
OR I G I N A L AR T I C L E

HCC spatial transcriptomic profiling reveals significant
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Abstract

Background: HCC is a highly vascular tumor, and many effective drug

regimens target the tumor blood vessels. Prior bulk HCC subtyping data

used bulk transcriptomes, which contained a mixture of parenchymal and

stromal contributions.

Methods: We utilized computational deconvolution and cell-cell interaction

analyses to cell type-specific (tumor-enriched and vessel-enriched) spatial

transcriptomic data collected from 41 resected HCC tissue specimens.

Results: We report that the prior Hoshida bulk transcriptional subtyping

schema is driven largely by an endothelial fraction, show an alternative

tumor-specific schema has potential prognostic value, and use spatially
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paired ligand-receptor analyses to identify known and novel (LGALS9 tumor-

HAVCR2 vessel) signaling relationships that drive HCC biology in a subtype-

specific and potentially targetable manner.

Conclusions: Our study leverages spatial gene expression profiling

technologies to dissect HCC heterogeneity and identify heterogeneous sig-

naling relationships between cancer cells and their endothelial cells. Future

validation and expansion of these findings may validate novel cancer-

endothelial cell interactions and related drug targets.

Keywords: hcc, liver cancer, tumor microenvironment, spatial profiling

INTRODUCTION

HCC is the sixth leading cause of cancer death in the
United States and the fourth leading cause of cancer
death worldwide.[1] HCC incidence is increasing due to
the rising rates of obesity and associated metabolic
steatotic liver disease, and it still has a significant
contribution from the continued impacts of viral hepa-
titis, heavy alcohol use, and additional etiologies.[2]

Although significant genomic profiling efforts in HCC
have been described,[3] most common genomic variants
are not therapeutically targetable with existing drugs.
Rather, many active systemic therapy regimens empiri-
cally target the tumor vasculature, either alone or in
combination with immune checkpoint inhibitors,[4] and
this fact underscores the privileged role of tumor-
resident endothelial cells (ECs) in HCC pathogenesis.

The understanding of EC roles in tumor pathophysio-
logy has evolved considerably over the past few
decades. Folkman’s original paradigm of tumor-perfusing
vasculature[5] in the 1970s gave way to Jain’s biophysical
paradigm—whereby the abnormal structure of tumor
vessels (in the setting of a local imbalance of proangio-
genic and antiangiogenic growth factors) leads to
heterogeneous hypoxia and barriers to drug delivery[6]

—in the 2000s. The “angiocrine”model proposed by Rafii
and others in the 2010s added another layer, in which
local bidirectional paracrine cancer-EC interactions
ultimately stimulate tumor growth and spread.[7] Further,
tumor-resident ECs are well positioned as critical
immune regulatory cells,[8] implying the possibility of
multipartner interactions between cancer cells, ECs, and
leukocytes. Indeed, many of cancer’s hallmarks[9] are
directly impacted by local, stromal ECs.

Although HCC natural history[10] and modern sys-
temic therapy landscape[4] are both clearly impacted
by EC presence and phenotype, established bulk
tissue classification schemas[11] are unable to resolve
potential contributions by local ECs or other stromal
cell types. High-throughput single-cell transcriptomic
profiling can identify multiple EC subtypes in the

HCC tumor microenvironment (TME),[12,13] a finding
concordant with similar studies in other cancers[14,15]

and other noncancerous organs.[16] Spatial transcrip-
tomics technologies[17] aim to characterize the molec-
ular phenotypes of different cell types in the TME.

In the current study, we used multiple spatial
transcriptomics platforms to dissect linked gene expres-
sion programs in the tumor vasculature—mainly com-
prised of ECs—and cancer cell–enriched areas. We
demonstrate that: (1) this technique accurately enriches
for regions containing blood vessels separately from
tumor-enriched areas, (2) the prior Hoshida bulk tumor
classification system included a significant contribution
of vascular EC signal in the aggressive S1 subtype, (3)
transcriptional phenotypes of cancer cell–enriched
areas are correlated with survival, and (4) the heteroge-
neous subtypes contain distinct cancer-EC interactions.
Taken together, our work harmonizes prior bulk tissue
transcriptomic profiling work with single-cell data for
which spatial context is destroyed, demonstrates a
significant contribution of the EC compartment to
previous canonical bulk gene profiles, and provides
further evidence that there is a fundamental link
between our redefined tumor-enriched subtyping sys-
tem and survival using internal and public data sets.

