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Abstract
Motivation: Large language models (LLMs) are being adopted at an unprecedented rate, yet still face challenges in knowledge-intensive 
domains such as biomedicine. Solutions such as pretraining and domain-specific fine-tuning add substantial computational overhead, requiring 
further domain-expertise. Here, we introduce a token-optimized and robust Knowledge Graph-based Retrieval Augmented Generation 
(KG-RAG) framework by leveraging a massive biomedical KG (SPOKE) with LLMs such as Llama-2-13b, GPT-3.5-Turbo, and GPT-4, to generate 
meaningful biomedical text rooted in established knowledge.
Results: Compared to the existing RAG technique for Knowledge Graphs, the proposed method utilizes minimal graph schema for context 
extraction and uses embedding methods for context pruning. This optimization in context extraction results in more than 50% reduction in 
token consumption without compromising the accuracy, making a cost-effective and robust RAG implementation on proprietary LLMs. KG-RAG 
consistently enhanced the performance of LLMs across diverse biomedical prompts by generating responses rooted in established knowledge, 
accompanied by accurate provenance and statistical evidence (if available) to substantiate the claims. Further benchmarking on human curated 
datasets, such as biomedical true/false and multiple-choice questions (MCQ), showed a remarkable 71% boost in the performance of the 
Llama-2 model on the challenging MCQ dataset, demonstrating the framework’s capacity to empower open-source models with fewer parame
ters for domain-specific questions. Furthermore, KG-RAG enhanced the performance of proprietary GPT models, such as GPT-3.5 and GPT-4. In 
summary, the proposed framework combines explicit and implicit knowledge of KG and LLM in a token optimized fashion, thus enhancing the 
adaptability of general-purpose LLMs to tackle domain-specific questions in a cost-effective fashion.
Availability and implementation: SPOKE KG can be accessed at https://spoke.rbvi.ucsf.edu/neighborhood.html. It can also be accessed using 
REST-API (https://spoke.rbvi.ucsf.edu/swagger/). KG-RAG code is made available at https://github.com/BaranziniLab/KG_RAG. Biomedical 
benchmark datasets used in this study are made available to the research community in the same GitHub repository.

1 Introduction
Large language models (LLM) have shown impressive perfor
mance in solving complex tasks across various domains that in
volve language modeling and processing (Zhao et al. 2023). 
LLMs are pre-trained on a large corpora of text data in a self- 
supervised learning framework which can be either masked lan
guage modeling (e.g. BERT-like models) (Kenton and 
Toutanova, 2019, Liu, 2019) or auto-regressive framework 
(GPT-like models) (http://arxiv.org/abs/2005.14165) (Lu et al. 
2022). This pretraining encodes knowledge about the language 
in the model parameters. Similar to the transfer learning ap
proach commonly used in deep neural networks, this implicit 

knowledge can be refined through supervised training to excel 
in a range of domain-specific tasks (Luo et al. 2023). 
Nevertheless, the “implicit representation” of knowledge in 
LLM has also been shown to generate non-factual information 
despite linguistically coherent answers (i.e. “hallucination”) as a 
response to the input prompt (Maynez et al. 2020, Raunak 
et al. 2021, Ji et al. 2023). This issue poses a significant chal
lenge for the adoption of LLM in domains with stringent 
requirements for accuracy, such as biomedicine.

Various strategies have been introduced to address halluci
nations in LLMs. One such solution involves the utilization 
of domain-specific data for pretraining the LLM, rather than 
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relying on generic text corpora. This approach has led to the 
creation of models such as PubMedBERT (Lee et al. 2020, 
Gu et al. 2021) BlueBERT (Peng et al. 2019), SciBERT 
(Beltagy et al. 2019), ClinicalBERT (Huang et al. 2019), 
BioGPT (Luo et al. 2022), Med-PaLM (Singhal et al. 2022), 
and BioMedGPT (Luo et al. 2023). However, pretraining an 
LLM from scratch imposes a significant computational cost 
and time overhead to attain the desired human-like perfor
mance. An alternative approach, known as prompt tuning, 
was recently proposed as a means to enhance LLM perfor
mance, for instance through the use of zero-shot (Kojima 
et al. 2022), few-shot (http://arxiv.org/abs/2005.14165), and 
Chain-of-Thought (Wei et al. 2022b) prompting strategies.

