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Abstract The cerebral cortex displays a bewildering diversity of shapes and sizes across and 
within species. Despite this diversity, we present a universal multi- scale description of primate 
cortices. We show that all cortical shapes can be described as a set of nested folds of different sizes. 
As neighbouring folds are gradually merged, the cortices of 11 primate species follow a common 
scale- free morphometric trajectory, that also overlaps with over 70 other mammalian species. Our 
results indicate that all cerebral cortices are approximations of the same archetypal fractal shape 
with a fractal dimension of df = 2.5. Importantly, this new understanding enables a more precise 
quantification of brain morphology as a function of scale. To demonstrate the importance of this new 
understanding, we show a scale- dependent effect of ageing on brain morphology. We observe a 
more than fourfold increase in effect size (from two standard deviations to eight standard deviations) 
at a spatial scale of approximately 2 mm compared to standard morphological analyses. Our new 
understanding may, therefore, generate superior biomarkers for a range of conditions in the future.

eLife assessment
This study presents valuable framework and findings to our understanding of the brain cortex as a 
fractal object. Based on detailed methodology, the evidence provided on the stability of its shape 
property within 11 primate species is convincing, as well as the scale- specific effects of ageing on 
the human brain. This study will be of interest to neuroscientists interested in brain morphology, and 
to physicists and mathematicians interested in modeling the shapes of complex objects.

Introduction
The morphological complexity of the mammalian cerebral cortex has fascinated scientists for gener-
ations, with cortices across and within species, exhibiting a large diversity of shapes and sizes. Such 
diversity is not arbitrary, however. The mammalian brain folds into stereotypical, hierarchically- 
organised structures such as lobes and major gyri. In fact, qualitative and quantitative regularities 
in cortical scaling have often been suggested and observed (Zhang and Sejnowski, 2000; Francis 
et  al., 2009; Karbowski, 2011; Mota and Herculano- Houzel, 2014). More specifically, through 
modelling the mechanism of cortical folding from a statistical physics approach, we have previously 
derived a theoretical scaling law relating pial surface area  At , exposed surface area  Ae  (the exposed 
surface area can be thought of as the surface area of a piece of cling film wrapped around the brain; 
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mathematically, for the remaining paper it is the convex hull of the brain surface), and average cortical 
thickness  T  :

 AtT
1
2 = kA

5
4
e .  

(1)

This scaling law, relating powers of cortical thickness and surface area metrics, was shown to be 
valid across mammalian species (Mota and Herculano- Houzel, 2015) and within the human species 
(Wang et al., 2016), as well as to the structures and substructures of individual brains (Wang et al., 
2019; Leiberg et al., 2021). Notably, across all these cases the dimensionless offset  k  is shown to be 
near invariant. However, this universality, presumed to be arising from universal physical principles and 
evolutionarily conserved biomechanics, says little about what that cortical shape actually is, beyond a 
constraint binding three morphometric parameters. In this paper, we take Equation 1 as an empirical 
starting point to create a new and hierarchical way of expressing cortical shape. Specifically, we intro-
duce a coarse- graining procedure that renders the cortex at different spatial scales, or resolutions. We 
show that coarse- grained primate cortices at each spatial scale can be understood as approximations 
of the same universal self- similar archetypal form, of which the observed scaling law Equation 1 can 
then be shown to be a direct consequence.

Besides revealing a symmetry in nature hidden under much apparent complexity, our results indi-
cate a conservation of morphological relationships across evolution. We will show that these results 
further provide us with a new and powerful tool to express and analyse cortical morphology. As an 
example, we will calculate the effects of human ageing across spatial scales and show that the effects 
are highly scale- dependent.

Mathematical background
The universal scaling law Equation 1 can be rewritten in a suggestive way

 

At
A0

=
(

Ae
A0

)1.25
,
  

(2)

eLife digest Many of the brain’s essential functions – from decision- making to movement – take 
place in its outer layer known as the cerebral cortex. The shape of the cerebral cortex varies signifi-
cantly between species. For instance, in humans, it is folded in to grooves and ridges, whereas in 
other animals, including mice, it is completely smooth. The structure of the cortex can also differ 
within a species, and be altered by aging and certain diseases.

This vast variation can make it difficult it to characterize and compare the structure of the cortex 
between different species, ages and diseases. To address this, Wang et al. developed a new mathe-
matical model for describing the shape of the cortex.

The model uses a method known as coarse graining to erase, or ‘melt away’, any cortical folds 
or structures smaller than a given threshold size. As this threshold increases, the cortex becomes 
progressively smoother. The relationship between surface areas and threshold sizes indicates the 
fractal dimension – that is, how fragmented the cortex is across different scales.

Wang et al. applied their model to the brain scans of eleven primates, including humans, and found 
the fractal dimension of the cortex was almost exactly 2.5 for all eleven species. This suggests that the 
cortices of the different primates follow a single fractal shape, which means the folds of each cortex 
have a similar branching pattern. Although there were distinctions between the species, they were 
mainly due to the different ranges of fold sizes in each cortex. The model revealed that the broader 
the range of fold sizes, the more folded the brain – but the fractal pattern remains the same.

The brain melting method created by Wang et al. provides a new way to characterise cortical 
shape. Besides revealing a hitherto hidden regularity of nature, they hope that in the future their 
new method will be useful in assessing brain changes during human development and ageing, and in 
diseases like Alzheimer’s and epilepsy.

https://doi.org/10.7554/eLife.92080
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where the  A0 = T2

k4   is a fundamental area element that defines the threshold between gyrencephaly 

(folded cortex) and lissencephaly (smooth cortex) when  At = Ae = A0 . For a constant  k  the value of  A0  
is a multiple of  T2 , indicating that cortical thickness determines the size of the smallest possible gyri 
and sulci.

This re- writing highlights a new perspective, or interpretation of the scaling law: it now suggests a 
relationship between intrinsic and extrinsic measures of cortical size (given the folded laminar struc-
ture of the cortex, areas are the more natural way of measuring its ‘size’),  At  and  Ae , respectively, 
measured in units of  A0 . This is reminiscent of fractal scaling (Mandelbrot, 1983), where a complex 
shape reveals ever smaller levels of self- similar detail as it is probed in ever smaller scales (or equiv-
alently, higher resolutions), represented here by  A0 . The scaling, or power exponent between the 
measured intrinsic and extrinsic sizes is the so- called fractal dimension.

Although actual fractals are mathematical abstractions, they can often be defined as the limit of 
iterative processes. Many structures in nature, and in particular biology (Elston and Zietsch, 2005; 
Codling et al., 2008; Ionescu et al., 2009; Losa, 2011; Klonowski, 2016; Di Ieva, 2016; Reznikov 
et al., 2018), are good approximations of a fractal. Equation 2 is suggestive, but not proof, that 
cortices are among these forms, with a fractal dimension of  1.25 × 2 = 2.5  (the factor 2 being the topo-
logical dimension of areas). Indeed, fractal scaling for various aspects of cortical morphology has often 
been postulated (Free et al., 1996; Kiselev et al., 2003), with a number of recent papers making use 
of MRI data (Marzi et al., 2021; Jao et al., 2021; Meregalli et al., 2022; Díaz Beltrán et al., 2024). 
Most recently published estimates of fractal dimension for the whole cortex are indeed close to 2.5 
(King et al., 2010; Madan and Kensinger, 2016; Madan and Kensinger, 2017; Marzi et al., 2020).

Here, for the first time, we propose to directly construct morphologically plausible realisations of 
cortices at any specified spatial scale, or resolution. This is achieved through a coarse- graining method 
that removes morphological details smaller than a specified scale while preserving surface integrity. 
For example, at a set scale of 3 mm, sulcal walls that are less than 3 mm apart would be removed, 
and the neighbouring gyri would be fused. This method is a new systematic way of obtaining shape 
properties from the cortex in terms of a sequence of morphometric measurements as spatial scale 
varies. By examining how areas scale across coarse- grained versions of actual primate cortices, we will 
be able to directly verify cortical self- similarity.