METHODS

Specimen collection and use

All patients in this study consented without compensa-
tion to excess tissue biobank protocol 2013P001854,
which was reviewed and approved by the Massachu-
setts General Hospital Institutional Review Board. This
study is compliant with all relevant ethical regulations,
including the Declarations of Helsinki and Istanbul. For
inclusion in this study, patients had nonmetastatic HCC
and went to surgical resection without prior neoadjuvant
treatment (Table 1). For DSP (Nanostring) analysis,
formalin-fixed, paraffin-embedded tissue specimens
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TABLE 1 Patient clinical characteristics

ID Sex Status Time Serum_afp Tbili Alb Inr Etiology
Tumor_
Number

Tumo-
r_Size Differentiation Tstage Nstage Lvi Pni Fibrosis Steatosis

1 F 1 240 7574 0.3 3.1 1.2 NA 1 13.0 Moderate 2 x Yes x NA NA

2 M 0 4241 3.8 0.3 4.4 1.3 Viral 1 1.5 Moderate 1 x x x NA NA

3 M 1 2260 4.5 1.1 4 1.3 Nash NQ 3.5 Moderate 1 x x x 6 Macrovesic-
ular

4 M 1 2587 54.1 1.8 3.3 1.5 Viral 2 2.5 Moderate 2 x x x 6 Microvesic-
ular

5 M 1 311 28.6 0.5 3.9 1.2 Viral NQ 6.5 Moderate_poor 4 x Yes x 3 Moderate

6 M 1 1416 3.5 0.8 4 1.2 NA NQ 5.0 Moderate 1 0 x x 3 NA

7 M 0 5338 90 0.6 4.5 1.1 Viral 2 4.0 Poor 2 x Yes x 4 NA

8 F 1 11 3.6 0.4 4.2 NA Nash 1 13.0 Well 1 x x x 0 Moderate

9 M 0 1272 31 0.8 4.3 1 Viral 1 3.9 Moderate 1 x x x 5 NA

10 M 1 746 3979 0.5 3.4 0.9 NA 1 10.1 Moderate 1 x x x 2 NA

11 F 0 3769 7.6 1.1 4.6 1.3 Viral 2 2.2 Well 2 x Yes x NA Moderate

12 M 0 NA 168 2 3.3 1.3 Viral 2 2.5 Moderate_poor 2 x x x NA NA

13 M 1 592 80.4 0.8 3.1 1.2 Viral 2 7.5 Moderate_poor 3 x Yes x 4 NA

14 M 1 856 1037 0.5 3.3 1.1 Hemochro-
matosis

NQ 3.8 Moderate 2 x Yes x 5 Moderate

15 M 1 3496 2.6 0.8 3.8 0.95 NA NQ 4.6 Moderate 1 x x x 5 Moderate

16 M 1 479 17292 0.9 3.4 1 Viral NQ 10.0 Poor 2 x Yes x 2 NA

17 F 1 4049 6.1 0.8 4.6 1.2 etoh NQ 1.5 Moderate 1 x x x 6 Mild

18 M 1 1540 45.8 0.5 3.9 1.1 dm 1 5.7 Moderate 2 x Yes x 2 Mild

19 M 1 324 9415 1.2 3.6 1.2 Viral NQ 3.8 Poor 2 0 Yes x NA NA

20 M 1 306 37510 0.6 4.1 1.1 Viral NQ 5.5 Moderate 1 x x x 6 NA

21 M 0 5030 1743 1.1 3.4 1.6 NA NQ 3.5 Moderate_poor 1 x x x 5 Moderate

22 M 0 2197 9.4 1.1 5.5 1.2 Viral NQ 4.5 Poor 2 0 Yes x 6 NA

23 M 1 2884 76.7 2.5 2.7 1.6 Viral 2 5.0 NA 2 0 Yes x NA NA

24 M 0 4611 10 0.4 4.6 1 Viral 2 5.0 Moderate 2 x x x 5 NA

25 M 1 627 313.2 0.5 4.2 1.1 Viral > 50 3.0 Moderate 3 x Yes x 6 Minimal

26 M 1 2245 9635 1.2 3.6 1.3 Viral 4 1.2 Well 2 x x x 5 Mild

27 M 1 40 30.2 1.6 3.4 1.3 Viral 1 4.5 Moderate 1 x x x 6 Mixed

28 M 0 1480 2 0.3 3.6 1.1 etoh 1 7.1 Moderate 2 x Yes x NA NA

29 M 0 2955 64.9 0.3 3.9 1.2 Viral 1 10.5 Moderate 2 x Yes x 5 NA

30 F 1 475 5.6 0.8 3.3 2.7 NA NQ 4.0 Moderate 1 0 x x NA NA

31 F 1 15 3909 0.9 3.5 1.1 Viral NQ 5.0 Moderate 2 x Yes x NA NA
