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outcomes in senescence-driven acute
liver injury
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Currently liver transplantation is the only treatment option for liver disease, but organ availability
cannot meet patient demand. Alternative regenerative therapies, including cell transplantation, aim to
modulate the injured microenvironment from inflammation and scarring towards regeneration. The
complexity of the liver injury response makes it challenging to identify suitable therapeutic targets
when relying on experimental approaches alone. Therefore, we adopted a combined in vivo-in silico
approach and developed an ordinary differential equation model of acute liver disease able to predict
the host response to injury and potential interventions. The Mdm2fl/fl mouse model of senescence-
driven liver injury was used to generate a quantitative dynamic characterisation of the key cellular
players (macrophages, endothelial cells, myofibroblasts) and extra cellular matrix involved in liver
injury. This was qualitatively captured by the mathematical model. The mathematical model was then
used to predict injury outcomes in response to milder and more severe levels of senescence-induced
liver injury and validatedwith experimental in vivo data. In silico experiments using the validatedmodel
were then performed to interrogate potential approaches to enhance regeneration. These predicted
that increasing the rate of macrophage phenotypic switch or increasing the number of pro-
regenerative macrophages in the system will accelerate the rate of senescent cell clearance and
resolution. These results showcase the potential benefits of mechanistic mathematical modelling for
capturing the dynamics of complex biological systems and identifying therapeutic interventions that
may enhance our understanding of injury-repair mechanisms and reduce translational bottlenecks.

Orthotopic liver transplantation remains the only curative treatment for
fulminant and end-stage disease, but the availability of donor organs is
consistently exceeded by patient requirements, with a mortality rate of over
two million deaths worldwide per year1. Alternative therapies capable of
promoting liver regeneration are urgently needed to support this growing
patient burden.

Liver regeneration is a complicated, multifaceted process which is
dependent on the nature and burden of injury. Commonly, a multicellular
interplay of different spatiotemporally activatedpro-inflammatory andpro-
regenerative responders contribute to injury resolution and tissue regen-
eration, with dynamic changes in immune cells, extracellularmatrix (ECM)

composition and vascularisation of the liver occurring during the repair
process. Additionally, the level of senescence in the injured liver is widely
considered to influence regenerative success. In fact, hepatocyte senescence,
characterised by induction of genes encoding p53 (TRP53), p21 (WAF1)
and p16 (INK4A), is a common feature of various human liver diseases
including steatosis, acute and chronic injury2–6. Corresponding acute and
chronic murine liver injury models demonstrate complementary senes-
cence expression profiles to their human counterparts2,4,7. Despite this, an
understanding of how the degree of senescence impacts key components of
the liver injurymicroenvironment, and how these components change over
time remains lacking. Such mechanistic understanding has the potential to
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improve responses to candidate alternative therapies (e.g. novel cell and
drug approaches such as senolytic therapies), ultimately enabling optimi-
sation of treatment outcomes, for example through stratification of patients,
identification of intervention timepoints and determination of pre-
conditioning requirements.

The complexity of the liver injury response makes it challenging to
identify, using experimental approaches alone, which microenvironmental
changes or cellular responses are key to improving therapeutic interven-
tions, not least because significant numbers of animal studies are required to
inform this using conventional analysis methods. The ability to predict
which changes will occur, the level of response and which components are
important inmediating injury resolution, relative to the degree of (induced)
senescence, would substantially reduce the number of animal experiments
required, thereby reducing costs of preclinical studies whilst also providing
insights into key injury/regeneration mechanisms.

In this paper we adopt a synergistic in vivo and mechanistic mathe-
matical modelling approach to provide mechanistic understanding of the
complex biological interactions underpinning regenerative processes. We
use the mathematical model to predict the biological response to a given
injury challenge that is then tested in vivo. Furthermore, in silicomodels can
provide predictions for the dynamic behaviour of the variables as a function
of continuous time, whereas experimental methods return data at discrete
timepoints. Such high fidelity numerical data can be used to provide further
insights into the system behaviour, such as the time taken for the induced
senescence to be cleared from the system, and can be exploited to optimise
therapeutic outcomes. For a review of how mechanistic mathematical
models canbe exploited to overcome translational bottlenecks indriving cell
therapies from bench to beside, as well as in the field of regenerative med-
icine more widely, see ref. 8 and Waters, Schumacher and El Haj9.

