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An extension has been made to the Chou’s graphic rules in order to cover those
enzyme-catalysed reaction systems in which there are two or more parallel reaction

routes between any two enzyme species.

Graphical methods have been used more and
more widely in modern biology [e.g. see King
& Altman (1956), Wong & Hanes (1962), Volken-
stein & Goldstein (1966), Cha (1968), Fromm
(1970), Orsi (1972), Seshagiri (1972), Ainsworth
(1974), Wong (1975), Indge & Childs (1976),
Volkenstein (1977), Hill (1977), Cornish-Bowden
(1977), Chou et al. (1979), Whitehead (1979), Chou
& Liu (1981), Jackson et al., (1981), Goldstein
(1983) and others]. The advantage of doing so lies
not only in the visual intuitive aid provided to
qualitative analysis and discussion, but also in the
mathematical efficacy, i.e. in greatly simplifying
calculations and hence helping to obtain the
desired quantitative results. In particular, certain
comparatively recent advances in this field due to
Chou (1980, 19815) made possible the analytic
solutions for some very complicated enzyme-
catalysed mechanisms (Chou et al., 1981; Chou,
1981a) that had previously been found formidable
(Ainsworth, 1977) when the general derivation
procedures were followed. An additional particu-
lar merit of Chou’s (1980, 1983) rules is that,
compared with the other graphical methods in
enzyme kinetics, a set of self-checking formulae
are included by which any omissions in subgraphs
and terms during calculations can be avoided. This
is very useful when one is dealing with complex
systems (Chou et al., 1981; Chou, 1981a; Jackson
et al., 1981).

However, in enzyme kinetics we are often
confronted with mechanisms in which two or more
parallel reactions (Cornish-Bowden, 1976) exist
between the same pair of enzyme species (see
Examples 1 and 2 below). For such a system with
parallel reactions interconverting any two enzyme
species, Volkenstein & Goldstein (1966) put
forward the condensation principle to simplify
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calculation, which can be stated as follows. If there
are two or more steps interconverting the same pair
of enzyme species, these steps can be condensed
into one by adding the rate constants for the
parallel reactions when the King & Altman (1956)
graphical method is used. Can such a condensation
principle also be incorporated into the Chou’s
(1983) rules, and, if so, how? The present paper is
devoted to a solution of this problem.

Extension of Chou’s Rules

In enzyme kinetics the concentrations of enzyme
species and the rate of formation for product P are
two kinds of basic quantities that often need to be
calculated; they can be formulated as follows
(Chou, 1983):

N,
[E,]= e, (m=12,..,n) 1)

2N,
i=1
de]  P-P

dt

. € 2
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where [E,,] is the concentration of the mth enzyme
species E,,, e, is the total enzyme concentration, v
is the rate of formatiQn for product P,and N; (i =1,
2,...,n)and Pand P are explicitly defined below.
On the basis of a series of previous papers (Chou et
al., 1979, 1980, 1981 ; Chou & Forsén, 1980, 1981;
Chou, 1980, 1981a,b), two elegant rules were
summarized by Chou (1983) for the calculation of
the quantities in eqns. (1) and (2) respectively.
Below, let us see how these two rules (Chou, 1983)
should be extended in order to be able to cover the
enzyme-catalysed systems in which there are two
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or more parallel reaction routes between any two
enzyme species.

Before going ahead, let us recall that in all
graphical calculation methods the first thing is
always to draw a reaction graph by which to
represent the enzyme system concerned. In such a
graph, various enzyme species are represented by
different points, and the interconversion between
any two enzyme species by an arc that is with an
arrow and weighted by a rate constant to indicate
the conversion direction and rate respectively (see,
e.g., Figs. 1 and 5). The reaction graph thus
depicted is symbolized as 2, and on the basis of
this Chou’s (1983) Rule 1 and Rule 2 can be
reformulated as follows (in order to make it clear
what modifications have been made here, below
Chou’s original rules are printed in normal type
with our alterations being given in italics).