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from the Massachusetts General Hospital Pathology
archives were assessed for tumor content by a board-
certified pathologist (Vikram Deshpande) and then
2-mm cores were obtained for tissue microarray
generation. After tissue microarray generation, cut
slides were stored at −80°C until use.

Hierarchical clustering

Counts were Q3 normalized as described in Supple-
mental Methods, http://links.lww.com/HC9/B46. We
then performed log2 transformation of the Q3 normal-
ized counts and mean-centered all the genes such that
every gene to be clustered has a mean of 0 while
keeping the variance. We further performed agglomer-
ative hierarchical clustering with the hclust package and
used average linkage as the distance metric.

Differential expression analyses

For any paired group comparisons, we obtained the
log2 fold change between the mean of the 2 groups. To
obtain p values for tumor-vessel area of interest (AOI)
comparison, we used linear mixed-effects models with
the lmerTest package where AOI type was modeled as
the fixed effect and resection sample ID as the random
effect. To compare the 3 tumor niches in GeoMx data
and between cancer and tumor-associated endothelial
cells (TECs) in pseudo-bulk scAtlasLC data, we used
the Wilcoxon rank sum test. For visualization of the
results, we plotted volcano plots with log2 fold change
on the x-axis and false discovery rate-adjusted p values
on the y-axis.

Vascularization and Hoshida subtype
correlation

We defined the extent of vascularization as the percent-
age of vessel AOI area in a region of interest (ROI).
Example images of ROIs of high and low vascularization
are shown in Supplemental Figures S3B and C, http://
links.lww.com/HC9/B46. To assign a Hoshida subtype
for each ROI, we aggregated raw counts from tumor and
vessel AOIs to represent bulk transcriptomics data,
similar to what was analyzed by Hoshida et al in 2009.
We then assigned a subtype per ROI based on the
relative expression levels of S1, S2, and S3 genes.

Tumor AOI subtype analysis and ligand-
receptor analysis

To identify distinct tumor-vessel niches, we performed
hierarchical clustering on the top 100 most variableT
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genes in the tumor AOIs, where we found 3 clusters,
termed T1, T2, and T3 AOIs. We performed pairwise
differential expression analyses as described above
and found genes enriched in the 3 tumor clusters,
which we call T1, T2, and T3 genes. To understand
interactions in a spatial context, we used CellChat, a
curated database of known ligand-receptor pairs.[18]

For each ligand-receptor pair, we calculated its
correlation and effect size between the ligand expres-
sion in the tumor AOIs and the receptor expression in
the matched vessel AOIs. This analysis was per-
formed across all ROIs as well as in each of the T1,
T2, and T3 subtypes.