Initial mechanistic mathematical model development requires inter-
rogation of experimental observations of the biological system to allow
hypotheses for the causal mechanisms underpinning the system behaviour
to be identified, as well as experimental data for model calibration and
validation. The depth of in vivo data presented here presents an exciting
opportunity to build a predictive mathematical model.

Previous studies used the AhCre murine double minute 2
(AhCreMdm2flox/flox, herein Mdm2) mouse strain to induce acute, p21-
dependent senescent injury in hepatocytes via administration of the xeno-
biotic chemical β-naphthoflavone (βNF). This mouse combines expression
of the ratCyp1A1promoter upstreamofCre recombinasewith loxPflanked
transgenicMdm2, allowing selective deletion of Mdm2 in hepatocytes fol-
lowing Cre recombinase expression2,7. Mdm2 is a key negative regulator of
p53, which positively regulates p21 expression.

In this study we instead administer single dose concentrations of
AAV8-TBG-Cre allowing liver specific uptake and tighter control of the
level ofCre recombinase expression in hepatocytes, thereforefine tuning the
level of induced senescence.We perform a detailed quantitative histological
characterisation of the key players in the regenerative response and report
this relative to the level of senescence induced. Motivated by cell-to-cell or
cell-to-matrix interactions in the pathogenesis of liverfibrosiswe specifically
consider themacrophage response,myofibroblast activation, changes in the
extracellular matrix (ECM, collagen-I production) and the endothelial/
angiogenesis response.

This depth of detailed quantitative experimental data presents a timely
opportunity to develop a predictive theoretical model. Continuum mathe-
matical models have been successfully developed for a number of regen-
erative medicine scenarios9. Particularly pertinent are wound healing and
liver fibrosis studies, such as those explored previously by Friedman and
Hao, who generated partial differentiation equation models for important
inflammatory and regenerative responses in liver fibrosis, and described
changes in key cell types and cytokines within an assumed region of the
liver10. Todate, nomodels have beendevelopedwhichdescribe the changing
nature of the liver microenvironment as a result of or in relation to acute,
senescence driven liver injury despite the widespread prevalence of senes-
cence in human liver diseases.

In this paper we detail the ordinary differential equation (ODE)
mathematical model that captures acute senescence mediated injury
development and is capable of identifying the driving mechanisms leading
to inflammation, and show that it qualitatively captures the in vivo dataset
corresponding to amoderate injury level.We thenuse the theoreticalmodel
to qualitatively predict the response of the injured tissue niche to more
severe and milder injury levels and demonstrate excellent qualitative
agreement with the in vivo data, providing validation of our mechanistic
mathematical model.

Results
Administration of AAV8.TBG.Cre in Mdm2 mice results in tran-
sient upregulation of p21 expression
To determine how senescence influences the regenerative response over
timewe initially induced senescence inMdm2mice through administration
of a single ‘moderate’ dose of 4.16 × 1010GCU of hepatotropic
AAV8.TBG.Cre (c.f. Methods, Fig. 1a). Our data administering this dose to
Rosa26LSL-TdTomato mice suggests this induces recombination in 93% of
hepatocytes, based on quantification of the proportion of TdTomato+

