved 88.5% precision, 
82.8% recall, and 85.5% F1-score on the ComplexTome de
velopment set. Since the Captum implementation of the LIG 
method operates only on models that are trained with the 
PyTorch library, we trained another relation extraction sys
tem (with the same RoBERTa-large-PM-M3-Voc encoder 
and the same best hyper-parameters) using the PyTorch li
brary and during the implementation of the code, we also 
fixed a couple of minor implementation errors. This resulted 
in a better relation extraction model with 88.8% precision, 

85.4% recall, and 87.1% F1-score on the development set. 
We used this model for developing and optimizing our trigger 
detection system, and also for large-scale execution of the 
trigger detection system on biomedical literature.

Trigger detection methods are usually evaluated with the 
standard metrics used for NER tasks (precision, recall, and F1- 
score). However, annotation of the trigger development set 
showed that (1) a trigger can span multiple input tokens, and 
(2) there can be more than one alternative trigger spans that are 
equally valid to annotate for a Complex_formation relation
ship (for more details, refer to our annotation guidelines). 
However, from the practical application standpoint, it is good 
enough that we recognize only a part of a multi-token trigger. 
Similarly, if there are alternative trigger spans for the same 
Complex_formation relationship (e.g. The CD40-TRAF2 in
teraction), recognizing one of them is sufficient. Therefore, as 
evaluation metrics for method development and optimization, 
we take average of precision scores, average of recall scores, 
and average of F1 scores for left-bound, right-bound, overlap 
and exact matching of detected trigger spans against the gold- 
standard annotations. These measures penalize the method 
when it fails to detect alternative trigger spans for a single 
Complex_formation relationship, but since they were easy 
to program and calculate, we used them for method develop
ment. For the final evaluation of our best method, we used man
ual evaluation, not penalizing for such cases.

For the development and optimization of the trigger detec
tion system, we evaluated our methods on the positive 
Protein-Protein pairs in trigger development set. An ini
tial experiment with the LIG- and SHAP-based methods 
showed that when the relation extraction model makes a mis
take and produces a negative label for a positive pair (i.e. the 
FN predictions of the relation extraction system), any effort 
in detecting the trigger by model explanation methods leads 
to mistakes, producing incorrect triggers (FP trigger spans). 
For example, the SHAP method (with [CLS] and [SEP] tokens, 
and without the postprocessing heuristics) results in 62.1% 
overlap precision, 55.5% overlap recall, 58.6% overlap F1- 
score, but if we first discard all FN pairs, then the same 
method results in 67.7% precision, 52.7% recall, and 59.3% 
F1-score. From the perspective of end-users, having a higher 
precision is very important, because it will increase the credi
bility of text mining results. Therefore, for LIG- and SHAP- 
based methods, we chose to always check the relation label as 
predicted by the trained RE model, and only pursue trigger 
detection if a positive label has been predicted by the model.  
Table 4 shows the results of our best approaches on the trig
ger development set, before and after applying post- 
processing heuristics.

Table 3. Error analysis for the relation extraction system.

Error type Count

FP FN Total

Ambiguous keyword 18 26 44
Rare keyword 2 23 25
Convoluted text excerpt 15 39 54
Co-reference resolution 11 9 20
Annotation error 11 8 19
Total 57 105 162

FN, False negative; FP, False positive.

Table 2. Comparison of the baseline system with the main relation 
extraction system on the development set.a

Precision (%) Recall (%) F1-score (%)

Baseline avg (std) 76.4 (3.8) 74.3 (2.5) 75.3 (1.9)
Main avg (std) 86.8 (2.8) 82.1 (1.8) 84.3 (1.0)

a The table shows the average and standard deviation of the scores (for 
the four best models) in each approach.
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As shown in Table 4, the baseline method performs very 
poorly, achieving 55.6% average F1-score, showing that a 
simple pattern matching approach is not good for trigger de
tection. This is mostly due to the high amount of FP spans 
that resulted in the lowest average precision among 
all methods.

Another interesting observation is that the LIG method 
(without postprocessing heuristics) performs the worst. 
Although having a higher precision than the baseline, this 
method yields a much lower recall, and lower F1-score, sug
gesting that the LIG method without additional heuristics is 
not fit for the job. In contrast, the two SHAP-based methods 
(without the heuristics) have performed closely, with 56.5% 
and 57.3% F1-score, and slightly outperformed the baseline, 
showing that “right out of the box” and without additional 
tweaking, vanilla SHAP methods outperform the LIG method 
on the task.