Resolve Molecular Cartography data
visualization

The Resolve Molecular Cartography technology, with
subcellular transcript resolution, is based on combi-
natorial single-molecule fluorescent in situ hybridiza-
tion. This technology accommodates tens of tran-
script-specific probes per target RNA for up to 100
target RNAs for each sample. We designed a custom
100-gene panel and applied it to snap-frozen tumors
and matched liver resection samples from an
additional 4 patients who had undergone resection
of HCC primary tumors. Snap-frozen tissues were
run by the Resolve company scientists according to
the manufacturer’s instructions (protocol 3.0, available
for download from Resolve’s website for registered
users) and described elsewhere.[19] We visualized
genes from the Hoshida gene sets (S1: ACTA2,
CD8A, IL7R, LGALS9, VCAN, CCR7, CXCL1,
LGALS1, and PTPRC; S2: FGFR4, GPC3, and
HMGCR; S3: ALDH1A1, ARG1, ASGR1, FLT4, and
IFIT1) onto all the samples, as well as locations of
nuclei (DAPI staining) and canonical endothelial
genes (PECAM1, VWF, KDR, CD34, IL33, PLVAP,
VCAM1, and LIVE1). To avoid overplotting, we
represent endothelial transcripts by their density, with
darker pink depicting a region of higher transcript
density than lighter pink regions.

scAtlasLC data analysis

We used HCC samples from public liver cancer single-
cell RNA sequencing data and associated cell typing[12]

and subsetted cancer and TECs for our analyses.
Similar to AOI-level GeoMx analyses, we aggregated
raw counts from cancer and TECs for each bulk tumor
and plotted gene expression in a heatmap and
annotated by Hoshida gene sets, shown in Figure 3A.
We also performed differential expression analysis to
compare genes enriched in tumor cells and TECs,
colored by Hoshida gene sets.

Survival analysis

We used survival and survminer packages in R and
performed survival analyses on both TCGA and
our GeoMx data sets. TCGA data contained bulk
transcriptome expression of 367 patients with HCC
across 20,518 genes. For each gene, we divided
patients into high- and low-expressors based on median
split and then used the Cox Proportional Hazard test to
compare survival between the 2 groups. We visualized
results across all genes on a volcano plot and colored
genes based on our T1/T2/T3 designations. In
our GeoMx data set, we plotted Kaplan-Meier plots
across the tumor AOIs, stratifying by their T1/T2/T3
phenotypes.

Code availability

Analyses were performed in R and Python, and all code
used for the paper can be found at https://github.com/
clu413/HCC_GeoMx_paper. The data are deposited
in the Gene Expression Omnibus (GEO), accession
number GSE277104.

RESULTS

GeoMx technology accurately segments
vessel regions from tumor-rich regions in
HCC tissue

To understand how compartment-specific gene
expression programs are spatially organized in situ
in HCC tissue, we used the Nanostring GeoMx Digital
Spatial Profiling platform and the Cancer Transcrip-
tome Atlas (~1800 genes) oligonucleotide probe set.
We analyzed a cohort of formalin-fixed, paraffin-
embedded specimens from 41 patients with resected,
treatment-naïve HCC (Table 1) for our primary
analysis. In this workflow, we hybridized oligo-
nucleotide probes targeting the gene set of interest
to tag mRNAs from microscopic ROIs, stained with
fluorescent primary antibodies against Arginase 1
(ARG1; the most sensitive and specific marker for
hepatocellular differentiation[20] and CD31 to identify
areas enriched in HCC cells and blood vessels,
respectively, and then used fluorescence-guided
digital segmentation to liberate the probe tags for
downstream next-generation sequencing processing
(Figure 1A). This protocol captures highly purified
AOIs (Figure 1B). After data quality control and
preprocessing, we obtained 65 ROIs with matched
tumor and vessel AOIs from these 41 patients.