Although prompt tuning methods have proven to be effective, 
their performance is restricted on knowledge-intensive tasks 
that require providing provenance and up-to-date knowledge 
about the world to address the user prompt. To address such 
knowledge-intensive tasks, an alternative approach that integra
tes knowledge graphs (KG) with language models was recently 
introduced (Lin et al. 2019, Yang et al. 2019, Wang et al. 2019, 
Feng et al. 2020, Lv et al. 2020, Yasunaga et al. 2021, 
Yasunaga et al. 2022). This approach was primarily imple
mented in question-answering tasks, where the structured infor
mation contained within the KG was used to provide context 
for predicting the answer to the question. While such multi
modal integrative approach showed promise, its downstream 
supervised training was tailored to a specific task, limiting its 
versatility and broad applicability, thereby constraining its abil
ity to fully harness the “emergent capabilities” of LLMs (Wei 
et al. 2022). Retrieval-augmented generation (RAG) involves 
enhancing a parametric pretrained LLM with the ability to ac
cess a nonparametric memory containing updated knowledge 
about the world (e.g. Wikipedia or SPOKE) (Lewis et al. 2020).

In this article, we propose a robust and token-optimized 
framework called Knowledge Graph-based Retrieval 
Augmented Generation (KG-RAG) that integrates a KG with 
a pretrained LLM within an RAG framework, thus capturing 
the best of both worlds. To achieve this, we make use of the 

biomedical KG called SPOKE (Morris et al. 2023) that inte
grates more than 40 publicly available biomedical knowledge 
sources of separate domains where each source is centered 
around a biomedical concept, such as genes, proteins, drugs, 
compounds, diseases, and one or more of their known rela
tionships. Because these concepts are recurrent entities form
ing defined sets (e.g. all named human genes, all FDA 
approved drugs, etc.) the integration of these concepts into a 
single graph exposes novel multi-hop factual relationships 
that connect the knowledge sources and provides the biologi
cal and ontological context for each concept. Unlike other 
RAG approaches, the proposed framework performs an opti
mized retrieval, specifically obtaining only the essential bio
medical context from SPOKE, referred to as “prompt-aware 
context,” which is adequate enough to address the user 
prompt with accurate provenance and statistical evidence. 
This enriched prompt is further used as input for the LLM in 
the RAG framework for meaningful biomedical text genera
tion. We evaluated this approach using various pretrained 
LLMs including Llama-2-13b, GPT-3.5-Turbo, and GPT-4.

2 Materials and methods
2.1 KG-RAG framework
The schema of the proposed KG-RAG framework is shown 
in Fig. 1. The following sections explain each component of 
this framework.

2.2 Disease entity recognition
This is the first step in KG-RAG. The objective of this step is 
to extract the disease concept (an entity) from the input text 
prompt and then find the corresponding matching disease 
node in the KG (a concept in SPOKE graph). This was imple
mented as a two-step process: (i) entity extraction from 
prompt and (ii) entity matching to SPOKE. Entity extraction 
identifies and extracts disease entities mentioned in the input 
text prompt, otherwise called as “Prompt Disease extraction” 
(Fig. 2). To achieve this, zero-shot prompting (Kojima et al. 

Figure 1. Schema for the Knowledge Graph based Retrieval-Augmented Generation (KG-RAG) Framework. The direction of the arrows indicates the flow 
of the pipeline in this framework.
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2022) was used on GPT-3.5-Turbo model (Version: 0613) 
(Fig. 2). Specifically, a system prompt was designed to extract 
disease entities from the input text and return them in JSON 
format (Supplementary S1 Text). We compared the GPT- 
based entity extraction method with more traditional 
approaches that use models specifically trained for this task. 
However, we chose the zero-shot GPT option due to its supe
rior performance in terms of precision and recall 
(Supplementary Fig. S1 and Table A) and its flexibility in 
handling various entity types (Supplementary S1 Text).

Next, entity matching was used to obtain the concept 
name of the disease as it is represented within the KG. For 
this, the embeddings for all disease concepts (i.e. nodes) in 
SPOKE were precomputed using the “all-MiniLM-L6-v2” 
sentence transformer model (i.e. disease latent space in Fig. 2) 
(Reimers, 2019). This procedure translates names of the dis
ease concepts into a 384-dimensional dense vector space, 
making it suitable for semantic search. We chose “MiniLM” 
for two main reasons: firstly, when combined with entity ex
traction, it successfully retrieved the disease nodes from the 
graph with an accuracy of 99.7% (Supplementary S1 Text). 
Second, it produced lightweight embeddings (384 dimen
sions) compared to other sentence transformers like the 
PubmedBERT model (Gu et al. 2021) (768 dimensions), 
making it more memory efficient. Next, these newly created 
disease concept embeddings were stored in the “Chroma” 
vector database (https://medium.com/@kbdhunga/an-over
view-of-chromadb-the-vector-database-206437541bdd). 
Disease concepts with the highest vector similarity to the 
extracted entity are selected for subsequent context retrieval 
(Fig. 2). If the zero-shot approach fails to identify a disease 
entity in the prompt, five disease concepts from the vector 

database with the most significant semantic similarity to the 
entire input text prompt are selected instead.