hepatocytes in the parenchyma (Supplementary Fig. 1, group 3). The pro-
portion of senescent hepatocytes in the Mdm2 strain is dynamic, with
paracrine signalling from recombinant senescent cells inducing senescence
in aproportionofneighbouringcells in tandemwith thedeathandclearance
of highly senescent cells3,8. For simplicity, we do not distinguish between
senescence due to recombination or paracrine signalling. To examine the
total senescence level we analysed mRNA expression of the senescence
marker p21 from total liver extracts by qPCR (Fig. 1b) and confirmed
expression was hepatic by histological staining (Fig. 1c). We previously
found that recombination in Mdm2 mice, through the AhCre system as a
result ofβNF, induces p21expressionwithin2daysof administration,with a
corresponding statistically significant elevation of serum markers for liver
injury within 6 days3,8. Here, we analysed senescence marker expression in
liver tissue of mice three, seven and 14 days after AAV8.TBG.Cre admin-
istration (D3, D7, D14, Fig. 1a). Results showed a significant increase in p21
expression at D3 and D7 (peak expression at D7, mean fold change
114.6 ± 31.53), with expression comparable to healthy age matched control
mice by D14 post induction (Fig. 1b). These results are supported by
comparable temporal trends in p53 expression (Supplementary Fig. 2a),
indicating that ‘peak injury’ is established by D7 with regeneration/resolu-
tion by D14. In contrast, there was no upregulation of p16 expression
(Supplementary Fig. 2b) confirming that senescence in this model is driven
by the p53/p21 axis.

Induction of senescence driven injury in Mdm2mice by
AAV8.TBG.Cre results in time sensitive inflammatory and
regenerative macrophage responses
A range of immune cells, including natural killer cells, neutrophils, T-cells
and macrophages are activated in response to liver injury and factors
secreted from senescent cells, contributing to the inflammatory response
and subsequent repair11. For simplicity, here we focused on macrophage
populations, which play a critical role in inflammation, regeneration and
repair of liver injury12,13. Detailed macrophage classification is difficult to
capture at the tissue level due to the large number of markers required to
phenotype the full range of subtypes. Instead,we groupedmacrophages into
two key phenotypes, ‘M1’ pro-inflammatory and 'M2’pro-regenerative cells.

Our experimental data showed limited changes in the total density (%
field of view) of themacrophage population following senescence induction
at this dose, relative tohealthy controlmice, basedonmRNAexpressionand
tissue staining of F4/80 (Fig. 1d, e).Analysis ofmRNAexpressionof thepro-
inflammatory (M1,CD80 andCD86) and pro-regenerative (M2, CD163 and
CD206) macrophage markers revealed time-dependent changes in
expression. CD80 expression is absent or expressed at very low levels on
unstimulated monocytes and macrophages during homoeostasis14,15, but
expression is elevated in response to injury/inflammation. We saw this
reflected in the Mdm2 model where at D3 dramatically increased CD80
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mRNA expression was seen relative to low homoeostatic levels (Fig. 1f).
Upregulation at D3 is indicative of pro-inflammatory stimulation, and
expressiondecreased rapidly atD7andD14, in support of a switch towards a
pro-regenerative state at these timepoints. CD86 expression is typically
upregulated faster than CD80, peaking within 6–24 h15,16, therefore peak
expressionofCD86mayoccur prior toD3andwasnot capturedhere. These

results suggested induction of a population level phenotypic switch towards
M2 at D7, with decreased CD80 expression at D7 supported by a corre-
sponding increase in expression of theM2marker CD206 at the tissue level
(Fig. 1g, h) and CD163 at the mRNA level (Fig. 1i). This supports our
definition of ‘peak injury’ as D7, based on concurrent decreasing inflam-
matory marker expression and increasing regenerative marker expression.