Chou’s Rule 1 ( for calculating N;)

(1) In the reaction graph 2, if there are two or more
arcs linking a same pair of enzyme species and having
the same conversion direction, these arcs can be
condensed into one by adding their rate constants
together. The graph obtained by such a condensation
step is denoted by 9, (e.g. see Fig. 2).

(2) Toeach point in 2. add a loop with a weight
equal to the sum of the weights of the arcs
departing from that point. The graph thus ob-
tained is denoted by 2t. For instance, the 2, in
Fig. 2 is accordingly transformed into 21 of Fig. 3.

(3) Select any point in 21, e.g. E,, as a starting
reference point. Then for any specified point E,,,
find all subgraphs each of which possesses a path
from E; to E,, and all cycles and loops that
intersect with neither each other nor the path.
Then for each such subgraph, take the product of
all its weights and multiply with a sign factor given
by

=D 3

where C, is the number of the cycles (not including
loops) in the corresponding subgraph. Taking a
sum of all these results, we immediately obtain N,
of eqn. (1). Note that the result thus obtained for
N, is always the same irrespective of which point is
chosen as the starting reference point. But when the
starting point is chosen as the specified point itself, i.e.
E, = E,, the path from E to E,, will degenerate into a
point, whose weight in this case should be assigned as
1 for calculation (e.g. see eqns. 10 and 11). By
following such a method, all N; (i=1,2,...,n) in
eqn. (1) can easily be obtained, so that the concen-
trations of all the enzyme species can be found as
well.

(4) Inorder to avoid losing any subgraph during
calculations, the following method can serve to

a;;
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make a check. According to the transformed graph
271, construct a matrix A =[a;], in which:

{ 1, if there is an arc from E; to E;in &*

0, if there is no arc from E; to E;in 2"
O]

Then, when E; is taken as the starting point to
calculate N,,, the number of subgraphs to be
counted must be:

n’=m=per A,, (%)

where A,, ; is the submatrix obtained by removing
the mth row and sth column from the matrix A.
And per A, ; denotes the sum of all terms obtained
by expanding the determinant of A, ; but taking all
the signs of expansion as plus (e.g. see eqn. 21).
Since the elements of A are either 1 or 0 (see eqn.
4), the value of per A, as defined above is very
easy to calculate.

Furthermore, we can also predict the number of
terms in N,, by the following method. According to
the reaction graph 9, construct a matrix B = [b;], in
which:

b;; = the number of arcs from E;to E;in & (6)

On the basis of B, reconstruct a matrix C = [¢;], in
which:

n
2 bija ifi=j
t=1 N
Cij= ) @)
=b;, ifi#j
Then the number of terms in N,, must be equal to:
P,=detC, , 8)

where C,, ,, is the submatrix obtained by removing
the mth row and mth column from C, and the
symbol det means taking the determinant value for
the matrix next to it.

The theoretical justification of the above exten-
sion for Chou’s Rule 1 will become obviously after
combining Appendix B of the previous paper by
Chou et al. (1979) and Appendix 4 by Chou &
Forsén (1981).

Chou’s Rule 2 ( for calculating P and P)

(1) Define two types of cycles as follows: (a)
product-releasing cycle, when a circuit is made
along it the net number of the released P is greater
than zero; (b) product-combining cycle, when a
circuit is made along it, the net number of the
combined P is greater than zero.

Both these two types of cycles play a key role in
calculating the rate of formation for the product P,
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Extension of Chou’s Rules

and hence may be termed as the master cycle.
However, during calculation all the master cycles
should be found directly from the original reaction
graph 9 rather than from the condensed graph 9. or
its transformed graph 9%, except when 9 and 9, are
identical (i.e. there is no parallel reaction between any
pair of enzyme species; only in this case can both
graph 9 and graph 21 be used to find the master
cycles).