2.3 Disease context retrieval from SPOKE
The SPOKE KG connects millions of biomedical concepts 
through semantically meaningful relationships (Morris et al. 
2023). The KG consists of 42 million nodes of 28 different 
types and 160 million edges of 91 types, implemented as a 
property graph and is assembled by downloading and inte
grating information from 41 different biomedical databases. 
Notably, the vast majority of SPOKE is composed of curated 
information determined by systematic experimental measure
ments, not text mining from the literature. In this study, 
SPOKE was used as the source of biomedical context for the 
diseases mentioned in the input prompt.

The process of converting the graph data to natural lan
guage involves the following steps:

a) Context extraction: We utilize SPOKE’s REST-API ser
vice, specifically the “/api/v1/neighborhood/” endpoint, 
to fetch neighbors associated with a disease node 
(Supplementary S1 Text). To ensure high-quality con
text, we apply filters such as restricting treatment associ
ations to those with clinical phase ≥ 3, using only 
SwissProt-curated protein nodes, and excluding text- 
mining-based gene-disease associations. 

b) Predicate to natural language transformation: SPOKE uses a 
specific schema for predicates: UpperCase(predicateName) 
_<upperCase(firstLetter(subjectType)), lowerCase(firstLetter 
(predicateName)), and upperCase(firstLetter(objectType))>. 
For example, “ASSOCIATES_DaG” is a predicate that con
nects disease nodes with gene nodes. 

Figure 2. Detailed schema of KG-RAG. Dashed boxes show the details of “Disease entity recognition” and “Prompt-aware context extraction” from the 
Knowledge Graph.
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The context triples (Subject, Predicate, and Object) 
associated with a disease node from SPOKE KG (Morris 
et al. 2023) follow a specific schema for its predicates 
(Supplementary S1 Text): UpperCase(predicateName) 
_<upperCase(firstLetter(subjectType)), lowerCase(first 
Letter(predicateName)), and upperCase(firstLetter 
(objectType))>. For example, “ASSOCIATES_DaG” is a 
predicate that connects Disease nodes with Gene nodes 
with the predicate name ASSOCIATES. This schema 
allowed for the direct conversion of the extracted triples 
into English language using the following rule 
(Supplementary S1 Text): 

(S, P, O) ! Subject lowerCase(predicateName) Object

For example: 

(disease hypertension, ASSOCIATES_DaG, and gene 
VHL) ! “disease hypertension associates Gene VHL”

This makes it compatible for inputting into the LLM 
(Fig. 1; Supplementary S1 Text). 

c) Provenance and evidence incorporation: In addition to 
extracting the connectivity between the disease and its 
neighbors, we also extracted the provenance information 
associated with those edges which is given as the edge at
tribute. Additionally, we have implemented an option 
(“-e” flag in our KG-RAG script) to include supporting 
evidence like P-values or z-scores in the output 
(Supplementary S1 Text). 

2.4 Context pruning
Next, the extracted disease context was pruned by selecting 
the most semantically pertinent context that could be used to 
answer the given prompt. First, the input prompt and all the 
extracted contextual associations were embedded to the same 
vector space (Context Latent space in Fig. 2) using a sentence 
transformer model (model selection was done using hyper
parameter tuning). Next, for context selection, prompt- 
context cosine similarity should satisfy two conditions: (i) 
greater than 75th percentile of the similarity distribution 
encompassing all the context related to the chosen disease 
node and (ii) having a minimum similarity value of 0.5. This 
makes the retrieved context more fine-grained and contextu
ally relevant (i.e. “prompt-aware context”).

2.5 Large language model
The input prompt, when combined with the prompt-aware 
context, resulted in an enriched prompt that was used as in
put to the LLM for text generation. For that purpose, three 
pretrained chat models were used: Llama-2-13b (Touvron 
et al. 2023), GPT-3.5-Turbo (Version: 0613), and GPT-4 
(http://arxiv.org/abs/2005.14165). A Llama model with 
13 billion parameters and with a token size of 4096 was 
downloaded and deployed in the Amazon Elastic Compute 
Cloud (EC2) GPU P3 instance. GPT models were accessed 
using the OpenAI API. Since GPT models featured a higher 
parameter count in comparison to Llama, this gave us the 
opportunity to compare the performance of KG-RAG as a 
function of the size of the LLM in terms of its parameter 
count. In this study, the “temperature” parameter (http:// 
arxiv.org/abs/2005.14165), governing the level of random
ness in the LLM output, was set to 0 for all LLMs.