The postprocessing heuristic rules significantly improve the 
results, increasing both precision and recall, which is evident 
in both SHAP- and LIG-based methods. For example, the 
SHAP method (without the [CLS] and [SEP] tokens) has 
achieved 67.4% avg. F1-score with the heuristics, outper
forming the vanilla SHAP method by �10%. Similarly, the 
SHAP (with [CLS] and [SEP] tokens) achieved 68.7% F1- 
score with the heuristics, �12% higher than the vanilla SHAP 
method. Finally, our best results have been achieved by using 
the vectors obtained from the LIG method for the 14th hid
den layer in the neural network model and applying the post
processing rules. This method resulted in the highest 
precision, highest recall and F1-score (overlap, exact match
ing, and average). For example, the 85.8% exact precision 
shows that in �86% of the cases, detected spans are the ac
tual triggers, and the 95.1% overlap precision reflects that in 
�95% of the cases, detected spans overlap with the actual 
trigger spans, which is sufficient for the application point of 
view, because for large-scale execution, we prefer not to 
mark any spans if the method is not sure, but we want to 
make sure the detected spans overlap with the actual trigger 
spans. This method achieved 90.5% average precision, 
67.4% average recall, and 77.3% average F1-score, and it is 
used for large-scale trigger detection for STRING v12. These 
calculations penalize all methods in cases where multiple trig
ger spans are annotated for a relation, resulting to signifi
cantly lower recall. For that reason, we manually calculated 
the overlap performance metrics of the best method 
(LIGþHeuristics) without penalizing for alternate trigger 
spans, to get an accurate picture of the performance on the 
development set and this resulted in a precision of 95.9%, a 
recall of 83.1% (increase by �12%), and an F1-score 
of 89.1%.

3.3.2 Manual error analysis
Manual recalculation of the overlap performance metrics on 
the trigger test set yielded 92.8% precision, 79.9% recall, 
and 85.9% F1-score. Detailed results are provided in 
Supplementary Material Section S8. A closer look in the 
results produced by the method shows that in cases where 
multiple words are valid as triggers, the method has a prefer
ence for punctuation (i.e. “-” or “/” in 35 cases) instead of 
whole words (e.g. “complex” in five cases). In cases where 
the method misdetects a trigger, by missing to predict the an
notated trigger producing an FN, and by producing an incor
rect trigger, i.e. an FP, there is no special pattern in the 
generated FPs, and the most frequent FN is the word 
“complex”. FN Complex_formation relation predictions 
of the RE system, for which we had chosen not to run the 
trigger detection method as discussed above, inevitably result 
to FN predictions for the trigger detection method as well. 
Manual evaluation did not show any specific patterns per
taining these FNs. We also detected four annotation errors, 
where multiple triggers where valid and not all of them were 
annotated. This has been taken into consideration during the 
calculation of performance metrics above.

3.4 Large-scale execution and integration in 
STRING v12
To perform relation extraction and trigger detection for 
STRING v12, we used all PubMed abstracts (as of August 
2022) and all full texts available in the PMC BioC text min
ing collection (Comeau et al. 2019; as of April 2022). The en
tire corpus consists of 34 420 049 documents. We converted 
all documents into BRAT standoff format and obtained NER 
and NEN Protein annotations from Jensenlab tagger 
(Jensen 2016) for both abstracts and full-text articles. 
6 033 981 documents (3 604 037 abstracts and 2 429 944 
full-texts) contained at least two protein NEs and were pro
vided for Complex_formation relation prediction to the 
model with the best performance on the RE task. We selected 
documents containing at least two NEs as this is a prerequi
site for having relations. There was no upper limit on the 
number of NEs in the documents, as our RE system processes 
entities one pair at a time, with no restrictions on the number 
of pairs processed, apart from the maximum sequence length, 
as explained in Section 2. This resulted in predictions for over 
1 billion NE pairs. From those 8 807 592 (<1%) are pre
dicted as Complex_formation relationships. We then pro
vide the �8.8 million “positive” examples as input for the 
trigger detection pipeline. 7 127 119 of those examples have 
at least one trigger predicted. A tab-delimited file with scores 
produced by our RE model for all NE pairs, and the BRAT- 
formatted input and tab-delimited results from large-scale 

Table 4. Comparison of trigger detection methods on the trigger development set.a

Trigger detection method Overlap Pre Overlap Rec Overlap F1 Exact Pre Exact Rec Exact F1 avg Pre avg Rec avg F1