https://doi.org/10.1038/s41536-024-00371-1 Article

npj Regenerative Medicine |            (2024) 9:26 3

www.nature.com/npjregenmed


Senescencedriven liver injury results in timesensitivechanges in
endothelial cell activation, myofibroblast activation and
collagen-I deposition in the Mdm2mouse model
Angiogenesis, stimulated as a result of the inflammatory microenviron-
ment, is a common hallmark of chronic and acute liver injury12,17. Sur-
prisingly, we found no increase in the number of endothelial cells
following induction of senescence driven injury based on tissue quanti-
fication of ETS related gene (ERG) positive cells (Supplementary Fig.
3a, b), presumably as a result of the acute nature of the induced injury.
These results were supported at the gene expression level where no
upregulation of classical endothelial markers such as CDH5 or VE-
Cadherinwas seen (Supplementary Fig. 3c). However, we did see evidence
of a phenotypic change in the endothelial cells following evaluation of
expression of vascular cell adhesion molecule 1 (VCAM-1), intracellular
adhesion molecule 1 (ICAM-1) and atypical chemokine receptor 3
(ACKR3), which are all predominantly expressed in endothelial cells and
enable enhanced immune cell migration and liver regeneration. In sup-
port of other mouse and human liver injury18, an increased proportion of
endothelial cells positive for VCAM-1 during the inflammatory phase of
injury (D3 and D7) was demonstrated, which resolved to levels com-
parable to healthy controls by D14 (Fig. 2a), herein defined as ‘activated
endothelial cells’. At themRNA level only small fold changes in VCAM-1
expression were seen in the Mdm2 model relative to healthy mice, with
comparable results seen for ICAM-1 and ACKR3 (Fig. 2b). Given that
total liver tissue was analysed, and the vascular niche makes up only a
small proportion of cells relative to the total liver parenchyma, it is perhaps
unsurprising that we were unable to capture this change.

Activatedmyofibroblasts, derived froma variety of cell sources, play an
important role in scarring and wound healing in acute and fibrotic liver
injury through tissue remodelling. Following liver regeneration and
restoration of homoeostasis, activated myofibroblasts are cleared as a result
of apoptotic cell death or de-differentiation19,20. In theMdm2model we see
increased levels of α-SMA staining at D7, indicative of myofibroblast acti-
vation which reduces to within homoeostatic levels by D14 as myofibro-
blasts clear (Fig. 2c). However, as with activated endothelial cells, at the
mRNA level only subtle changes in expressionof theα-SMAgeneActa2 and
the activated myofibroblast associated gene Pdgfrb (platelet derived growth
receptor β isoform)were demonstrated (Fig. 2d). Again, this is likely a result
of the relatively small contribution these cells make to the total liver cell
population, thus capturing changes in mRNA expression of these markers
from total liver is challenging. In support of myofibroblast activation, a
corresponding increase in collagen-I deposition at peak injury is seen at the
tissue level, with excess collagen-I resolved by D14 (Fig. 2e). Similarly to
activated endothelial cells and myofibroblasts, limited changes in mRNA
expression of the pro-alpha1 and pro-alpha2 chains of collagen-I relative to
healthy controls were seen relative to those at the tissue level (Fig. 2f).

Overall, these results demonstrate that induction of senescence driven
liver injury in the Mdm2 model influences the key players in the liver

microenvironment identified in other acute liver injury models. An initial
inflammatory phase results in polarisation of macrophages towards an
inflammatory state (Fig. 1e), facilitation of immune cell migration to the
injury niche through activation of endothelial cells (Fig. 2a) and tissue
remodelling as a result of myofibroblast activation (Fig. 2c) and collagen-I
deposition (Fig. 2e). This is followed by a regenerative phase, including a
macrophage phenotypic switch towards a pro-regenerative state (Fig. 1f–h),
a reduction in activated endothelial cells and clearance of activated myofi-
broblasts and excess collagen-I (Fig. 2a, c, e).

The ODE model accurately captures the senescence driven
changes in the liver microenvironment
The variables and their interactions used in the mathematical model are
shown in Fig. 3a. For more details about the ordinary differential equation
model (ODE) development and the underlying assumptions we refer to
Methods. Our results demonstrate that the theoretical predictions for the
time-dependent evolution of each of the variables qualitatively capture the
experimental observations (Fig. 3b), namely, the induced senescence
decreases over time, returning tobaseline as seen experimentally inFig. 1b, c.
All other populations (e.g. macrophages (Fig. 1f, CD80, pro-inflammatory
and Fig. 1g–i pro-regenerative), the activated endothelial cells (Fig. 2a),
activated myofibroblasts (Fig. 2c) and ECM (collagen-I (Fig. 2e)) initially
increase before returning to baseline values (akin to healthy mouse levels).
Having established that the mathematical model qualitatively captures the
experimental data, we next used the model to determine how the system
responds to differing levels of initial senescence. For the parameter sets
considered, we found a critical threshold level of initial senescence which
determines the transitionbetween full resolutionor irreversible injurydue to
uncontrollable inflammation.