Figure 1. Coarse- graining a cortex at different scales. (A) Example of original pial surface from a healthy human viewed from varying angles. (B) Same 
example cortical surface from A, coarse- grained to different spatial scales. Top row shows the resulting pial surfaces (with a small amount of smoothing 
applied for visualisation purposes here). Bottom row shows the corresponding voxelisation at each scale through the slice indicated by the blue plane in 
panel A. Note that the actual size of the brains for analysis is rescaled (see Methods and Figure 2); we display all brains scaled at an equal size here for 
the ease of visualisation of the method.

https://doi.org/10.7554/eLife.92080
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Method
Coarse-graining method
As a starting point for a coarse- graining method, we suggest to turn to a well- established method that 
measures a fractal dimension of objects: the so- called box- counting algorithm (). Briefly, this algorithm 
fills the object of interest (the cortex in our case) with boxes, or voxels of increasingly larger sizes and 
counts the number of boxes in the object as a function of box size. As the box size increases, the 
number of boxes decreases; and in a log- log plot, the slope of this relationship indicates the fractal 
dimension of the object. In our case, this method would not only provide us with the fractal dimension 
of the cortex, but, with increasing box size, the filled cortex would also contain less and less detail of 
the folded cortex. Intuitively, with increasing box size, the smaller details below the resolution of a 
single box would disappear first, and increasingly larger details will follow – precisely what we require 
from a coarse- graining method. We, therefore, propose to expand the traditional box- counting 
method beyond its use to measure the fractal dimension, but to analyse the reconstructed cortices as 
different realisations of the original cortex at the specified spatial scale.

Concretely, our proposed method requires the bounding pial and white matter surfaces of the 
cortical ribbon as input. We obtained these surfaces based on reconstructions from magnetic reso-
nance imaging data in 11 different primate species. Algorithmically, we then segment the space 
between the original pial and white matter surfaces into a 3D grid of boxes of the desired scale  λ , 
where each box is a cube of dimensions  λ× λ× λ . We also term the 3D grid of cubes ‘voxelisation,’ as 
it effectively captures the cerebral cortex as voxels in 3D space (Figure 1B bottom row). At any given 
scale, or voxel size, this process effectively erases morphological features (folds) that are smaller than 
the cube size. Visually, increasing the voxel size appear as if the cortex is ‘melting’ and ‘thickening’ 
(Figure 1, and videos: https://bit.ly/3CDoqZQ).

A more technical and detailed description and discussion of the algorithm is provided in Appendix 
1. Note this method has also no direct dependency on the original MR image resolution, as the inputs 
are smooth grey and white matter surface meshes reconstructed from the images using strong (bio- )
physical assumptions and, therefore, containing more fine- grained spatial information than the raw 
images (see also Appendix 2).

Rescaling coarse-grained outputs for analysis
Morphological properties, such as cortical thicknesses measured in our ‘melted’ brains are to be 
understood as a thickness relative to the size of the brain. Therefore, to analyse the scaling behaviour 
of the different coarse- grained realisations of the same brain, we apply an isometric rescaling process 
that leaves all dimensionless shape properties unaffected (more details in Appendix 3.1). Conceptu-
ally, this process fixes the voxel size, and instead resizes the surfaces relative to the voxel size, which 
ensures that we can compare the coarse- grained realisations to the original cortices, and test if the 
former, like the latter, also scales according to Equation 1. Resizing, or more precisely, shrinking the 
cortical surface is mathematically equivalent to increasing the box size in our coarse- graining method. 
Both achieved an erasure of folding details below a certain threshold. After rescaling, as an example, 
the cortical thickness also shrinks with increasing levels of coarse- graining, and never exceeds the 
thickness measured at native scale.

Independent morphological measures of shape
To better characterise the coarse- grained cortices in terms of their similarity in offset, we use 
a previously introduced (Wang et  al., 2021) a set of independent measures,  K  ,  I  , and  S , that 
summarise the morphometry of the cortex in a natural and statistically robust way. In this frame-
work, isometrically scaled copies of the same morphometry all map onto a line along the 

 I = log At + log Ae + log T2
  direction, which is perpendicular to a  K × S  plane that fully summarises 

their shape.  K = log At − 5
4 log Ae + 1

4 log T2
  is the direction defined by the offset  k  of the scaling law 

Equation 1, while direction  S = 3
2 log At + 3

4 log Ae − 9
4 log T2

  captures the remaining information about 
shape, and can be regarded as a simple measure of morphological complexity. Wang et al., 2021 
provides a detailed derivation and demonstration of the superior sensitivity and specificity of these 
new morphometric measures. The advantage of using this framework here is that we can assess the 
offset  K   (and shape term  S ) without interference by isometric size effects, including any re- scaling 
procedures.

https://doi.org/10.7554/eLife.92080
https://bit.ly/3CDoqZQ
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Data and processing
With the exception of the marmoset data, all other cortical surface reconstructions were based on 
healthy individual brains.

Human data
To study healthy human adults, we used the Human Connectome Project (HCP) MRI data, available 
at https://db.humanconnectome.org/; Van Essen et al., 2012, obtained using a 3T Siemens Skyra 
scanner with 0.7 mm isotropic voxel size. We used the HCP minimally pre- processed FreeSurfer data 
output, which provided the pial and white matter surface meshes we required. We selected five 
random subjects in the age category 22–25 y.o. and show one example subject (103414) in the main 
text, and the remaining subjects in Appendix 3.

To study the alterations associated with human ageing, we used T1 and T2 weighted MRI brain 
scans from The Cambridge Centre for Ageing and Neuroscience (Cam- CAN) dataset (available at 
http://www.mrc-cbu.cam.ac.uk/datasets/camcan/ Shafto et al., 2014; Taylor et al., 2017). Cam- CAN 
used a 3T Siemens TIM Trio System with 1 mm isotropic voxel size (for more details see Shafto et al., 
2014; Taylor et al., 2017). From the Cam- CAN dataset we retained 644 subjects that successfully 
completed preprocessing (with Freesurfer recon- all) without errors. From these subjects, we selected 
all subjects between the ages of 17–25 inclusive (forming the 20 y.o. cohort, n=27); we also selected 
all subjects between the ages of 77–85 inclusive (forming the 80 y.o. cohort, n=86).

To confirm the ageing results, we also obtained an independent dataset from the Nathan Kline 
Institute (NKI)/Rockland sample (Nooner et  al., 2012; http://fcon_1000.projects.nitrc.org/indi/pro/ 
nki.html) using the same procedure as described for the CamCAN dataset.

The MR images of both CamCAN and NKI datasets were first preprocessed by the FreeSurfer 6.0 
pipeline recon- all, which extracts the grey- white matter boundary as well as the pial surface. These 
boundaries were then quality checked by visual inspection for particularly the young and old cohorts 
and manually corrected where needed.

For all three datasets, we obtained the pial and white matter surfaces for further analysis. In the 
current work, the analysis is always hemisphere- based, as in our previous work (Mota and Herculano- 
Houzel, 2015; Wang et al., 2016). We did not perform a more regionalised analysis, which is also 
possible (Wang et al., 2019; Leiberg et al., 2021). Future work using the principle demonstrated 
here can be directly extended to derive regionalised measures across scales.

Non-human primate data
Macaque
Rhesus Macaque MRI scans were carried out at the Newcastle University Comparative Biology Centre. 
Macaques were trained to be scanned while awake and sat in a primate chair. Both T1- weighted 
MP- RAGE and T2- weighted RARE sequences were acquired, using a vertical MRI scanner (Biospec 4.7 
Tesla, Bruker Biospin, Ettlingen, Germany).