Differential expression analysis of the vessel AOIs
compared with the tumor AOIs demonstrated 32 genes
enriched in the former and 53 genes in the latter
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(Supplemental Table S1, http://links.lww.com/HC9/B45).
As expected, there were many canonical endothelial
genes (eg, CD34, CDH5, KDR, and PECAM1/CD31) in
the former and many hepatocyte genes (eg, APOA1,
ARG1, C2, and CLU) in the latter (Figure 1C). Gene set

enrichment analysis supported the significant and
consistent enrichment of EC genes in the vessel AOIs
(Supplemental Figure S1A, http://links.lww.com/HC9/
B46) and liver-related genes in the tumor AOIs (Supple-
mental Figure S1B, http://links.lww.com/HC9/B46).

1. Stain with oligonucleotide
    photocleavable probes and
    immunofluorescent
    antibodies (ARG1, CD31)

3. MaskAOIs within each ROI
    based on immunofluorescent
    markers.
4. UV photocleave and collect
    probes from AOIs for NGS.

2. Select ROIs

+
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Vessel
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F IGURE 1 GeoMx spatial profiling precisely separates vessels from tumor regions for gene expression profiling. (A) Workflow of sequential
tissue staining with photocleavable oligonucleotide probes followed by staining with immunofluorescent tissue subcompartment labels. (B)
Example of 1 HCC tumor “region of interest” (ROI), masked ROI to identify CD31-positive (red) and Arg1-positive (green) “areas of interest” (AOIs).
(C) Volcano plot of genes differentially expressed across all ROIs and AOIs (false discovery rate–adjusted p value ≥ 0.05, log2(fold change) ≥ 1),
with genes colored in green for tumor AOIs and red for vessel AOIs. (D) Hierarchically clustered heatmap of all tumor (green column label) and
vessel (red column label) AOIs.
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Unsupervised clustering of both tumor and vessel AOIs
annotated with a set of canonical endothelial and liver-
related genes confirmed clean separation of vessel and
tumor AOI clusters (Figure 1D). Computational mixed cell
type deconvolution analysis of the vessel AOIs indicated
that the vessel AOIs contain mostly ECs and—to a
smaller and more heterogeneous extent—various
immune cell subtypes (Supplemental Figure S2, http://
links.lww.com/HC9/B46). Taken together, the above
results confirm that the GeoMx spatial transcriptomic
workflow generates gene expression profiles from
highly purified HCC vessel regions and tumor regions.
We next sought to discover more about the vessel
and tumor compartments using additional unsupervised
analyses.

Unsupervised analysis of tumor and vessel
AOIs demonstrates a significant
enrichment of Hoshida bulk tissue subtype
1 (S1) in the vessel compartment

Unsupervised hierarchical clustering of the entire set of
tumor AOIs and vessel AOIs using the 300 most
variably expressed genes yielded 2 distinct clusters,
with classical endothelial and liver genes associating
within one cluster and mostly liver genes associating
with the other (Figure 2A). We noticed that those genes
present in the canonical “S1” bulk tissue subtype
established by Hoshida et al[11] were highly enriched
in the vessel AOIs, whereas “S3” and—to a lesser
extent due to low gene set representation—“S2” genes
were enriched in the tumor AOIs. Specifically, after
quality control and preprocessing, the 1800-gene
Cancer Transcriptome Atlas (CTA) panel that we used
for this study contained 56/235 of the S1 genes, 16/115
of the S2 genes, and 48/266 of the S3 genes. Of the 56
Hoshida S1 genes in the CTA panel, all were more
prominent in the vessel AOIs; 43 of the 48 were more
prominent in the tumor AOIs. Indeed, when limiting the
genes belonging to the S1, S2, and S3 gene sets
present in the 1800-gene cancer transcriptome atlas,
differential expression analysis between the vessel and
tumor AOIs confirmed that the majority of S1 genes
were enriched in the vessel AOIs and the majority of S3
genes in the tumor AOIs (Supplemental Figure S3A,
http://links.lww.com/HC9/B46 and Supplemental Table
S1, http://links.lww.com/HC9/B45). We also noticed a
correlation between vessel AOI area and HCC subtype,
assigned by relative enrichment of the Hoshida
gene sets. ROIs with a larger vessel AOI fraction
(Supplemental Figure S3B, http://links.lww.com/HC9/
B46) were enriched in S1 genes and thus were
assigned S1 phenotype, whereas the ROIs with smaller
vessel fractions (Supplemental Figure S3C, http://links.
lww.com/HC9/B46) were assigned S3 phenotype
(Figure 2C), showing consistent bulk tumor subtype

results from the original Hoshida study.[11] Altogether,
vascular density was strongly associated with classifi-
cation as S1 HCC subtype.