We use the model to interrogate the influence of the initial senescence
level on thekeyplayers in the liver injurymicroenvironmentover time.Figure
3c indicates how the pro-regenerative and pro-inflammatory macrophages
evolve in time relative to the initial level of senescence. Each curve in Fig. 3c
corresponds to a different level of initial senescence andmodels the evolution
of the pro-inflammatory and pro-regenerativemacrophage populations over
time.We can see that the time evolution of the system depends on the initial
senescence level. For all values of initial senescence, the level of senescence
returns to its homoeostatic value (Fig. 3d). If the initial senescence is less than
the critical value (T�

in), then the pro-inflammatory and pro-regenerative
macrophage populations initially increase, before then returning to their
homoeostatic levels (Fig. 3c, d). As the initial senescence level increases (but
still below the critical initial senescence) the peak levels of pro-inflammatory
and pro-regenerative macrophages increase (Fig. 3c). If we further increase
the initial senescence levels to critical values exceeding T�

in then the system
will not resolve as the values of the variables (except senescence) donot return
to zero, the homoeostatic level. It is therefore crucial to identify and predict
this critical initial senescence level (T�

in), anddeterminehowitdependsonkey
system parameters (see below).

Fig. 1 | Induction of senescence inMdm2mice byAAV8.TBG.Cre dosing leads to
time sensitive inflammatory and regenerative macrophage responses. Purple
dashed lines are healthy control mean ± SEM. Data points represent mean of
N = 3–5 independent animals per timepoint analysed. All error bars are ±SEM. All
qPCR results were normalised to the PPIAhousekeeper and expressed as fold change
relative to healthy control mean expression. For histological staining quantification
the % of the field of view (FOV) positively stained was assessed, with ≥10 FOVs
analysed per animal. a Experimental schematic for senescence dose response study.
Inset demonstrates Cre recombinase expression mediated loss of Mdm2 in hepa-
tocytes as a result of injection of hepatotropic AAV8.TBG.Cre. Timepoints for tissue
collection and analysis are indicated by days since injury induction (e.g. D3). Ele-
ments of this panel were produced using biorender.com. b, c Expression of the
p21 senescence marker at D3, D7 and D14 following AAV8.TBG.Cre induction
analysed by qPCR and histological staining. Results show a significant, time sensitive
increase in senescent marker expression, with expression resolving to healthy con-
trol animal levels by D14. Ordinary One-Way ANOVA relative to healthy control

mean with Dunnett’s Multiple Comparisons test. Scale bars 100 µm.
d Representative histological micrographs and quantification of the pan macro-
phage marker F4/80 at D3, D7 and D14 post-induction, alongside healthy control.
Scale bars 50 µm. Results demonstrate no overall increase in the density of macro-
phages as a result of senescence driven injury and are supported by limited fold
changes in gene expression of the pan macrophage markers EMR-1 (F4/80) and
CD68, as analysed by qPCR (e). f Time sensitive changes in gene expression of the
inflammatory macrophage markers CD80 and CD86 as a result of senescence
induction. g Representative immunofluorescent micrographs of the pro-
regenerative macrophage marker CD206 at D3, D7 and D14 post-induction,
alongside healthy control. Scale bars 20 µm (yellow inset) and 100 µm (white).White
arrows indicate positively stained cells. Insets are digitally magnified 1.5x.
h Quantification of CD206 staining, showing a time sensitive increase in staining.
i Analysis of gene expression of the pro-regenerative macrophage markers CD163
and CD206.
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The explicit time dependence of each of the key players is revealed in
Fig. 3d which indicates the response of the system when subject to
moderate levels of initial senescence below the critical value (solid line)
and levels of senescence above critical, resulting in uncontrollable
inflammation (dashed line). Motivated by the in vivo data, we restrict
attention to values of initial senescence below critical level as at these levels

the inflammatory response will still be within the range which can ethi-
cally tested experimentally to validate the results of in silico predictions.
Restricting attention to initial senescence levels below critical, Fig. 3c
clearly indicates a dose response of the system, with higher levels of
inflammation achieved prior to return to baseline for higher levels of
initial senescence.
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Wenow use themodel to predict the system response to the induction
of more severe (but still subcritical) and milder injury levels, and compare
our model predictions with in vivo data.