Scans were processed using a custom macaque MRI pipeline, incorporating ANTs, SPM, Free-
Surfer, and FSL. Briefly, this involved the creation of precursor mask in SPM, denoising (ANTs Denoi-
seImage) and debiasing (ANTs N4BiasFieldCorrection, and Human Connectome BiasFieldCorrection 
script), creation of a final mask in SPM and then processing in FreeSurfer (using a modified version 
of the standard FreeSurfer processing pipeline). Reconstructed pial and white matter surfaces were 
visually quality- controlled in conjunction with the MR images.

Marmoset
The marmoset MRI structural scan was collected as part of the development of the NIH marmoset 
brain atlas (Liu et al., 2018; Liu et al., 2020). Data was collected ex vivo from a 4.5- year- old male 
marmoset using a T2- star weighted 3D FLASH sequence using a horizontal MRI scanner (Biospec 7 
Tesla, Bruker Biospin, Ettlingen, Germany).

A total of 10 scans were collected and averaged into one final image. In combination with scans 
from other modalities, cortical boundaries were manually delineated on each coronal slice. Boundaries 
were then refined through comparisons with other atlases. Volumetric data was then converted to 
surfaces using a custom pipeline involving an intermediate generation of high- resolution mesh data 

https://doi.org/10.7554/eLife.92080
https://db.humanconnectome.org/
http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
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(Madan, 2015), decimation (Madan, 2016), and remeshing. Reconstructed pial and white matter 
surfaces were visually quality controlled in conjunction with the MR images.

Other non-human primates (NHPs)
The remaining NHP MRIs and subsequent brain surface extraction are detailed in Ardesch et al., 
2022; Bryant et al., 2021, and provided to the authors in a processed format. Briefly, a range of 
specialised scanners were used to acquire optimal images for each species. FreeSurfer 6.0 with some 
modifications was used for surface reconstruction, complemented by FSL, ANTS, and Matlab. All 
surfaces were visually inspected for accuracy and consistency across datasets.

Comparative neuroanatomy data
The comparative neuroanatomy dataset for different mammalian species is the same as previously 
published (Mota and Herculano- Houzel, 2015). Note that for this dataset, we only had numerical 
values for the total and exposed surface area, as well a average cortical thickness estimates. We did 
not perform any analysis across scales in this dataset (hence surfaces were not required), but only used 
it as a reference dataset.

Ethics statement
All analyses were performed on anonymised data that were acquired previously as part of other 
studies/consortia with ethical approval from Newcastle University (reference: 22/SC/0016).

Statistical analyses
Briefly, linear regression is used in either a mixed- effect model to capture effects across individuals and 
species, or in simple fixed- effect settings to estimate regression slopes to obtain fractal dimension.

In the final part of the Results, we analyse the effect between a group of 20- year- olds and 
80- year- olds. Effect size is calculated as Cohen’s D between the two groups.

Throughout the paper, statistical significance is not a crucial argument, and we report p- values only 
for reference and completeness.

More details can be seen in the analysis code, from which the reader can directly reproduce all the 
main result figures.

Results
All primate brains follow the same scaling law across spatial scales
We have analysed cortices of 11 different primate species: Gray- bellied Night Monkey (Aotus 
lemurinus), Tufted Capuchin Monkey (Cebus apella), Black- and- white Colobus (Colobus guereza), 
Senegal Bushbaby (Galago senegalensis), Woolly Monkey (Lagothrix lagotricha), Gray- cheeked 
Mangabey (Lophocebus albigena), Rhesus Macaque (Macaca mulatta), Common Marmoset (Callithrix 
jacchus), Chimpanzee (Pan troglodytes), White- faced Saki (Pithecia pithecia), and various cohorts of 
human subjects. We applied our coarse- graining procedure to their pial and white matter surfaces, 
and empirically determined (i) that all species followed a power law (linear regression  R2 > 0.999  for 
all species); (ii) the slope of said power law is  α = 1.255  on a group level (CI: [1.254 1.256]) using linear 
mixed effect modelling (see Figure 2 for visualisation, and Appendix 3 for a detailed breakdown by 
species); and importantly, (iii) all species also show a similar offset  log k ≈ −0.65263 , with a standard 
deviation of intercept across species estimated at 0.02 from linear mixed effect modelling in  log k .

Taken separately, the scaling for each species is proof that their cortices are self- similar with the 
same scaling: they each approximate a fractal with fractal dimension  df = 2.5 . Considering all species 
together, different species also overlap substantially (similar offset), and only differ from each other in 
the range of scales over which the approximation is valid (see Appendix 3.2 and Appendix 4). Thus, as 
Figure 2 illustrates, the data supports a universal scaling law across primate species and spatial scales:

 At(λ)T(λ)
1
2 = kAe(λ)

5
4 ,  

(3)

with  k = 0.2277. 

https://doi.org/10.7554/eLife.92080
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Primate brains at different spatial scales are morphometrically similar 
to each other and other mammalian species
To better characterise the coarse- grained cortices in terms of their similarity in offset, we use a set of 
independent morphometric measures,  K  ,  I  , and  S , that summarise the morphometry of the cortex in 
a natural and statistically robust way. We can, therefore, assess the offset  K   (and shape term  S ) without 
interference by the isometric size or rescaling.

We can measure  K   and  S  for any object, but a fuller expression is captured by the trajectory of said 
object as a function of coarse- graining in the  K × S  plane. This is a very convenient and informative 
way of summarising an object: self- similar objects correspond to straight trajectories as the  K × S  
plane is in log- log space. In particular, objects without any folds or protrusion (i.e. convex, such as the 
box with finite thickness in Figure 3A) corresponds to the line  K = − 1

9 S , as  Ae = At  for all levels of 
coarse- graining. Horizontal trajectories (constant  K  ) represent fractal objects with fractal dimension 

 df = 2.5  (Figure 3B). And finally, in the  K × S  plane, a group of objects can said to be ‘universal’ when 
their trajectories overlap, so that they can all be regarded as coarse- grained versions of one another 
(Figure 3C).

Primate cortices (Figure 3D) display a nearly invariant  K   in all cases. But, over all levels of coarse- 
graining,  K   also remains near- invariant in all trajectories as  S  decreases, resulting in a set of horizontal 
lines that largely overlap with each other and other mammalian species. The variance in  K   across 
scales and all 11 species is  < 0.01 , which is at least an order of magnitude lower than the variance in 
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Figure 2. Universal scaling law for 11 coarse- grained primate brains. (A) Coarse- grained primate brains are shown in terms of their relationship between 
log10 ( At ×

√
T  ) vs. log10 ( Ae ). Each solid line indicates a cortical hemisphere from a primate species. Thin grey lines indicate a slope of 1 for reference. 

Filled circles mark the data points of the original cortical surfaces. Grey data points are plotted for reference and show the comparative neuroanatomy 
dataset across a range of mammalian brains (Mota and Herculano- Houzel, 2015). (B) Slopes ( α ) of the regression of data points in A for each species. 
For each species, two data points are shown, one per hemisphere. Colour- code for each species is maintained throughout the whole figure. (C) Rescaled 
brain surfaces visualised for five example species at different levels of coarse- graining.

https://doi.org/10.7554/eLife.92080
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 S . Primate brains, therefore, have all three characteristics of self- similarity, fractality (with  df = 2.5 ), and 
universality (invariant  K   for all scales and species) at the same time.

Thus, coarse- grained primate cortices are morphometrically similar to, and in terms of the universal 
law, ‘as valid as’ actual existing mammalian cortices. Note, of course, that the coarse- grained brain 
surfaces are an output of our algorithm alone and not to be directly/naively likened to actual brain 
surfaces, e.g., in terms of the location or shape of the folds. Our comparisons here between coarse- 
grained brains and actual brains is purely on the level of morphometrics across the whole cortex. 
In contrast, we tested various non- brain objects, and while e.g., the walnut, and bell pepper form 
(partially) straight lines, they vary in both K and S (see Appendix 5). These objects may have a fractal 
regime, but their fractal dimension is not 2.5, nor are they similar to primate or mammalian brains 
in terms of  K   or  S . Furthermore, Appendix 6 underscores the algorithmic and statistical robustness 
of these results using multiple realisations of the coarse- graining procedure on the same object. In 
this framework, our main result can thus be expressed simply: for all the cortices we analysed, and 
for none of the non- cortices, coarse- graining will leave  K   largely unaffected, while morphological 
complexity  S  will decrease.