2.6 Hyperparameter analysis and validation
The performance of KG-RAG was evaluated across two sets of 
hyperparameters such as “Context volume” and “Context em
bedding model.” Context volume defines the upper limit on the 
number of graph connections permitted to flow from the KG to 
the LLM. This hyperparameter introduced a balance between 
context enhancement and input token space utilization of the 
LLM (Supplementary S1 Text). Next hyperparameter called 
“context embedding model” determined which model exhibited 
greater proficiency in retrieving the accurate biomedical context 
from the KG to respond to the input prompt. Since “MiniLM” 
(Reimers, 2019) was used in the disease entity recognition stage, 
we considered that as a candidate for “context embedding mod
el.” Acknowledging that biomedical contexts often utilize vo
cabulary that could differ from general domain scenarios, we 
next considered “PubMedBert” (Gu et al. 2021, Deka et al. 
2022) as another candidate for this hyperparameter since it was 
pretrained on biomedical text. Additionally, two sets of valida
tion data (total 165 questions) were created using prompts men
tioning a single disease (75 questions), while the other set 
involved prompts mentioning two diseases (90 questions; 
Supplementary S1 Text). The second set of “two disease 
prompts” were created to see if KG-RAG had the ability to re
trieve contexts related to multiple diseases. These prompts were 
executed using the GPT-4 model in the KG-RAG framework, 
utilizing specific system prompts to return the results in JSON 
format (Supplementary S1 Text). Jaccard similarity was com
puted by parsing these JSON responses and comparing them 
with the ground truth. Through these analyses, an empirical 
selection of hyperparameters for the downstream tasks 
was made.

2.7 Test dataset
Three types of test datasets were used to quantitatively analyze 
the performance of the proposed framework (Supplementary 
Table D): (i) True/False dataset; (ii) Multiple Choice Questions 
(MCQ) dataset; and (iii) RAG comparison dataset. Datasets i 
and ii were consolidated from external knowledge bases and 
were further thoroughly reviewed by domain experts to remove 
any false positives.

A True/False dataset was created from three external data 
sources, such as DisGeNET (Pi~nero et al. 2016), MONDO 
(Vasilevsky et al. 2022), and SemMedDB (Kilicoglu et al. 
2012). DisGeNET consolidates data about genes and genetic 
variants linked to human diseases from curated repositories, 
the GWAS catalog, animal models, and the scientific litera
ture (Pi~nero et al. 2016) (Supplementary S1 Text). MONDO 
provides information about the ontological classification of 
disease entities in the open biomedical ontologies (OBO) for
mat (Vasilevsky et al. 2022) (Supplementary S1 Text). 
SemMedDB contains semantic predications extracted from 
PubMed citations (Kilicoglu et al. 2012), and we used this re
source to formulate True/False questions about drugs and 
diseases (Supplementary S1 Text). MCQ, comprising five 
choices with a single correct answer for each question, were 
created using data from the Monarch Initiative (Mungall 
et al. 2017) and ROBOKOP (Reasoning Over Biomedical 
Objects linked in Knowledge-Oriented Pathways; Bizon et al. 
2019) (Supplementary S1 Text). To assess the graph context 
retrieval capabilities of various RAG frameworks, we 
extracted disease–gene associations from the SPOKE graph 
and designed questions based on these associations. These 
questions were then used on KG-RAG, Cypher-RAG, and 
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Full-Text Indexing frameworks to compare how well they re
trieve the associated context from SPOKE graph.

Thus, 311 True/False, 306 MCQ, and 100 RAG compari
son biomedical question datasets were created for a system
atic quantitative analysis of the proposed framework. To 
assess the performance of LLMs on True/False and MCQ 
datasets, 150 questions were randomly sampled with replace
ment 1000 times (using bootstrapping). The accuracy metric 
was then calculated for each sampling iteration, resulting in a 
performance distribution.

2.8 Cypher-RAG
Cypher-RAG is a technique utilized for retrieving context as
sociated with a node in a Neo4j graph database (https://me 
dium.com/neo4j/using-a-knowledge-graph-to-implement-a-devops- 
rag-application-b6ba24831b16). This context can then be lever
aged to generate information about the node in natural 
language using an LLM. The method involves explicitly embed
ding the schema of the graph into the input prompt, directing 
the LLM to generate a structured Cypher query based on this 
schema. The resulting Cypher query is used to make a call to 
the Neo4j database, and the returned information is utilized 
as context to respond to the user’s prompt. This methodology 
is integrated into the LangChain python library as 
GraphCypherQAChain class (https://medium.com/neo4j/us 
ing-a-knowledge-graph-to-implement-a-devops-rag-applica 
tion-b6ba24831b16). An advantage of this approach is that it 
allows for the creation of Cypher queries directly from natural 
language, eliminating the need for users to have the knowledge 
of Cypher query syntax. However, our analysis revealed certain 
limitations of this approach. We found that the explicit embed
ding of the graph schema restricts the input token space and 
increases token usage for this method. As the complexity of the 
graph schema increases, users may need to utilize LLMs with 
longer context window sizes for optimal performance. 
Additionally, we demonstrated that this method can be sensitive 
to how the prompt is formulated. Even slight perturbations to 

the prompt can lead to incorrect Cypher queries and subse
quently impact downstream generative processes.