The ODE model accurately predicts microenvironmental chan-
ges followingmodificationof initial levels of inducedsenescence
As demonstrated in Fig. 3c, our ODE model predicts that induction of
higher and lower levels of initial senescence (restricted to below critical
initial senescence) will result in a dose response of the system, with higher
levels of inflammation achieved prior to return to baseline for higher levels
of initial senescence. We experimentally tested the ODE predictions and
performed a set of experiments across a range of AAV8.TBG.Cre doses and
examined the resulting influence on the microenvironment at discrete
timepoints. Seven distinct dosing groups were defined ranging from
5.0 × 109 to 1.25 × 1011 GCU (c.f. Methods, groups 1–7), which our data
from administering this dose range to Rosa26LSL-TdTomato mice suggests
induces recombination in 45–96% of hepatocytes (Supplementary Fig. 1).
We focus here on the results of two additional doses 1.25 × 1011GCU (group
1, expected recombination >96%) and 5.0 × 109GCU (group 7, expected
recombination45.39 ± 12.935%) corresponding to inductionofmore severe
andmilder liver injury respectively than reported in Figs. 1 and 2 (moderate
injury, group 3) and report these in relation to the ODE predictions. Here,
when referring tomathematically simulated levels of induced senescencewe
use the termsHigh,MediumandLowwhereas biologically induced levels of
senescence are referred to as severe, moderate (Fig. 2) and mild corre-
sponding to the level of injury induced. These are not directly numerically
linked as this study does not perform quantitative analysis, however formal
calibration and validation will be able to achieve this in the future with the
model suitably agile that when calibrated it can be applied to other systems
where inflammation and fibrosis are key factors.

Firstly, we confirmed that doses for group 1 (severe injury) and group 7
(mild injury) resulted in comparatively higher and lower senescence
induction,with the severe injurydose resulting in significantly increasedp21
expression relative to healthy, age matched control mice at D3 (mean fold
change 349.7 ± 96.09) reaching comparable levels at D7 to a moderate dose
(mean fold change 109.6 ± 2.810, severe and 114.6 ± 31.53moderate) before
resolving by D14 (Fig. 4a, b, Fig. 1b); whereas no significant increase in
senescencewas seen in group 7 relative to healthy controls. Results across all
seven dosing groups also showed a linear trend of senescence induction
based on senescentmarker expression atD7 confirming the tight regulation
of the level of induced senescence enabled by AAV8.TBG.Cre dosing in the
Mdm2model (Supplementary Fig. 4).

The ODE model predicts a dose-dependent inflammatory and
regenerative macrophage response, with proportional increases in pro-
inflammatory andpro-regenerativemacrophages determinedby the level of
initial senescence with all populations returning to baseline, homoeostatic
levels over time, provided the initial senescence is below the critical level
(Fig. 4c, d). This prediction is in line with what is seen experimentally in the
Mdm2model. As reported in Fig. 1d formoderate injury, therewere limited
changes in the total density ofmacrophages basedonquantificationof F4/80
staining relative to the induced level of senescence, thiswas consistent across

the dose response (Supplementary Fig. 5a, b). However, when considering
more specific markers to identify the phenotype of the macrophage, our
biological results qualitatively matched the ODE predictions. Induced
senescence in group 1, corresponding to severe injury, resulted in dramatic
upregulation in mRNA expression of the pro-inflammatory macrophage
marker CD80 during the inflammatory phase (D3-D7), with residual
upregulation of the earlierM1marker CD86 also seen across this timeframe
and expression of both markers reducing towards the levels of healthy
control animals by D14, whereas only minor changes in CD80 were seen
with mild injury induction (Fig. 4e). A comparable trend is seen for theM2

macrophage markers CD206 and CD163, where severe injury results in
upregulated expression at D7 and downregulation following system reso-
lution by D14, with mild injury showing comparable expression to healthy
controls (Fig. 4f, Supplementary Fig. 5c, d).