Morphometric measures as functions of scale reveal scale-specific 
effects of ageing
In the final part of our work, we show how our algorithm and the associated new understanding of 
brain morphology may become useful in applications. As an example, we will focus on how the ageing 
process affects human cortical morphology across scales. In Figure 4A, we compare the total surface 
area  At(λ)  as a function of scale  λ  for a young (20- year- old) vs. an old (80- year- old) group of human 
brains. The difference in  At  between the groups takes a U shape, and the strongest effect is seen 
at approximately 2 millimeters (greatest effect size of –8.635 seen at scale 2.188 mm), where older 

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

-0.5

-0.3

-0.1

K

S

A

S S

B C

D

K

S

adult human (MRI derived)
adult human (Mota 2015)
mammals (Mota 2015)

df=2.5
df=1 same fractal objects

Figure 3. Trajectories of coarse- grained primate cortices and other mammalian and human brains in  K × S  plane. (A) Straight trajectories indicate 
self- similarity (described by a scaling law). In particular, the black line here indicates objects with  Ae = At  for all scales, such as the box of finite thickness 
with a fractal dimension  df = 1  (grey data points). This line is reproduced in all subpanels for reference. (B) Morphological trajectories of multiple 
hypothetical fractal objects are shown which. A flat trajectory (constant  K  ) corresponds to  df = 2.5  in this space. However, these objects are clearly 
different fractals with different values of  K  . (C) Hypothetical objects with overlapping straight morphological trajectories indicate multiple realisations 
of the same fractal object. Flat trajectories (constant  K  ) correspond to  df = 2.5 . The two hypothetical objects with a decreasing  K(S)  correspond to 

 2 < df < 2.5  (D) Projecting our actual data into the normalised  K × S  plane showing the coarse- grained primate brains (same as in Figure 2) as data 
point connected with solid lines (colour- code same as Figure 2). Different mammalian brains are shown as grey scatter points, and adult human data 
points are blue.
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subjects have higher  At . For scales over ∼5 mm, and under ∼0.5 mm the differences become relatively 
small, suggesting the ageing process has less effect on the largest and smallest cortical morphological 
features. Finally, we reproduced these results in an independent dataset in Appendix 7.2.

In this particular example, the scale- dependency of morphological measures can be visually and 
intuitively understood by looking at the reconstructed surfaces at each scale: Figure 4B shows some 
coronal slices of the cortical surface. On a scale of 0.27 mm, the gyri in the younger subjects are 
densely packed, but the older subjects show the expected widening between gyral walls and decrease 
in gyral surface area at the crown (see e.g. Jin et al., 2018; Madan, 2019; Kochunov et al., 2008 for 
recent investigations and references therein). At 1.86 mm, the younger cortices have already partially 
‘melted,’ erasing most small sulci between the densely packed gyri. In the older humans, however, 
the gyri are less dense, the sulci is more open, and thus, at 1.86 mm, most gyri and sulci have not 
been erased yet. At scale 7.94 mm, both young and old brains have ‘melted’ down to similarly near- 
lissencephalic cortices. For a more detailed multiscale investigation over the entire human lifespan, 
please refer to our new preprint (Leiberg et al., 2024).

More broadly, one can regard the melting process as a way of determining how cortical area is 
allocated across different scales. As the cortex ‘melts,’ the contributions to the total area from features 
smaller than the cut- off scale are eliminated. In the example in Figure 4, for instance, we can say about 
half ( 105−4.7 = 100.3 ≈ 2 ) of the total area in the 80 y.o. cortices are present in features smaller than 
4 mm.

Discussion
We have devised a new way of expressing the morphology of the mammalian cerebral cortex, as 
the flow in the values of morphometric measures over a range of spatial scales. This was achieved 
by coarse- graining cortical surfaces, erasing morphological features smaller than the specified scale, 
while preserving surface integrity. After applying this method to the cortices of 11 primate species, 
we have shown that all these diverse cortices are approximations of the same archetypal self- similar 
(fractal) shape. Most of their morphological diversity can be ascribed to the species- specific ranges 
of spatial scales over which each approximation is valid, with the smallest scale being an invariant 
multiple of cortical thickness. This was a proof- by- construction of fractality, a step beyond the usual 
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Figure 4. Human ageing shows differential effects depending on spatial scale. (A) Top:  At(λ)  is shown for a group of 20- year- olds (red, n=27) and a 
group of 80- year- olds (blue, n=86). Mean and standard deviation are shown as the solid line and the shaded area, respectively. Bottom: Effect size 
(measured as rank sum z- values) between the older and younger groups at each scale. Positive effect indicates a larger value for the younger group. 
Blue arrows indicate the effect size at the ‘native scale’ i.e., using the original free surfer grey and white matter meshes. (B) Coronal slices of the pial 
surface of an example 20- year- old subject and an 80- year- old subject at different scales (columns).
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box- counting approach, which also yields scale- dependent morphometrics. As a proof- of- principle we 
showed that healthy human ageing has highly scale- dependent effects in a range of morphometrics.

Advantages and advances
Compared to previous literature, we can summarise our main contribution and advance as follows: 
(i) We are showing for the first time that representative primate species follow the exact same fractal 
scaling – as opposed to previous work showing that they have a similar fractal dimension (Hofman, 
1985; Hofman, 1991), i.e., slope, but not necessarily the same offset, as previous methods had 
no consistent way of comparing offsets. (ii) Previous work could also not show direct agreement 
in morphometrics between the coarse- grained brains of primate species and other non- primate 
mammalian species. (iii) Demonstrating in proof- of- principle that multiscale morphometrics, in prac-
tice, can have much larger effect sizes for classification applications. This moves beyond our previous 
work where we only showed the scaling law across (Mota and Herculano- Houzel, 2014) and within 
species (Wang et al., 2016), but all on one (native) scale with comparable effect sizes for classification 
applications (Wang et al., 2016).

In simple terms: we know that objects can have the same fractal dimension, but differ greatly in a 
range of other shape properties. However, we demonstrate here, that representative primate brains 
and mammalian brains indeed share a range of other key shape properties, on top of agreeing in 
fractal dimension. This suggests a universal blueprint for mammalian brain shape and a common set of 
mechanisms governing cortical folding. As a practical additional outcome of our study, we could show 
that our novel method of deriving multiscale metrics can differentiate subtle morphological changes 
much better (four times the effect size) than the metrics we have been using so far at a single native 
scale.

Expressing cortical morphology as a function of scale is more detailed than a list of summary 
morphometric measures, and more informative than the mere listing of every sulcus and gyrus. We 
propose this new syntax as the basis for a more rigorous characterisation of brain morphology and 
morphological changes. A clear advantage is that some biological processes may only act on a specific 
spatial scales, leaving other scales untouched (ageing in our example). By disambiguation of the 
spatial scale, it allows for an extra dimension of understanding, and tracking of biological processes. 
In the future, this approach can also be extended to cortical development and to various degener-
ative (Wang et al., 2016) and congenital (Wang et al., 2021) neuropathic conditions, especially if 
combined with a regionalised versions of this method applied to specific cortical regions (Wang et al., 
2019) or local patches (Leiberg et al., 2021).