2.9 Full-text index
Neo4j offers full-text indexing that is powered by the Apache 
Lucene indexing and search library. In the context of the 
SPOKE graph, all nodes were full-text indexed on their 
“name” and “identifier” properties. This indexing method 
stores individual words within these string properties and 
allows semantic interpretation of string data beyond simple 
exact or substring matching. Hence, this enables content- 
based matching. When processing user queries, the full-text 
index procedure in Neo4j was used to compare the query 
against the indexed disease names. This comparison yields a 
proximity score, indicating the semantic closeness between 
the query and stored values. The disease node with the high
est score was selected as the mapped node for subsequent 
context extraction. Compared to traditional exact or pattern- 
based matching, this method provides a more nuanced and 
flexible approach to node matching, potentially improving 
the information retrieval process.

3 Results
We developed KG-RAG, a framework that integrates LLMs 
with the SPOKE knowledge graph. This integration enables ac
curate biomedical context retrieval and reliable text generation 
in an optimized and cost-effective manner. This framework 
involves multiple steps, namely: i) entity recognition from user 
prompt, ii) extraction of biomedical concepts from SPOKE, 
iii) concept embedding, iv) prompt-aware context generation, 
v) conversion into natural language, vi) prompt assembly, and 
vii) answer generation. The performance of this approach was 
extensively tested using different scenarios.

3.1 Prompting KG-RAG framework
Figure 3 shows two biomedical prompts (yellow box) 
given as input to the GPT-4 model using two approaches: 

Figure 3. Prompting examples. Example prompts (top boxes) and prompt-based (middle boxes)/KG-RAG-based (bottom boxes) responses using GPT-4. 
(A) A biomedical prompt to search the drugs used for weight management in patients with “Bardet-Biedl syndrome” and (B) Another prompt to compare 
the statistical associations of PNPLA3 and HLA-B genes with the disease liver benign neoplasm. Both (A) and (B) show the associated “prompt aware 
graph” context.
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(i) prompt based, i.e. without KG-RAG (blue box) and (ii) 
with KG-RAG (green box). We observed that only KG-RAG 
was able to provide an accurate answer for both prompts, ac
companied by supporting evidence and provenance informa
tion. (For more prompting examples refer Supplementary 
Table C. We have also provided these prompts in a Jupyter 
notebook which can be accessed at https://github.com/ 
BaranziniLab/KG_RAG/blob/main/notebooks/kg_rag_based_ 
gpt_prompts.ipynb.)

3.2 Hyperparameter analysis
KG-RAG has two hyperparameters (“context volume” and 
“context embedding model”), which enable it to conduct op
timized context retrieval from a KG. Context volume defines 
the upper limit on the number of graph connections permit
ted to flow from the KG to the LLM (see Materials and meth
ods, Supplementary S1 Text). Context embedding model 
extracts graph context that shows semantic similarity to the 
user prompt, facilitating the refinement of extracted context 
to those that are contextually relevant (see Section 2, 
Supplementary S1 Text). To optimize these hyperparameters, 
we used two context embedding models (MiniLM and 
PubMedBert) with increasing sizes of context volume 
(Fig. 4A). For prompts with single disease entity, the 
PubMedBert based model exhibited a mean performance 
(Jaccard similarity) approximately 10% higher than that of 
the MiniLM model across all context volume settings (mean 
performance of PubMedBert ¼ 0.67, mean performance of 
MiniLM ¼ 0.61). For prompts with two disease entities, 
PubMedBert achieved a performance that was 8.1% higher 

than the MiniLM across all context volume settings (mean 
performance of PubMedBert model ¼ 0.4, performance of 
MiniLM ¼ 0.37).

Figure 4A shows that the performance curve reaches a pla
teau for prompts with single disease entity and follows a similar 
trend for prompts with two disease entities (for both models). 
Based on these findings, we selected PubMedBert-based model 
as the context embedding model and set the context volume to 
a value between 100 and 200 (for most downstream tasks, we 
opted for a context volume of 150, and for True/False ques
tions, we chose a context volume of 100).