The ODE model also predicts senescence dose-dependent changes in
the activated endothelial cell population with proportional increases
determined by the level of initial senescence and all populations returning to
baseline over time (Fig. 5a). These predictions were confirmed experi-
mentally. Induction of severe injury results in a transient increase in acti-
vated endothelial cells at the tissue level, and a corresponding transient
increase in VCAM-1 mRNA expression, whereas mild injury results in
expression comparable to healthy controls (Fig. 5b–d). During injury and
inflammation VCAM-1 can also be expressed in other cells including
Kupffer cells, hepatocytes and dendritic cells, this is demonstrated in the
immunofluorescent micrographs (Fig. 5b) which show additional cells
positive for VCAM-1 but negative for the endothelial marker ERG. In
support of aphenotypic switch to activated endothelial status our results also
demonstrated a dose dependent, transient increase in expression of the pro-
inflammatory marker ICAM-1 and the pro-regenerative marker ACKR3
(Fig. 5d).

Finally, the ODE model also predicts senescence dose-dependent
changes in the tissuemicroenvironment based on the temporal evolution of
the activatedmyofibroblast cell population and ECMdeposition.We depict
the predictions for a High, Medium and Low level of initial senescence,Tin
(Fig. 6a, b), which demonstrate increases in these populations relative to the
level of initial senescence, with all populations returning to baseline over
time (except where the critical initial senescence level is exceeded). These
predictions accurately capture what is seen biologically when severe, mild
(Fig. 6c–h) andmoderate (Fig. 2) senescencedriven injury are induced in the
Mdm2model. We see peak activation of myofibroblasts at D7 based on α-
SMAstaining at the tissue level withmore pronounced changes as a result of
severe injury thanmild injury andbothdropping tohealthy control levels by
D14 (Fig. 6c, d). This is supported by upregulated mRNA expression of the
α-SMA geneActa2 and Pdgfrb at D7 in severe injury (Fig. 6e). Similarly, we
see peak anddosedependent depositionof collagen-I atD7at both the tissue
and mRNA level in severe and mild injury, which resolves to the level of
healthy controls byD14 (Fig. 6f, g). This is supported byupregulatedmRNA
expression of Col1a1 and Col1a2 at D7 in severe injury (Fig. 6h). Com-
parable dose-dependent transient upregulation and downregulation at the
tissue level for α-SMA and collagen-I was also seen across the full dose
response (Supplementary Fig. 6).

Fig. 2 | Induction of senescence driven injury in Mdm2 mice by AAV8.TBG.Cre
results in time sensitive changes in endothelial cell activation, myofibroblast
activation and collagen-I deposition. Purple dashed lines are healthy control
mean ± SEM. Data points represent mean of N = 3–5 independent animals per
timepoint analysed. All error bars are ±SEM. All qPCR results were normalised to
the PPIA housekeeper and expressed as fold change relative to healthy control mean
expression. For histological staining quantification of the % of the field of view
(FOV) positively stained was assessed unless otherwise indicated, with ≥10 FOVs
analysed per animal. aRepresentative immunofluorescentmicrographs showing co-
staining of the endothelial marker, ERG and activated endothelial cell marker
VCAM-1 in healthy control animals and at D3, D7 and D14 following senescence
induction, alongside quantification of ERG+VCAM-1+ cells. Results show a time