Implications of universality
Empirically, the main result of this paper is the demonstration of a universal self- similar scaling (Equa-
tion 3) for primate, and presumably mammalian cortices. There are two aspects of this universality: 
first that for each and every cortex the value of  K  remains the same for all scales as one removes 
substructures smaller than a varying length scale (or equivalently, that the fractal dimension is almost 
exactly 2.5 in all cases). Second, that the value of  K   for the cortices of different species is approxi-
mately the same, as previously observed (Equation 1) across species (Mota and Herculano- Houzel, 
2015) and individuals (Wang et al., 2016). One could imagine a set of objects for which one but not 
the other aspect of the universality in  K   holds true. However, the fact that both universalities hold true 
is significant. It suggests the existence of a single highly conserved mechanism for cortical folding, 
operating on all length scales self- similarly with only a few morphological degrees of freedom. It also 
hints at the possibility of deriving cortical scaling from some variational principle. Finally, this dual 
universality is also a more stringent test for existing and future models of cortical gyrification mech-
anisms at relevant scales, and one that moreover is applicable to individual cortices. For example, 
any models that explicitly simulate a cortical surface as an output could be directly coarse- grained 
with our method and the morphological trajectories can be compared with those of actual humans 
and primate cortices. The simulated cortices would only be ‘valid’ in terms of the dual universality, if 
it also produces the same morphological trajectories (Note, we do not suggest to directly compare 
coarse- grained brain surfaces with actual biological brain surfaces. As we noted earlier, the coarse- 
grained brain surfaces are an output of our algorithm alone and are not to be directly/naively likened 
to actual brain surfaces, e.g., in terms of the location or shape of the folds. Our comparisons here 
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between coarse- grained brains and actual brains is purely on the level of morphometrics across the 
whole cortex).

The scaling itself does not imply or favour any particular proposed gyrification model (ours Mota 
and Herculano- Houzel, 2015 included), and all results in this paper are agnostic about this choice. 
Indeed, our previously proposed model (Mota and Herculano- Houzel, 2015) for cortical gyrification 
is very simple, assuming only a self- avoiding cortex of finite thickness experiencing pressures (e.g. 
exerted by white matter pulling, or by CSF pressure). The offset  K  , or ‘tension term,’ precisely relates 
to these pressures, leading us to speculate that subtle changes in  K   correlate with changes in white 
matter property (Wang et al., 2016; Wang et al., 2021). In the same vein of speculation, the scale- 
dependence of  K   shown in this work might, therefore, be related to different types of white matter 
that span different length scales, such as superficial vs. deep white matter, or U- fibres vs. major tracts. 
However, there are also challenges to the axonal tension hypothesis (Xu et al., 2010). Indeed, white 
matter tension differentials in the developed brain may not explain the location of folds, but instead 
white matter tension may contribute to a whole- brain scale ‘pressure’ during development that drives 
the folding process overall. Aside from speculations about the biological interpretation, the simplicity 
of the highlighted scaling law parallels many complex phenomena in nature that displays simple and 
universal scaling that can be derived from first principles (Barenblatt, 1996; West et al., 1997; Gagler 
et al., 2022). In addition, recent results suggest simplicity and symmetry are generically favoured on 
statistical- ensemble grounds by evolution (Johnston et al., 2022). Our model correctly predicts the 
scaling law (Equation 1), but a more complete explanation for cortical gyrification is probably far more 
complex (Quezada et al., 2020) than can be accounted by such a simple model.

One specific example of said complexity is the exact patterns, locations, depth, and features of gyri 
and sulci. We know such patterns to be, for example, variable but also somewhat heritable in humans, 
whilst in macaques such patterns are relatively preserved across the species. Our work does not 
explain any of these observations, nor are the coarse- grained versions of human brains is supposed to 
exactly resemble the location/pattern/features of gyri and sulci of other primates. The similarities we 
highlighted here are on the level of summary metrics, and our goal was to highlight the universality in 
such metrics points towards highly conserved quantities and mechanisms.

Biological plausibility and implications
The observation that with increasing voxel sizes, the coarse- grained cortices tend to be smoother and 
thicker is particularly interesting: the scaling law in Equation 3 can be understood as thicker cortices 
( T  ) form larger folds (or are smoother i.e. with less surface area  At ) when brain size is kept constant 
( Ae ). This way of understanding has also been vividly illustrated by using the analogy of forming paper 
balls with papers of varying thickness in Mota and Herculano- Houzel, 2014: comparing two paper 
balls of the same size ( Ae ) will show that the one that uses thicker paper ( T  ) will be smoother, have 
larger folds and a smaller total surface area ( At ), in comparison with the one using thinner paper. The 
scaling law can, therefore, be understood as a physically and biologically plausible statements and our 
algorithm yields results in line with the scaling law.

More broadly, the interaction between brain development and evolution may also benefit from 
a scale- specific understanding. This may be important in elucidating what in cortical morphology is 
selected for by evolution, what is determined by physics; what is specified by genes, and what is emer-
gent. For example, one can estimate the number of structural features at each scale ( At(λ)  as multiples 
of  A0(λ) ), and it will be interesting to correlate this number to other quantifiers of cortical structure, 
such as the number of neurons (Mota and Herculano- Houzel, 2014), the number of functional areas 
(Molnár et al., 2014), or the number of cortical columns (Kaas, 2012), possibly over different stages 
of development. Generally, the larger the cortical feature (i.e. from gyri to functional areas to lobes 
to hemispheres), the earlier during development it appears (Zilles et al., 2013; Garcia et al., 2018), 
and more broadly it is conserved over kinship (Pizzagalli et al., 2020) and phylogeny (Heuer et al., 
2019; Valk et al., 2020). It thus seems likely that comparative neuroanatomical methods (Mars et al., 
2014; Croxson et al., 2018) may be directly used to identify and contrast structures in coarse- grained 
cortices of more highly gyrified species with their analogues in less- gyrified species. One could then 
perhaps specify when evolution conserves and when it invents old and new cortical features.

From an application perspective, our final result illustrates clearly that the surface area difference 
between older and younger subjects at the ‘native’ scale (i.e. original free surfer surfaces) is negligible 
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(effect size smaller than two standard deviations). However, in our analysis across scales, there is a 
clear optimal scale at ∼2 mm where the effect size is maximised between older and younger subjects 
(effect size is –8 standard deviations). For most classification applications in biology and medicine, the 
increased effect size and hence separability of groups in the scale- dependent morphometrics repre-
sent a huge advance over the native scale.

Outlook
Our work here was limited to summary descriptors of entire cortical hemispheres, but future work 
will explore extensions of these methods to lobes and cortical areas, similarly to Wang et al., 2019; 
Leiberg et al., 2021. This will generate precise characterisations of the morphological differences 
between phylae and across developmental stages, and perhaps pinpoint the time and location of 
morphological changes leading to congenital and neurodegenerative conditions. Ultimately, we hope 
this new framework for expressing and analysing cortical morphology, besides revealing a hitherto 
hidden regularity of nature, can become a powerful tool to characterise and compare cortices of 
different species and individuals, across development and ageing, and across health and disease.
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The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Wang Y 2024 Data underlying "Neuro- 
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a universal fractal primate 
brain shape"
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2022 Primate Brain Bank MRI https:// doi. org/ 10. 
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Appendix 1

Coarse-graining algorithm
The core coarse- graining algorithm underpinning our analyses takes pial and white matter surfaces 
from the cortical surface reconstruction as inputs and at any specified spatial scale  λ  ‘voxelises’ the 
grey matter ribbon at the specified resolution. To achieve this, we set up a 3D voxel grid, where each 
grid voxel is of size  λ× λ× λ .

In detail, we assign all voxels in the grid with at least four corners inside the original pial surface 
to the pial voxelisation. This process allows the exposed surface to remain approximately constant 
with increasing voxel sizes. A constant exposed surface is desirable, as we only want to gradually 
‘melt’ and fuse the gyri, but not grow the bounding/exposed surface as well. We want the extrinsic 
area to remain approximately constant as we decrease the intrinsic area via coarse- graining; it is like 
generating iterates of a Koch curve in reverse, from more to less detailed, by increasing the length 
of the smallest line segment.