Baseline 50.1 65.2 56.7 48.3 62.7 54.6 49.2 63.9 55.6
LIG (best layer¼ 9) 58.4 49.7 53.7 53.0 45.2 48.8 55.7 47.4 51.2
SHAP (with [CLS] and [SEP]) 62.2 55.8 58.8 56.9 51.5 54.1 59.5 53.8 56.5
SHAP (without [CLS] and [SEP]) 62.7 56.1 59.2 58.6 52.4 55.4 60.7 54.2 57.3
SHAP þ heuristics (without [CLS] and [SEP]) 83.1 62.4 71.3 73.9 55.8 63.6 78.4 59.1 67.4
SHAP þ heuristics (with [CLS] and [SEP]) 85.2 63.6 72.9 74.8 56.7 64.5 79.9 60.3 68.7
LIG (best layer¼ 14) þ heuristics 95.1 70.9 81.3 85.8 63.9 73.3 90.5 67.4 77.3

a The best method (highlighted in gray, with avg F1 ¼ 77.3%) is used for large-scale execution on the entire literature. Precision, recall, and F1-score 
values are presented in percentages (%).
Pre, precision; Rec, recall; F1, F1-score; avg, average of left-bound, right-bound, overlap, and exact matching scores.
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execution of the trigger detection system are provided 
through Zenodo.

On top of our gold-standard evaluation against the 
ComplexTome test set, we evaluated the performance of the 
best RE model on large-scale extraction by selecting 1000 ran
dom documents from the 34 420 049 papers in the scientific lit
erature and assessing the acceptability of extractions the system 
made. Of the 1000 random documents, 188 mention at least 
two proteins, and 31 contain at least one positive prediction. 
We manually evaluated these predictions and found 156 TPs, 9 
FPs, and 23 FNs in these documents, leading to a pre
cision¼94.5%, a recall¼ 87.2%, and an F-score¼ 90.7%. 
These results confirm the quality of the predictions produced 
by the best RE model, on a completely unbiased selection of 
documents. The fact that these results are better than those we 
had on the test set is probably explained by the fact that this 
type of assessment measures the acceptability of extractions 
rather than whether they would have been annotated by a hu
man given the text without annotations. The former is arguably 
a looser criterion compared to evaluation against a gold stan
dard. Detailed results for this analysis and BRAT-formatted 
files for manual inspection are provided via Zenodo.

Starting from version 11.5 of the STRING database 
(Szklarczyk et al. 2021), users gained access to a separate mode 
that provides a physical interaction subnetwork besides the 
broader functional association STRING network. Herein we 
have described a complete re-implementation of the text-mining 
pipeline that allows the detection of Complex_formation rela
tionships (equivalent to “physical interactions” in STRING). The 
results from the large-scale run are properly processed and incor
porated in STRING. For details on post-processing please refer 
to the STRING publications (Szklarczyk et al. 2021, 2023). In 
the physical interaction subnetwork of STRING v11.5, if there 
was evidence of a physical interaction between two unique 
Protein NEs based on text mining, the web interface enabled 
users to explore the publications supporting this interaction. This 
was accomplished by presenting actual text excerpts from bio
medical articles, with the recognized Protein NEs highlighted. 
This feature served a dual purpose: users could personally evalu
ate the accuracy of automatically extracted relations, and they 
could also refer to the original articles for further in- 
depth reading.

Recognizing the potential for even greater utility, in the 
current version of STRING (Szklarczyk et al. 2023) it became 
desirable to have the system highlight the most significant 
word or phrase in the text snippet that explicitly or implicitly 
indicates the relation for each physical interaction extracted 
from that snippet. To achieve this, the results from the large- 
scale run of the trigger detection system were utilized. 
Supplementary Material Section S9 shows how text-mining 
results are presented for the physical interaction between two 
proteins in STRING v11.5 and v12.

4 Conclusions
In this work, we present both ComplexTome, a corpus tai
lored for relation extraction of complex formation relation
ships among biomedical entities, and a relation extraction 
system that allows supervised training on the task, alongside 
large-scale execution on the biomedical literature. On top of 
relation extraction we also present a trigger detection method 
for Complex_formation relationships. Both the relation 
extraction and trigger detection methods achieve high levels 

of accuracy (F-score¼82.8% and 85.9% on the test set, re
spectively) and are available for use by the entire scientific 
community. We have meticulously manually evaluated both 
systems and integrated them into the latest version of the 
STRING database. As a result, we have not only augmented 
the database’s coverage of physical interactions but also 
empowered users to explore and validate these relationships 
in the context of the original scientific articles. Overall, this 
project exemplifies the continuous evolution of text-mining 
capabilities in the era of language modeling and marks a sig
nificant milestone in enhancing our understanding of com
plex biological systems within the biomedical domain.
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