To confirm our observations that S1 genes tended to
be expressed in HCC vessels and S3 genes in tumor
regions, we used the single-cell Atlas in Liver Cancer
(scAtlasLC),[12] an orthogonal, publicly available data
set of treatment-naïve single-cell RNA sequencing data
of primary liver cancers. We used the scAtlasLC HCC
data subset with associated cell type annotations and
combined single-cell RNA sequencing reads in each
sample to generate quasi-bulk compartment-level data
—with all annotated EC reads combined and all
annotated cancer cell reads combined from a given
tumor—to compare with our GeoMx analysis. Hierar-
chical clustering of the data confirmed that most S1
genes were highly expressed in ECs and S3 genes in
cancer cells (Figure 3A). Of the genes that were
differentially expressed between the ECs and cancer
cells in this data set, we found again a significant
enrichment (90/228) of S1 genes with higher expression
in ECs, whereas the vast majority of S2 (5/111) and S3
genes (18/257) had the opposite pattern, with higher
expression in cancer cells (Figure 2C and Supplemental
Table S2, http://links.lww.com/HC9/B45). Gene set
enrichment analysis of the specific S1 genes that were
more highly expressed in ECs implied significant
inflammatory and immunomodulatory functions,
whereas the S3 genes that were more highly expressed
in ECs were more consistent with differentiated, tissue-
resident ECs (Supplemental Figure S4, http://links.lww.
com/HC9/B46). To provide additional validation of our
results, we used the Resolve “Molecular Cartography”
technology[19] to visualize 100 genes in situ at single-
cell resolution in 4 separate HCC resection specimens.
For ease of visualization, we plotted all S1 gene
transcripts (ACTA2, CD8A, IL7R, LGALS9, VCAN,
CCR7, CXCL1, LGALS1, and PTPRC) in blue, all S2
transcripts (FGFR4, GPC3, and HMGCR) in orange,
and all S3 transcripts (ALDH1A1, ARG1, ASGR1, FLT4,
and IFIT1) in green. Known markers of ECs (CD34,
KDR, PLVAP, VCAM1, VWF, IL33, and PECAM1)
density is indicated by the color of pink rings. From
direct visualization of transcripts in situ qualitatively, we
again noted that S1 genes colocalized with endothelial
genes in regions devoid of S3 genes, and S3 genes are
highly expressed in regions of tumor parenchyma
(Figure 3C; Supplemental Figure S5, http://links.lww.
com/HC9/B46).

Tumor-enriched clustering demonstrates 3
distinct tumor AOI phenotypes associated
with differential survival outcomes

Since previously described HCC bulk tissue signa-
tures contained a significant stromal (EC) contribution,
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we next sought to define novel clusters that were more
specific to the tumor compartment and characterize
their microenvironment niches. Hierarchical clustering
of tumor AOIs using the 100 most variable genes

across the samples yielded 3 clusters, which we
denote as T1, T2, and T3 (Figure 4A). Hoshida S3
genes were represented across the groups. Differen-
tial expression analysis of the genes across clusters
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revealed enrichment in inflammatory and oxidative
stress–related genes (eg, CD36, EHHADH, and
RELN) in cluster T1, well-differentiated and metabolic
liver metabolic genes (A2M, APOA1, and HAMP) in