We then assign voxels with all eight corners inside the original white matter surface to the white 
matter voxelisation. This is to ensure integrity of the white matter, as otherwise white matter voxels 
in gyri may become detached from the core white matter, and thus artificially increase white matter 
surface area. Indeed the main results of the paper are not very sensitive to this decision using all 
eight corners, vs. e.g., only four corners, as we do not directly use white matter surface area for the 
scaling law measurements. However, we still maintained this choice in case future work wants to 
make use of the white matter voxelisations or derivative measures.

Finally, subtracting the white matter voxelisation from the pial voxelisation, we obtain the grey 
matter voxelisation (Figure  1B bottom row). The pial surface voxelisation is designed such that 
neighbouring gyri can fuse if their separation is smaller than the scale of interest, whilst not growing 
the cortex outwards. The white matter surface voxelisation allows the walls of each gyrus to thicken 
and fuse inwards. Visually, this process looks as if the cortex is ‘thickening’ inwards and smoothing 
on the outside.

From the voxelised cortex at each scale  λ , we can then obtain coarse- grained pial and white 
matter surfaces, and extract estimates of global morphometric measures such as the average 
cortical thickness  T(λ) , the total cortical surface area  At(λ) , and the exposed surface area  Ae(λ) . 
For each  λ , we derived an outer isosurface equal to 0.5 for the pial voxelisation (voxel values are 
1 within the voxelised pial surface and 0 otherwise). This isosurface is then defined as the coarse- 
grained pial surface at this scale. The surface area of this isosurface is used as  At(λ) . The exposed 
surface area  Ae(λ)  is subsequently derived from the convex hull of the pial isosurface. Finally, the 
cortical thickness  T(λ)  is estimated as  

VG(λ)
At(λ)  , where  VG(λ) , which is the estimated grey matter volume, 

derived from the number of grey matter voxels, is multiplied by the voxel volume. These global 
morphometric measures are summary statistics of the brain at each particular scale, capturing 
information about both their intrinsic geometry ( At(λ), T(λ) ) and extrinsic geometry ( Ae(λ) ). In this 
manner, for each cortex, we obtain not just one set of summary morphometric measures, but rather 
a set of measures as functions of  λ . A detailed walk- through of the coarse- graining algorithm and 
estimation of morphometric measures is provided on Github: https://github.com/cnnp-lab/Cortical 
FoldingAnalysisTools/blob/master/Scales/fastEstimateScale.m.

Note that although this process is inspired by the box- counting algorithm, it is different from box- 
counting and related convolution- based algorithms: we do not simply apply successive convolutions 
with an increasing kernel size (or equivalent), which effectively would achieve a uniform and spatially 
isometric ‘smearing’ of the original cortical ribbon to a given scale, rather than a targeted erasure 
of surface details smaller than said scale. As a result, this method yields well- defined and well- 
behaved white and gray matter surfaces. Thus, one can apply all the usual analytical tools to these 
realisations that are applicable to actual cortices. Note that our approach is more comparable in its 
principles to the calculation of the outer smoothed pial surface in FreeSurfer (Schaer et al., 2008), 
which utilises a dilation and erosion convolution to effectively erase details below a certain scale. 
Of course, our proposed procedure is not the only conceivable way to erase morphological details 
below a given scale; and we are actively working on related algorithms that are also computationally 
cheaper. Nevertheless, the current version requires no fine- tuning, is computationally feasible and 
conceptually simple, thus making it a natural choice for introducing the methodology and approach.

https://doi.org/10.7554/eLife.92080
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Given how broadly it has been verified, we expect the observed universality in cortical self- similar 
scaling to be robust to the details of the coarse- graining algorithm. It would be very informative to 
test this proposition in future. For example, an alternative method inspired by Yu et al., 2021 could 
be implemented, eschewing voxelisation and dealing only with the flow of nested surfaces with 
self- and mutual- avoidance explicitly implemented. Going in the opposite direction, more detailed 
models for the mechanisms of cortical folding (see e.g. Raznahan et al., 2011) can be regarded as 
a type of reverse melting, and could perhaps be implemented and tested in a similar fashion as fine- 
graining procedures.

https://doi.org/10.7554/eLife.92080
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Appendix 2
Influence of original image resolution
In this section, we want to demonstrate the relatively weak effect of the original image resolution 
on our analysis outputs. To this end, we used five example HCP subjects, who were scanned at 
0.7mm isotropic image resolution, and downsampled their images to 1mm isotropic images. We 
then proceeded with our analysis using two freesurfer outputs. (1) the HCP freesurfer pipeline 
output optimised for the 0.7mm resolution, and (2) a standard freesurfer pipeline output on the 
1mm downsampled images. We proceeded with these two sets of surfaces in our analysis and show 
the resulting morphology measures in Appendix 2—figure 1.

We observe a relatively weak difference between these two sets of inputs/surfaces. Both sets 
largely follow the same trajectory across scales. Especially in the exposed area, the within and 
between subject differences are noticeably larger than between image resolutions. In total area 
and thickness, some small but systematic differences are seen in all subjects between the scales of 
1- 2mm. These are most likely differences in the cortical morphology reconstruction in the freesurfer 
surfaces using the two different resolution images as input. However, in none of these resulting 
morphology measures do we see an artifact specifically at 0.7 or 1mm. Any differences between 
image resolutions only result in subtle changes in the freesurfer meshes, which are smooth. Our 
analysis method, therefore, has no direct dependency on the image resolution, as our inputs are 
these smooth freesurfer meshes.
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Appendix 2—figure 1. Effect of using different original image resolutions in five examples Human Connectome 
Project (HCP) subjects. In all plots, red lines indicate an original image resolution of 0.7 mm isotropic, whereas blue 
line indicate an original image resolution of 1 mm isotropic. Both hemispheres are shown for each subject.

https://doi.org/10.7554/eLife.92080
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Appendix 3

Scaling properties by species
3.1 Obtaining the scaling law
From the coarse- grain procedure (Figure 1), we obtain surface meshes for the pial and white matter 
surface at each spatial scale. From those, we derive exposed area, total pial surface area, and average 
cortical thickness as described in Methods. However, the coarse- graining procedure, by itself, barely 
changes the exposed surface area, and only changes the total surface area minimally (Appendix 3—
figure 1A). As the voxel size changes at each scale, it only starts to affect the exposed area at very 
large scales, where effectively the voxels are no longer a good description of the shape of the skull. 
Thus, if we scatter the raw data points from the coarse- graining procedure in the plane of the scaling 
law, there is barely any variance in the data (Appendix 3—figure 1B). Even after zooming in, we see 
an almost vertical line (Appendix 3—figure 1B). This is expected and is not evidence for or against 
our hypothesis.

Appendix 3—figure 1. Unscaled quantities cannot be used to verify scaling law. (A) The exposed surface area  Ae  
barely changes across scales, and  At  only changes minimally. (B) Plotted in the scaling law plane (as Figure 2) the 
data points barely have any variance, and overlap each other substantially. Even after zooming in, the trace for the 
coarse- graining procedure (solid line) is virtually a vertical line (with a small artifactual ‘tail’ coming from very large 
voxel sizes).

Instead, we need to transform the data into a perspective that makes sense to be seen in the 
scaling law plane. Instead of thinking of the coarse- graining procedure as a process that re- renders 
the cortex at increasing voxel sizes, we can instead think of the procedure as rescaling the original 
cortical mesh into increasingly smaller sizes, and re- rendering it with the same fixed voxel size. The 
analogy using Britain’s coastline is that instead of measuring the coastline with increasingly smaller 

https://doi.org/10.7554/eLife.92080
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rulers, we resize the map of the coastline to increasingly smaller sizes, but keep the size of the ruler 
the same. Both procedures are equivalent and produce the same fractal dimension.

To achieve this procedure, we re- scaled our measurements of  Ae ,  T  , and  At  by the voxel size ( λ ) 
and a fixed factor ( lr ):

 

Ar
e = Ae

(λ× lr)2

Ar
t = At

(λ× lr)2

Tr = T
(λ× lr)

.
  