3.3 RAG comparative analysis
Figure 4B shows the comparative analysis between the pro
posed KG-RAG and the other two methods, such as Cypher- 
RAG and full-text index approach for context retrieval from 
a KG (see Materials and methods). We compared these three 
frameworks based on their retrieval accuracy, retrieval ro
bustness, and token usage. For a test dataset with 100 bio
medical questions (Supplementary S1 Text), full-text index, 
Cypher-RAG, and KG-RAG showed 61%, 75%. and 97% 
retrieval accuracy, respectively (Fig. 4B, top). To test the ro
bustness in context retrieval, we introduced a slight perturba
tion to the test dataset by converting the entity names to 
lowercase (Fig. 4B, insight). We observed a significant de
crease in the retrieval accuracy of Cypher-RAG to 0% (indi
cating failure to retrieve any context from the graph). This 
mainly occurs because Cypher-RAG utilizes precise matching 
of the entity keywords provided in the user prompt to formu
late the Cypher query for extracting graph context. 

Figure 4. Hyperparameter analysis and RAG comparison. (A) Hyperparameter analysis performance curves using prompts with single (top) and two 
(below) disease entities mentioned in it. The x-axis denotes the “Context volume” (number of associations from KG) and the y-axis denotes the mean 
performance (Jaccard similarity) across the prompts. The red curve denotes “PubMedBert” and the blue curve denotes “MiniLM” transformer models. 
(B) The comparative analysis between KG-RAG, Cypher-RAG, and Full-Text Index using Apache Lucene in terms of retrieval accuracy (top) and token 
usage (bottom). Insight shows an example where Cypher-RAG fails to retrieve context from the KG when the input prompt is slightly perturbed, but KG- 
RAG and Full-Text Index remain robust in context retrieval. However, only KG-RAG could extract provenance information linked to the assertion from the 
context, whereas Full-Text Index could not. It is evident that KG-RAG has significantly lesser token usage when compared to Cypher-RAG and Full-Text 
Index method (bottom). Error bar in the token utilization bar plot (bottom) represents standard error of the mean (SEM).
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Compared to Cypher-RAG, full-text index, and KG-RAG 
showed robustness against perturbation. Full-text index 
showed a slight decrease in the accuracy after query perturba
tion (dropped to 58% from initial 61%), but KG-RAG was 
able to maintain its retrieval accuracy at 97% which indicates 
its higher robustness against input perturbation (Fig. 4B, 
top). This is because KG-RAG employs a semantic embed
ding approach to extract graph context, which enhances its 
ability to effectively handle various representations of entities 
within user prompts. Next, we analyzed the total token usage 
of each framework for generating the response for the same 
test dataset (Fig. 4B, bottom). We found that full-text 
index had an average token usage of 10 590 tokens, while 
Cypher-RAG averaged 8006 tokens. However, KG-RAG had 
an average token usage of only 3693 tokens (Fig. 4B, 
bottom). This represents a 53.9% reduction in the token 
usage compared to Cypher-RAG and 65.1% reduction 
compared to full-text index. This highlights the significant 
cost-effective retrieval ability of KG-RAG.

3.4 Performance on True/False and MCQ datasets
Figure 5 shows bootstrap distributions of performance (accu
racy) of the three LLMs using prompt-based and KG-RAG 
framework on True/False (Fig. 3A) and MCQ (Fig. 5B) data
sets. Table 1 summarizes the performance of the three LLMs 
across these datasets. We observed a consistent performance en
hancement for the LLM models under KG-RAG framework on 
both True/False and MCQ datasets (Table 1). KG-RAG 

significantly elevated the performance of Llama-2 by approxi
mately 71% from its initial level (0.31 ± 0.03 to 0.53 ± 0.03) on 
the more challenging MCQ dataset (Table 1). Intriguingly, we 
also observed a small but significant drop in the performance of 
GPT-4 model (0.74 ± 0.03) compared to GPT-3.5-Turbo model 
(0.79 ± 0.02) on MCQ dataset using KG-RAG framework 
(T-test, P-value < 0.0001, t-statistic¼−47.7, N¼1000) but 
not in the prompt-based approach. We have also conducted 
an additional comparative analysis between Cypher-RAG and 
KG-RAG using the same benchmark datasets, where KG-RAG 
showed significantly higher performance on both datasets 
(Supplementary S1 Text, Supplementary Fig. S2 and Table B).

In this work, we introduce a simple but highly effective 
framework that combines a biomedical knowledge graph 
with LLM chat models in a token optimized fashion. This in
tegration resulted in a domain-specific generative system 
whose responses were firmly grounded in well-established 
biomedical knowledge. We compared the proposed 

Figure 5. LLM performance on True/False and MCQ datasets. Performance (Accuracy) distributions of LLMs on (A) True/False and (B) MCQ datasets. 
Figure panel shows the distributions corresponding to both prompt-based and KG-RAG-based approaches. Vertical-dashed line indicates the mean value 
of the distribution. The higher the value, the better the performance.