(2) Find all subgraphs each of which possesses
one product-releasing cycle (or product-combining
cycle), and all the other cycles and loops. The latter,
however, are found from the transformed graph 21,
but they must not intersect with each other nor with
the master cycle even when the graphs 2 and 9% are
overlapped. Then for each of these subgraphs take
the product of all its weights and multiply with a
factor given by:

(=g )

where C; is the number of the cycles (not including
the master cycle and loops) in the respective
subgraph, and g is the number of P released (or
combined) when a circuit of the product-releasing
cycle (or the product-combining cycle) is made.
Taking_a sum of these results, we immediately
obtain P (or P).

The above extension for Chou’s Rule 2 can be
easily derived from the Appendix in the previous
paper by Chou (19815).

Examples

Michaelis—Menten (1913) mechanism

Although the advantage of applying Chou’s
rules to a simple mechanism such as this might be
not very remarkable, yet it is very easy to see how
the extended Chou’s rules work through such an
illustration. The reaction graph 2 for the following
Michaelis—-Menten mechanism:

k., k,,

ES

E+S

E+P

K, P

is depicted in Fig. 1. The corresponding condensed
graph 9, and transformed graph 2% are shown in
Figs. 2 and 3 respectively [cf. steps (1) and (2) of the
extended Chou’s Rule 1]. Then, in accordance with
step (3) of that rule, we immediately have:

Np= (10 -~

(if taking ES as the starting reference point)
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k.,[S]
E ES
LN
P k.,
Fig. 1. Reaction graph 9 for the Michaelis—Menten
mechanism
k, [S1+k [Pl
E ES
k  +k,,

Fig. 2. Condensed graph 9. obtained from Fig. 1 in
accordance with step (1) of the extended Chou’s Rule 1

k. ,[S]+k_,[P]

k.\[S]+k_,P]

k y+k,,

Fig. 3. Transformed graph @' obtained from Fig. 2 in
accordance with step (2) of the extended Chou’s Rule 1

From the above we see that the results of N and
Ngs are independent of the choice of the starting
reference point. However, generally there will be
fewer subgraphs to count if the starting point is
chosen farther from the specified point, the one
corresponding to the enzyme species of interest.

= (=1

,.-------.---------,
me —

(k_y+k,,p)

L0

=k_,+k,,

beccccaccaccccccaad

(if taking E itself as the starting reference point) (10)
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k,,IS1+k_,[P)

o/_\"o

E ES

Ngs = (—1)°

(eeemecmmeemce————
Lececcccccccccaacad

(if taking E as the starting reference point)

= (-1
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k,,[S)+k_,[PI

= k+1[Sl + k_z[P]

m ;
o -

(if taking ES itself as the starting reference point) (11)

Substitution of eqns. (10) and (11) into eqn. (1) will
give:

_ (k-l+k+2)
(Bl = k_ +k,,+k,, [S]+k_,[P] “ 12
[ES] = k., [S1+k_,[P] (13)

k_ +k+k, [SI+k_,P] "

Now let us use step (4) of the extended Chou’s
Rule 1 to make a check. For 2% in Fig. 3, in
accordance with eqn. (4) we have:

1 1
A=
11
Then it follows from eqn. (5) that:
NE-~ES = pE~E— pES-E — pES-ES_ per []] = |
which indicates no subgraph was missed during

calculating Ng and Ngg. Furthermore, for 9 of Fig.
1, in accordance with eqns. (6) and (7) we have:

=fy o) e[

respectively. Thus it follows from eqn. (8) that:
PE=PEs=det [2]=2

which means no term was lost in eqns. (10) and
(11).

The above checking procedures becomes very
useful when the mechanism considered becomes
complicated (Chou et al., 1981; Jackson et al.,
1981).