(4)

As we used isometric cubes as voxels, the voxel size refers to the length of a single side. E.g.  λ = 1  
if we used a isometric  1 × 1 × 1mm3  voxel.

 lr  is a fixed factor for each cortical hemisphere, and does not change with  λ . We use it to 
systematically shift all the data points within a range, such that the re- scaled quantities are not larger 
than those from the original cortical meshes. One can easily verify that  lr  will not change the slope or 
offset of any scaling law, but simply represents a constant shift to all data points. In our data, some of 
the re- scaled quantities would indeed be larger than those from the original cortical meshes, as the 
voxel size we choose is limited at the smaller end only by computational resources. In other words, 
we can use very small voxel sizes (relative to the mesh), which after re- sizing would yield very large 
values of  A

r
e ,  A

r
t  , and  Tr . To avoid this, we chose  lr  simply as the ratio of the  I   (isometric term) of the 

mesh at the smallest scale we used relative to the original mesh, divided by the  λ  of the smallest 
scale:

 
lr = 1

λs
× Is

Io
,
  

(5)

where  λs  is the smallest voxel size used for a particular cortex,  Is  is the corresponding  I   for this cortex 
at the smallest voxel size.

Finally,  Io  is the  I   term for the original cortical mesh. Indeed, the ratio of  
Is
Io   is always close to, but 

larger than one in our dataset. Thus, we can see in Figure 2A that most traces start very close to the 
original data point, indicating that our finest scale is reconstructing the original surfaces well.

Note that the re- scaling is isometric, meaning that it only affects  I  , but does not change the data 
in the  K × S  plane (Figure 3). Rescaling by a factor proportional to  λ2  can, therefore, be understood 
as distributing the data points along the  I   axis, while  lr  can be understood as fixing the position in 
the  I   axis relative to the  I   of the original mesh.

Figure 2A is produced with these rescaled quantities as described above. The only final step 
in producing Figure 2A, and in calculating the associated slopes, is the removal of artifactual data 
points where  

At
Ae

< 0 , which can occur at very large voxel sizes relative to the cortical mesh. The 
algorithmic implementation in MATLAB can be found on Github: https://github.com/cnnp-lab/Cort 
icalFoldingAnalysisTools/blob/master/Scales/fastEstimateScale.m, as part of our Cortical Folding 
Analysis MATLAB package https://github.com/cnnp-lab/CorticalFoldingAnalysisTools/, which also 
has been recently updated with a graphical user interface.

3.2 Species-specific details
In the following, we will show the detailed data for each species in terms of their scaling behaviour 
in Appendix 3—figure 2. Videos for all species, showing the pial surface at each scale can be found 
under https://bit.ly/3CDoqZQ for review purposes. Final versions of all underlying data, analysis 
code, and videos will be published on Zenodo and eLife upon acceptance of the paper.

Given the demonstrated overlap between species, and if their cortices are all approximations 
of the same form, how can one tell apart their cortices? The answer is that all approximations 
have a range of validity, which varies between cortices. For a gyrified cortex of area  At , (When no 
dependence on  λ  is indicated then we are referring to the values for the original cortex), the coarse- 
graining will remove details of ever- increasing scale, lowering  At(λ)  until attaining lissencephaly for 

 Ae(λlys) = At(λlys) . Indeed, it follows from rewriting Equation 3 in the form of Equation 2 that a given 
cortex’ shape will be comprised of self- similar structures with areas ranging from  A0 = g−5At  at their 
smallest to  At  at their largest, where  g  is the gyrification index  g = At

Ae  . Whenever this self- similar 

https://doi.org/10.7554/eLife.92080
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scaling is valid,  A0  acquires a further interpretation as the typical size of the smallest structures in a 
cortex: patches smaller than that must be approximately smooth. Consequently,  Nstructures ≃ At

A0
= g5

  
estimates the number of morphological features in each cortex (and adds a new interpretation 
for the gyrification index). For example, we estimate the human in our dataset to have about 
105 morphological features in each cortical hemisphere, and the galago to have about four such 
morphological features. The corresponding  Nstructures(λ)  estimates how this number changes over 
coarse- graining. Appendix 4 later provides a more detailed discussion on this topic.

https://doi.org/10.7554/eLife.92080
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Appendix 3—figure 2. Detailed scaling plots for each species. Filled circle is the original mesh, empty circle 
are data points from the coarse- graining algorithm. Empty circles are connected by a line for visualisation. Two 
hemispheres are analysed and separated for each species, although data points overlap substantially in plot. Slope 
estimates are given at top left corner in each plot.

https://doi.org/10.7554/eLife.92080
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Appendix 4

Morphometric relations and the range of validity of the fractal 
approximation
There are many geometrical quantities that describe aspects of entire cortical hemispheres. But most 
information contained in such summary morphometric measures is captured, exactly or to good 
approximations, by the three used in Equation 1: the pial (or total) surface area  At , exposed surface 
area  Ae , and average cortical thickness  T  . Other quantities, like the gyrification index  g = At

Ae  , or the 
Grey Matter and Total volumes, can be expressed as products of power laws of these quantities; and 
the logarithm of products of power laws are linear combinations of the logarithms of the constituting 
variables, with their exponents as coefficients. Thus, the morphology of a given cortex can be fairly 
summarised as a point in a three- dimensional morphometric space with components given by  log At , 

 log Ae , and  log T2
  (the last exponent guarantees all axes have the same dimension of  log[Area] ).

This logarithmic structure guarantees that the quantities denoted by products of power 
laws of the original variables correspond to vectors in the morphometric space: the increase 
and decrease of their values occur along these vectors, and the planes perpendicular to each 
vector denote all configurations with the same value for the associated variable. For example, 

 G = log g = log At − log Ae , the point in the morphometric space associated with the gyrification ratio 
value  

At
Ae  , defines a displacement along a vector with coefficients  {1,−1, 0} .

The quantities  K  ,  S  and  I   used in Sec. 3.2 likewise corresponds to displacements along specific 
directions in morphometric space, which are all orthogonal to one another. These can be normalised, 
so that the sum of their squared coefficients equals unity. In this case, expressing cortical shape in 
the morphometric space in terms of the original variables or the new variables amounts simply to a 
rotation: a change of orthonormal base.

Figures 2 and 3 can be then regarded as particular 2D snapshots, taken from a certain direction, 
of a 3D set of points.

Of particular note, those vectors with a sum of coefficients equal to zero correspond to 
dimensionless variables. Any such vector is perpendicular to the  I   direction, and lie on the  K × S  
plane.

In this framework, we can picture the step- wise coarse- graining of a cortex, as described in Sec. 
3.1, as a trajectory in this morphometric space. Empirically, Sec. 3.1, as codified by Equation 3, finds 
that the trajectories in morphometric space for all studied primates are linear, and largely overlap 
along a line of constant  K  . For cortical morphology, the first fact implies scale- invariance, the second 
implies universality.

Aging, development, and the progression of neurodegenerative conditions likewise each 
correspond to different morphometric trajectories.

Now consider a morphometric trajectory, corresponding to the coarse- graining of a cortex up to 
the point of lissencephaly, i.e., to the spatial scale  λlys  such that  At(λlys) = Ae(λlys) . In the idealised case 
(but very close to empirical, as seen in Sec. 3.1), all points along the trajectory should follow Equation 
3, starting at the original values for the morphometric measures and ending at the intersection of 
the  K = constant  coarse- graining trajectory and the  g = 1  line that defines the limit for lissencephaly 
(points with  g < 1  are geometrically possible, but are largely avoided by the trajectories of actual 
cortices, although not by those of all objects; see Appendix 5—figure 1). This trajectory spans a 
range of values for each morphometric measure: for dimensionless morphometric measures, such 
span is fully specified by Equation 3. For all others, one needs also to specify the voxel rescaling. 

The scheme described in Sec. Appendix 3.1 simply guarantees that, for a constant  k = AtA
− 5

4
e T

1
2 , the 

fundamental area element 
 
A0 = T2

k4 = A5
e

A4
t  
 (and thus also the average thickness  T  ) is kept constant for 

all realisations of the coarse- graining process. We can regard these as approximations of the same 
original cortex, all drawn with the same resolution, but in ever smaller isometric sizes.