cluster T2, and stemness genes (CD24 and SPP1) in
cluster T3 (Supplemental Figure S6, http://links.lww.
com/HC9/B46; Supplemental Table S3, http://links.
lww.com/HC9/B45).
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Next, we sought to correlate these gene signatures
with overall survival, both in our own data set (GeoMx)
and in The Cancer Genome Atlas (TCGA). In the
TCGA data set, we conducted survival analyses for
each gene by comparing survival between high
expressors and low expressors of the gene of interest.
We found that bulk tumor expression of T2 genes was
associated with better survival, as patients with higher
expressions of these genes had lower survival hazard
ratios than those with lower expression of T2 genes
(Figure 4B). In our GeoMx data set, tumor AOIs
categorized as T2 and T3 are also associated with
better survival than T1 AOIs (Figure 4C). Taken
together, our data demonstrate that our tumor-specific
signature—with the removal of much of the EC gene
expression signals inherent in bulk transcriptomic data
—may provide a novel prognostic schema for HCC
survival.

Spatial analysis identifies subtype-specific
ligand-receptor interactions between
microscopic cancer regions and vascular
regions

After we identified heterogeneous tumor-enriched
regions with clear prognostic differences, we hypothe-
sized that linked tumor-vascular interactions may
correlate with these microenvironment subsets. We,
therefore, applied a published computational tool
designed for inference of cell-cell interactions to our
spatial transcriptional data.[18] Using the CellChat
curated database, we first defined the correlated
tumor-vessel interactions across all samples and found
examples of both expected (eg, VEGFA in the tumor
and FLT1 a.k.a. VEGFR1 in the vessel) and potentially
novel (LGALS9 in tumor and CD44 in vessel) ligand-
receptor pairs (Figure 5A). Next, we subdivided the data
into T1/T2/T3 subtypes and found differential correla-
tions between tumor-vessel pairs (Figure 5B) in a
T-subtype–dependent manner. For example, VEGFA
in tumor AOIs correlated strongly with FLT1 in T3 ROIs
(Figure 5B), but this correlation was not noted in T2, and
there was an anticorrelation of this pair in T1 ROIs
(Figure 5C). In addition, LGALS9 in T3 subregions
exhibited a strong positive correlation with HAVCR2 (a.
k.a. TIM3) in T3-linked vessel regions (Figure 5B) but
not T1 or T2 ROIs. Taken together, our data point to
heterogeneous tumor-vessel interactions driving local
tumor biology and motivating the development of tissue
subtyping for future precision medicine approaches.

DISCUSSION

The TME is composed of a dynamic, heterogeneous
collection of interacting parenchymal (cancer) and

stromal (noncancer) cell types,[21] and many of cancer’s
“hallmarks” are fundamentally dependent on these
interactions.[9] Spatial transcriptomics technologies
aim to bridge the gap between traditional intact
tissue characterization techniques such as immuno-
histochemical staining and RNA in situ hybridization
and high-plex but dissociative technologies like single-
cell RNA sequencing.[22] ECs are the most common
stromal cell type in HCC, and tumor microvascular
density correlates with adverse outcomes in HCC.[23]

Further, ECs are a direct target for many of the active
systemic therapy regimens in advanced HCC.[24]

Given the above, we decided to focus our initial HCC
spatial transcriptomic profiling effort on ECs. We used
the Nanostring GeoMx technology to precisely separate
vessel-dense AOIs from tumor-dominant AOIs and
found a clear and dominant EC contribution to the
Hoshida S1 HCC bulk tissue subgroup. Further, we
found that higher vessel density was correlated with an
increased likelihood of a tissue microregion being
classified as S1 in our cohort of 41 patients with
resected HCC. We validated this finding using the
publicly available single-cell atlas in the liver cancer
(scAtlasLC[12]) data set and with direct in situ visualiza-
tion of S1 genes with EC genes using the Resolve
“Molecular Cartography” platform.