On the other hand, according to the extended
Chou’s Rule 2, it follows that:

P=(=10-1:Ee«  ®ESi=k,k,,IS]

P (14)

k—|
<}_5:(_1)0.1 E@ ESi = k_,k_,[P]
(15)

k, § &l
S
k.3
' k 48] i
El EIS
k*[P]
Ky
P

Fig. 4. Botts—Morales mechanism.

" \—/) )
K 2
Kay LA ks, kjy
k3a
. /\\
E, E,

P A

Fig. 5. Reaction graph 2 for the Botts—Morales
mechanism
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(Note that in this example all the loops and cycles
found in 2 of Fig. 3 must intersect with the above
two master cycles when Fig. 3 and Fig. 1 are
overlapped, and therefore make no contribution to
Pand b) Substituting eqns. (14) and (15) as well as
eqns. (10) and (11) into eqn. (2), we immediately
obtain:

k., k,,[S1—k_k_,[P]

= e (16)
v k_,+k,,+k,[S1+k_,[P] 0
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Substituting eqns. (17)-(20) into eqn. (1), we
immediately obtain the concentrations for the
enzyme species E=E,, ES=E,, EIS=E; and
EI=E,.

In addition, by following the same checking
procedures as illustrated in the last example, it
follows [cf. eqns. (4), (6) and (7) and Figs. 5 and 6]
that:

1 10 1
which is none other than the rate of formation for 1 110
the product P in the Michaelis-Menten enzyme- A=
catalysed system. 0 111
1 0 1 1]
Botts—Morales (1953) mechanism — 2 0 17
A schematic expression for the Botts—Morales
mechanism is shown in Fig. 4. For simplicity, let B— 2010
E,=E, E,=ES, E;=EIS and E,=EI, and 1o 1 0 2
ki, =k+1[S],k21 =k_;,k%, =k% [P}, k%, =k*,,
kyy=kyolll, kyy =k_3, ksa=ky3, kay=k_3[S], 102 0]
k3. =k%;, ki3=k_;5[P), k4y=k,, and
k4 = k_4[I]; then the reaction graph for the Botts— 3 —2 0 -1
Morales mechanism can be depicted as in Fig. 5.
By following steps (1) and (2) of the extended c— -2 3 -1 0
Chou’s Rule 1, Fig. 5 can be transformed into 21 of = 0 -1 3 —2
Fig. 6. Thus, in accordance with step (3) of that
rule, we obtain: -1 0 -2 3
i Eox &% eE, E® E,
E (kyy + k3, + kyy)
: RN S kyg(kyy k¥ ) (kg + kg + K +
N — (_1)0 Ve ket ke + (_1)0 kay 32\%21 21 41 43 43
l ' e kyy(ksg+ k33) (ke + k3 + Ka3)
E E4O E3 E4 <\/.E3
H Ky + k3
(taking E, as the starting reference point) 17)
C T ek
i E;e——eE, ElO oE,
VR é Y =k (kyy+ k) (kyy + kyy + k3 +
N2 - ( l) § ks (kn+ku+k:4) * ( l) (ki Ky + k) ks k32(k43 + k:3) (k12 + kl‘z + kl4)
§ E, Q E, E4./m E,
(taking E, as the starting reference point) (18)
Similarly:
Ny = kyy(kyy + kTo) (kg + kyg + k) + Ky (kyy + k35) (kyy + k3 + kay) (19)
Ny = kyy(kyy + k3)(kyy + Kty + k) + kyg(hyy + K30) (Kap + g + k3,) (20)
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Then in accordance with eqns. (5) and (8) we have:

1 10
-1 _ —_ —
! =per A ;=per|0 1 1|=2 @1
1 0 1
nl—02 =nl-3= n2-04 =2
and
3 -1 0
P =detC, ,=|—-1 3 2({=12 22)
0 -2 3

P,=P,=P,=12

respectively. Eqns. (21) and (22) indicate that
neither subgraphs nor terms were lost during
calculating N, (see eqns. 17-20).