This choice of spatial scale then allows our identification of  A0  as the typical size of the smallest 
morphological features in a given cortex. Equivalently, it is also the area of the largest possible 
lissencephalic cortex for a given average cortical thickness, just at the cusp of the onset of 
gyrencephaly.

This same choice also enable us to easily compute the expected span of the various morphometric 
measures over coarse- graining, assuming the universal scaling: each will range between its original 

https://doi.org/10.7554/eLife.92080
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value (expressed as a function of the original values for  At ,  Ae , and  T  ), and its value at spatial scale 

 λlys , where  At(λlys) = Ae(λlys) = A0 : we simply replace  At  and  Ae  by  A0 , and  T   by  
√

A0k4  . The ratios 
between the initial and final values of all morphometric measures will be given as powers of  g , 
imbuing the gyrification index with a new significance.

We list below the expanse for all such morphometric measures ( S = log s ,  K = log k  and  I = log vI  )

Morphometric measure Original value = Span × Value at lissencephalic limit
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Appendix 5
Validation with non-brain objects
We chose to apply our coarse- graining procedure to a range of objects to validate our algorithm, 
and we included both negative and positive controls.

As a first positive control, we used a simple box with finite thickness (i.e. we simulated a inner 
‘white matter’ surface and an outer ‘grey matter’ surface, both being a cube, one positioned 
inside the other). A schematic is shown in Appendix 5—figure 1. We know based on theoretical 
consideration that this box must be aligned exactly with the  K = − 1

9 S  line, as its  At  must be the same 
as its  Ae  at every stage of coarse- graining, which also implies a ‘fractal dimension’ of 1. This is exactly 
the case in our plot of  K   against  S , as all the grey data points from the coarse- graining algorithm 
align on  K = − 1

9 S  (thick black line).
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Appendix 5—figure 1. Scaling behaviour of various objects in  K × S  space. Thick black line indicates  K = − 1
9 S  

and a gyrification index. g = At
Ae

= 1  Points above and below the line have, respectively,  g > 1  and  g < 1 . Colour- 
coded boxes show the surface of the objects we analysed. For simplicity we show the outer ‘pial’ surface of each 
object. In the case of the box, we indicated both outer and inner surfaces. Green data points correspond to the 
bell pepper, red to the human brain, cyan to the ‘Laurana’ bust, brown to the walnut, and grey to the box of finite 
thickness.

As negative controls, we included three non- brain objects, a bell pepper, two walnut halves, and 
a coarse outline of a bust/figurine known as Laurana. All three of these objects show a self- similar, 
or fractal, regime (corresponding to partially straight trajectories in  K × S ) in our coarse- graining 
procedure, but their trajectories in  K × S  space are not flat (Appendix 5—figure 1), meaning their 
fractal dimensions are distinct from 2.5. Their trajectories also do not overlap with each other, 
indicating that they are fundamentally different shapes.

The human brain is included here as a reference and shows a clear flat trajectory (Appendix 5—
figure 1) as presented in the main text. Also worth noting, after the human trajectory intersects the 

 K = − 1
9 S  line, it veers off to follow the line closely, indicating that the  Ae  and  At  remain the same 

with further steps of coarse- graining. Effectively, the human brain transitions to be lissencephalic 
convex structures once their fractal regime ends. For simplicity, we excluded these lissencephalic 
data points of extreme coarse- graining from the results in the main text.

https://doi.org/10.7554/eLife.92080
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Appendix 6
Validation with randomising grid for coarse-graining
To assess robustness of the coarse- graining algorithm, we ran 30 different realisations of the 
algorithm, but with a small random shift of the grid position relative to the surface meshes. The shift 
is chosen to be within the radius of  λ . This allows subtle changes in the voxelisation at the boundary 
of grey matter and white matter. Interestingly, over five different human individuals, we observed 
subtle changes in the values  S  over the 30 realisations, and to a lesser degree  K   (Appendix 6—
figure 1). Additionally, the variation between individuals, especially in  K   at smaller spatial scales, is 
far greater than the variation introduced by the jittered realisations. These results suggest that the 
coarse- graining algorithm is extremely robust towards subtle changes at the grey or white matter 
boundary, especially far away from the lissencepahlic limit.
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Appendix 6—figure 1. Randomising grid for coarse- graining yields very consistent results within individuals in 
 K × S  space. Thick black line indicates  K = − 1

9 S  and a gyrification index  g = At
Ae

= 1 . Each colour in the plot 
indicates a different human individual (Human Connectome Project, HCP 103414 - yellow, 135225 - red, 138534 
- green, 144832 - blue, 148840 - black, respectively). 30 jittered grid outputs are shown for each individual, lines 
connect datapoints of the same jittered version. Zoomed in panels show that the jittered outputs have far less 
variation within than between individuals.
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Appendix 7
Ageing process
7.1 All morphometric variables
In the main text, we used the ageing process as an example for scale- dependent biological process. 
For completeness, here, we also show all the morphometric variables across scales in the 20 y.o. 
and 80 y.o. cohort in Appendix 7—figure 1, and the corresponding effect sizes in Appendix 7—
figure 2. As expected,  Ae  shows very little difference between the two cohorts.  I  ,  S , and  T   show 
some effects at scales smaller than 4 mm, but the effect decreases monotonously for higher scales. 
 K   demonstrates a more complex scale- dependent effect: larger  K   in younger subjects at small 
scales of 0.25 mm (in agreement with previous native scale analyses Wang et al., 2016), smaller  K   
in younger subjects at scales of approx. 2 mm, and a return to larger  K   in younger subjects at large 
scales of more than approx. 5 mm. Note, however, that despite these large effect sizes, the actual 
change of values of  K   is within the range of variation expected across species (seen in the main text). 
The range of variation of  K   is approx 0.04 here, and at least an order of magnitude smaller than the 
range of variation in  S  (approx 1.5).

Appendix 7—figure 1. All morphological variables across scales in the 20 y.o. and 80 y.o. cohort. Each panel 
shows a morphological metric, and data is shown for a group of 20- year- olds (red, n=27) and a group of 80- year- 
olds (blue, n=86). Mean and standard deviation are shown as the solid line and the shaded area, respectively.

https://doi.org/10.7554/eLife.92080
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Appendix 7—figure 2. Effect size between the 20 y.o. and 80 y.o. cohort in all morphological variables. Each 
panel shows a morphological metric, and data is shown for a group of 20- year- olds (red, n=27) and a group of 
80- year- olds (blue, n=86). Effect size is measured as the rank sum z statistic between the two groups.

7.2 Confirmation in independent dataset
To confirm that our observed ageing effect was not driven by sample or data- specific properties, we 
also analysed an independent dataset (NKI) with the same methods. Here, we show the equivalent 
figures to Appendix 7—figure 1 and Appendix 7—figure 2 for the NKI data in Appendix 7—figure 
3 and Appendix 7—figure 4. The same qualitative patterns can be seen in all plots, including the 
scale- specific effects in  K   and  Ae  at around 2 mm.

https://doi.org/10.7554/eLife.92080
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Appendix 7—figure 3. All morphological variables across scales in the 20 y.o. and 80 y.o. cohort in a separate 
(NKI) dataset. Each panel shows a morphological metric, and data from an independent dataset (NKI) is shown for 
a group of 20- year- olds (red, n=10) and a group of 80- year- olds (blue, n=10).

https://doi.org/10.7554/eLife.92080
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Appendix 7—figure 4. Effect size between the 20 y.o. and 80 y.o. cohort in all morphological variables in a 
separate (NKI) dataset. Effect size is measured as the rank sum z statistic between the two groups. Mean and 
standard deviation are shown as the solid line and the shaded area, respectively.

https://doi.org/10.7554/eLife.92080
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