Table 1. LLM performance (accuracy: mean ± std) on True/False and 
MCQ dataset.

Model True/False dataset MCQ dataset

Prompt based KG-RAG Prompt based KG-RAG

Llama-2-13b 0.89 ± 0.02 0.94 ± 0.01 0.31 ± 0.03 0.53 ± 0.03
GPT-3.5-Turbo 0.87 ± 0.02 0.95 ± 0.01 0.63 ± 0.03 0.79 ± 0.02
GPT-4 0.9 ± 0.02 0.95 ± 0.01 0.68 ± 0.03 0.74 ± 0.03
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framework with other approaches that utilize Cypher query 
and full-text indexing and showed that KG-RAG was more 
robust to prompt perturbation and more efficient in token 
utilization. In addition, KG-RAG consistently demonstrated 
superior performance compared to the prompt-based baseline 
LLM model on all human-curated benchmark datasets. We 
hypothesize that this performance improvement arises from 
the fusion of the explicit knowledge from the KG and the im
plicit knowledge from the LLM. This shows the value of pro
viding domain-specific ground truth at a fine-grained 
resolution as context at the prompt level.

A heterogeneous knowledge graph with diverse concepts 
(the biomedical concepts in this case) interconnected at a 
massive scale has the potential to generate new knowledge as 
an “emergent property” (Baranzini et al. 2022, Morris et al. 
2023). In fact, as LLMs scale up in various dimensions like 
model parameters, training data, and training compute, they 
have been thought to exhibit reasoning or “emerging capa
bilities” (Wei et al. 2022) although this observation could 
also be explained by “in-context learning” or other aspects of 
the examples (http://arxiv.org/abs/2005.14165; Min et al. 
2022, Lu et al. 2023). In any case, KG-RAG capitalized this 
capability and generated biomedical text with rich annota
tions such as provenance and statistical evidence (if available) 
thereby resulting in more reliable and knowledge-grounded 
responses. Additionally, the optimized and fine-grained con
text retrieval capability of KG-RAG ensured a budget 
friendly RAG system to apply on proprietary LLMs. This 
way, KG-RAG democratizes SPOKE’s vast biomedical 
knowledge by enabling researchers, clinicians, and other pro
fessionals to leverage its comprehensive information through 
natural language interactions. This approach facilitates access 
to complex biomedical data without requiring specialized 
graph query language skills.

Previous studies have utilized KG in conjunction with LLM 
for knowledge intensive tasks such as question-answering 
(Yasunaga et al. 2022), multi-hop relational reasoning (Feng 
et al. 2020), commonsense reasoning (Lin et al. 2019, Lv 
et al. 2020), and model pretraining (Moiseev et al. 2022, 
Yasunaga et al. 2022). Furthermore, enhancing prompts by 
incorporating structured knowledge has been described and 
studied (Lewis et al. 2020, Pan et al. 2023). Naturally, these 
approaches have bolstered the positive reinforcement be
tween KG and LLM. Nevertheless, it is worth noting that 
these approaches are often task specific and, in some cases, 
the knowledge infusion could grow exponentially with the in
clusion of higher-order relations (https://doi.org/10.18653/ 
v1/d18-1454) (Lin et al. 2019). Such approaches could com
promise the limited token space of the LLM. Alternative 
methods used knowledge infusion through the direct use of 
query languages such as SPARQL (https://doi.org/10.5445/ 
IR/1000151291). However, this could render the system con
straint to the schema of the underlying KG, potentially affect
ing the flexibility and adaptability of prompts. Moreover, as 
the KG expands and its schema grows, it could potentially 
occupy a significant portion of the LLM input token space. 
This explains why we noticed a greater token usage with the 
Cypher-RAG method (average usage of 8006 tokens), as it 
incorporates the entire graph schema into the input prompt 
for converting natural language into structured Cypher 
queries. In contrast, KG-RAG requires minimal graph 
schema, thus eliminating the need to include it in the prompt 
and resulting in substantial token savings, with a reduction of 

over 50% in token utilization compared to Cypher-RAG. 
This finding suggests that Cypher-RAG, when dealing with a 
graph as large as SPOKE (which contains over 40 million 
nodes), requires LLMs that enable a larger context window. 
This limitation was also observed with traditional informa
tion retrieval frameworks such as full-text indexing using 
Apache Lucene. In contrast, KG-RAG is capable of managing 
this with LLMs that require a relatively smaller window size.