For the rate of formation of the product P in this
example, according to the extended Chou’s Rule 2
we have (remember that in the following sub-
graphs the master cycle should be found from 2 of
Fig. 5, and the other part from 21 of Fig. 6):

G.-P. Zhou and M.-H. Deng

Kigy L k3p

kg + K3,
kyy + Koz + K3y st

kap+kaq+ K3,

Fig. 6. Transformed graph @' obtained from Fig. 5 by
Jollowing steps (1) and (2) of the extended Chou’s Rule 1

Substituting eqns. (23) and (24) into eqn. (2), we
immediately obtain v = d[P]/dt, the rate of forma-
tion for product (note the denominator is the same
as the expression for the concentration of enzyme
species, and hence has already been obtained in the
preceding calculation).

ki, i : ki : ] o
E,e__eE,| {E, oE, ! { E, Eyi
P e ; ; i 5 ; N E
5 (_1). P .yt P : —1)°.1¢
(=1°-1 E+(1)1E E+()limP .
(kyy + ks + k33) E g § E
O Q 3 L e 5
{ E, E, | {E,6_____9E, {E, 07 ko TE,
: gty + k)~ : (kyy+ k%)
O O" X —- ) B,
+(=1)°-1 + (=1 +(=1)°-1
ki,
E4.;___,\/’ E, EaQ.Es E, E,:
K :
P P P

= kypk31(kyy + kyy + k3 (kyy + Kogy + k33) — Kok 51 (K + K34) (kg3 + K34) + Ky gkgsksok Dy + kagk3g(kyy + kyp +
k) (kyy + K3y + kay3) — kysk3a(k i + k) (Kay + K3y) + Ky Ky oky ik

= k31K o (Kask gy + kyokay + Kisksy + Kygkyy + k3iky,) +
k31K ok gsky + K3aka3(Ka K yg + k31K g+ Kygkos + KoKy + KToKo3) + k34K 41K 10K o

(23)
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4

-
P=(—1)0-1

L (—1)0- 1

geles LG, (\
+ (=11} P+ (=D +(=1)°-1
kg
E, ‘{—\.E .‘(\ES

E,
E,

fememcecmccccccccaan

= kyky (Kyokgy + kyok gy + Kisksy + kygkyy + k3ikay) + ktokyskaky, + ksksq(kyike g+

K3k s+ kygkyy + kyokyy + kykys) + kisksky ki,

249

However, it is very easy to make errors if the
King-Altman method is applied to the above
example, since one has to find 12 subgraphs (only
two subgraphs, however, are enough when using
the extended Chou’s Rule 1) for calculating each
N, (m=1, 2, 3, 4). Besides, in the King-Altman
method the rate of formation for product is
calculated through the following equation:

d[P]
V=

= k3[E,] + k3 [E; 1 —k3,[E, 1 — k3[E,]

4
= (k3 N, + k3 N, —k1,N,— kN, e/ 3 N;
i=1

(25)

Therefore, even though all N; are obtained, when
substituting them into eqn. (25) one still must be
very careful to find out all reciprocally cancelled
terms (there are in all 24 reciprocally cancelled
terms in the present example) in order to obtain the
final result. This kind of cancellation operation is
clearly both wasted labour and prone to errors. But,
in the extended Chou’s Rule 2, there is not any
cancelled term between P and ‘}_’, because this kind
of terms has already been automatically ruled out

by the rule itself in calculating Pand P.
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Through the above comparison, the merits of the
extended Chou’s rules are very clear. Actually, the
more complicated the mechanism considered, the
more striking will the advantage of these rules be
manifest, as shown in Chou et al. (1981) and Chou
(1981a). Especially, after becoming familiar with
these two rules, one need not depict the decom-
posed subgraphs one by one as demonstrated
above; the desired results can be directly written
down according to the graphs 2 and 21 even for
very complicated mechanisms.
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