Using our purified tumor AOIs, we defined 3 novel
transcriptional subgroups (T1–T3) of microscopic tumor
regions. We found that the T2 subtype was defined by
genes like those expressed by normal liver parenchyma
and “well-differentiated” HCC tumors, whereas the T1
subtype contains inflammatory and oxidative stress–
related genes, and T3 contains inflammatory and stem-
ness genes. Notably, several of the genes from our
unbiased clustering and classification scheme have been
described to affect HCC outcomes. For example, the
highest-risk T1 subgroup contained multiple genes
previously shown to contribute to aggressive HCC
features, including CD36 (encoding a fatty acid receptor
protein that contributes to metabolic derangement in
HCC and thereby promotes tumor progression[25]), LYZ
(lysozyme, a secreted enzyme promoting HCC prolifer-
ation and migration[26]), and CCND1 (cyclin D1, a cell
cycle proliferation protein[27]). Conversely, many T2
genes associated with “well-differentiated” HCC—
including IGFBP3 (insulin-like growth factor binding
protein 3[28]) and GHR (ghrelin[29])—have been identified
as good prognostic features in prior studies.

There have been other recently published HCC
spatial transcriptomic profiling efforts that have focused
on other components of the tumor milieu, such as
carcinoma-associated fibroblast subsets[30] or T-cell
subsets.[31] We focused our analyses on potential
heterotypic receptor-ligand interactions between purif-
ied tumor subregions (as a proxy for cancer cells) and
vascular subregions (a proxy for ECs). We found both
known interactions and potentially novel clinically
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relevant interactions (LGALS9 tumor-CD44 or HAVCR2
vessel, JAG1 tumor-NOTCH1/3 vessel) within the HCC
TME in a manner that depended on the T subtype.
Interestingly, LGALS9 (in tumor) and SLC1A5 (macro-
phages) have been previously identified as potentially
important in the HCC microenvironment.[32] Further,
multiple of these heterogeneous signaling interactions
represents immune and vascular targets in clinical
development, including LGALS9 with HAVCR2,[33,34]

LGALS9 with CD44,[35] and JAG1 with NOTCH1/3.[36]

Our study provides further evidence of the dynamic and
potentially targetable interactions between cancer cells
and their stromal ECs.[37]

This study had some limitations. First, the GeoMx
gene probe panel was limited to the 1800 gene “cancer
transcriptome atlas” gene panel, which was the highest-
plex panel available at the time of the start of the project
but did not cover the entire transcriptome. In addition, as
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with all gene expression analyses, the translated
protein concentrations for our gene sets may not fully
match. Third, although the GeoMx analyses are limited
to microscopic ROIs that have hundreds to thousands
of purified cells, each AOI still potentially contains
multiple different cell types—including entrained
immune cells—and hence the gene expression profile
obtained from a given AOI is still a “bulk” profile, for
example, with potential fibroblast genes present in
vascular AOIs (Supplemental Figure S1, http://links.
lww.com/HC9/B46). Fourth, given the imperfect nature
of ROI segmentation into AOIs, there is always the
possibility of “bleed over” of genes from one AOI into
another (eg, the tumor into a vessel). Finally, our tissue
specimens were collected from a small, discovery
cohort of patients with resected, treatment-naïve
HCC, and hence, these samples may not reflect
the full breadth of TME heterogeneity that may be
reflected within larger data sets or in different back-
ground tissue environments (eg, metastatic sites and
more severely cirrhotic livers) or after exposure to
various treatments.

In summary, we performed spatial transcriptomic
analysis of treatment-naïve HCC, focusing on analyzing
tumor parenchyma separate from blood vessels. In
addition to clarifying and expanding upon prior bulk
transcriptional tissue classifiers, our study illustrates the
importance of spatial transcriptomics to provide higher
precision in characterizing cellular ecosystems and
identifying significant heterotypic cellular interactions
within the TME, such as the LGALS9 (tumor)-HAVCR2
(vessel) axis. The next-generation of single-cell spatial
transcriptomic technologies will provide even higher
resolution of cell-cell interactions to identify additional
cancer-stroma interactions and thereby nominate
potential biomarkers and therapeutic targets for future
development. Future functional studies based on these
putative interactions using in vitro and in vivo models
and perturbations of these TME interactions (eg, with
vascular-targeted, immune-targeted, or other treat-
ments) will unlock new therapeutic avenues for HCC.
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