To conduct robust benchmarking, we curated datasets that 
underwent review by domain experts. Given the swift progress 
in LLM research, we believe that such rigorously vetted datasets 
could serve as valuable resources not only for evaluating KG- 
RAG but also for assessing other ongoing LLM endeavors in 
biomedicine. In our benchmarking analysis, we found an en
hancement in LLM performance as a function of the model size 
in terms of the number of parameters. Intriguingly, with the 
KG-RAG framework the performance of GPT-4 on the MCQ 
dataset, despite its model size, dropped significantly compared 
to that of the GPT-3.5-Turbo on the MCQ dataset. In fact, the 
performance of GPT-3.5-Turbo under KG-RAG framework 
was on par with that of the GPT-4 model on True/False data
sets. These results suggest that at present, GPT-3.5 may be a 
better context listener than GPT-4. In fact, a recent study com
pared the March 2023 version of GPT-4 with the June 2023 
version, shedding light on the drift in the LLM performance 
over time (Chen et al. 2023). The study revealed that, as time 
progressed, GPT-4 exhibited a reduced tendency to adhere to 
user instructions. In contrast, there was no consistent alteration 
observed in the instruction-following behavior of GPT-3.5 over 
time. Studies have also shown that GPT-4's larger model size 
and more diverse training data enable it to excel in a multitude 
of complex reasoning tasks (http://arxiv.org/abs/2305.03195). 
GPT-3.5-Turbo has shown to excel in few-shot learning by con
text adherence (http://arxiv.org/abs/2005.14165). We believe 
that the context adherence nature of GPT-3.5, in contrast to the 
general application of GPT-4, might make it more suitable for 
frameworks like KG-RAG. Therefore, these factors could have 
contributed to GPT-3.5's superior performance over GPT-4 in 
the KG-RAG framework.

When the proprietary GPT models were compared to the 
open-source Llama-2-13b model, they showed a narrow mar
gin in performance on the biomedical True/False dataset. 
However, on the more challenging MCQ dataset, Llama-2 
initially demonstrated lower performance compared to GPT 
models. Interestingly, the KG-RAG framework provided a 
substantial performance boost to Llama-2, improving its per
formance by �71% from the baseline. Despite this boost that 
narrowed the performance gap, the performance of Llama-2 
remained lower than that of the GPT models. This suggests 
that the KG-RAG framework has the potential to capitalize 
the intrinsic context comprehension capabilities of open- 
source pretrained models like Llama-2, making them more 
competitive with proprietary models like GPT. The findings 
underscore the importance of context enrichment techniques 
for improving the performance of language models on com
plex tasks in specialized domains.

While the proposed framework has successfully addressed 
numerous challenges, we recognize there are opportunities 
for improvement. Currently, this approach is limited to han
dling biomedical questions centered around diseases, as our 
focus has been on embedding disease concepts from the 
SPOKE KG for recognizing disease entities in the prompt. 
However, we have implemented a proof of concept that 
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extends KG-RAG to non-disease-centric questions by embed
ding more than 87 000 nodes from SPOKE, including genes, 
proteins, enzymes, symptoms, compounds, reactions, ana
tomical structures, and side effects (Supplementary S1 Text). 
Future work may expand this scope by including all biomedi
cal concepts (nodes) in SPOKE and other KG. Since SPOKE 
contains more than 40 million biomedical nodes, this expan
sion will enable the KG-RAG framework to address a 
broader range of biomedical questions and thereby enhance 
its versatility. Currently, we have implemented the KG-RAG 
framework exclusively on the SPOKE biomedical knowledge 
graph, which is maintained as a Neo4j property graph data
base. While we utilize embeddings to enhance node and con
text retrieval, all operations are performed within this Neo4j 
graph structure. As future work, we plan to extend KG-RAG 
to other biomedical KGs and domains, demonstrating its ver
satility and broader applicability. Finally, the quality of the 
retrieved context relies on the information stored in the un
derlying graph. In our case, SPOKE utilizes meticulously cu
rated knowledge bases to construct its nodes and edges; 
however, we do not assert that it is entirely error free or ready 
for clinical use. Thus, while SPOKE’s reliability has been 
demonstrated through its successful application in various 
biomedical contexts (Supplementary S1 Text; Himmelstein 
and Baranzini, 2015, Himmelstein et al. 2017, Nelson et al. 
2019, Nelson et al. 2021a,b, Baranzini et al. 2022, Morris 
et al. 2023, Soman et al. 2023a,b, Tang et al. 2024), it is im
portant to note that this work primarily focused on the devel
opment of a framework, rather than conducting a rigorous 
and formal evaluation of the KG itself.

In summary, the KG-RAG framework retrieves semanti
cally meaningful context from a knowledge graph using mini
mal tokens, then combines this explicit knowledge with the 
parameterized implicit knowledge of an LLM. This knowl
edge integration results in the generation of domain specific, 
reliable and up-to-date meaningful biomedical responses with 
rich annotations.
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