sensitive increase in dual-positive endothelial cells indicating a time sensitive
increase in this activated cell population, with expression resolving to healthy
control animal levels by D14. Scale bars 100 µm (white) and 20 µm (green). b Fold
change in total gene expression of the activated endothelial cell markers VCAM-1,
ICAM-1 and ACKR3 following senescence induction. c Representative histological
micrographs and quantification showing the time sensitive increase in staining for
the activatedmyofibroblastmarker α-SMA. Scale bars 100 µm.dAnalysis of changes
in gene expression of the activatedmyofibroblastmarkers α-SMAandPDGFRBover
time by qPCR. e Representative histological micrographs and quantification
showing the time sensitive increase in staining for collagen-I. Scale bars 100 µm.
fAnalysis of changes in gene expression of the pro-alpha1 and pro-alpha2 chains of
collagen-I (COL1A1 and COL1A2) over time by qPCR.
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Fig. 3 | Mathematical model of senescence driven liver injury highlighting
numerical predictions of the injury dynamics for a ‘medium’ senescence level.All
numerical simulations were computed with parameter values set equal to 1, apart
from the value of the initial senescence Tin which is given in the caption. a Schematic
of the injury model where the variables and their interactions are presented. Green
arrows indicate promotion and flat head red arrows indicate inhibition. Elements of
this panel were produced using biorender.com. bMathematical prediction of the
time evolution of all system components for a ‘medium’ initial senescence,

Tin ¼ 1:4. c Mathematical prediction of the evolution of M1 and M2 for different
initial induced senescence levels. Above the critical initial senescence, denoted byT�

in

(black circle), the values of M1 and M2 do not return to the homoeostatic values,
indicating uncontrolled inflammation. dMathematical prediction of the time evo-
lution of all variables for the standard ‘medium’ Tin ¼ 1:4 initial senescence (solid
line) and at Tin ¼ 2:7, which is above the critical initial senescence (dashed line). As
in (c), all the values do not reach a homoeostatic level, but keep increasing.
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The ODE model predicts how different parameters impact the
critical initial senescence level andsenescent cell clearance time
Numerical simulations of the ODEmodel aremuch quicker and cheaper to
perform than experiments, enabling rapid investigation of parameter space.
Having demonstrated excellent qualitative agreement between the predic-
tions of the theoreticalmodel and the experimental data, we now exploit the

model to determine the impact of system parameters on the critical initial
senescence level, T�

in, that can be tolerated by the system.
We predict how the rates of macrophage phenotype switch from pro-

inflammatory to pro-regenerative (G) and increasing the activation rate of
the endothelial population (BE) impact the critical initial senescence level.
Figure 7a shows how the critical initial senescence levels, T�

in, depend on G
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and BE . Note that we constrain parameters such that G>BE � 1 (see
Methods—Mathematical model formulation) to ensure resolution is always
possible for subcritical initial senescence levels, and hence we do not con-
sider the region of parameter space for which G<BE � 1 (denoted ‘No
resolution’ in Fig. 7a). For a fixed rate of macrophage phenotype switch,
increasing BE decreases the critical initial senescence, as the pro-
inflammatory nature of increasing BE results in uncontrollable

inflammation with lower initial senescence. Conversely, for a given rate of
endothelial cell activation BE , increasing the macrophage phenotype switch
(G) results in higher initial senescence levels being tolerated before
uncontrolled inflammation is triggered. This is due to the pro-regenerative
nature of this phenotypic switch, which will have a knock-on effect of
reducing the activation of endothelial cells due to fewer M1 cells in the
system.

Fig. 4 |Mathematical predictions for the evolution ofmacrophage populations at
High,Medium andLowdoses of initial senescencematch characterisation results
following induction of severe and mild senescence driven liver injury in
Mdm2 mice. All numerical simulations were computed with parameter values set
equal to 1, apart from the value of the initial senescence Tin which was varied as
stated in captions. For numerical simulations, light blue, orange and black solid lines
represent Low dose, High and Medium initial senescence, Tin ¼ 0:6; 2:2 and 1:4,
respectively. For biological data, orange and light blue refer to severe (group 1) and
mild (group 7) injury respectively. Purple dashed lines are healthy control mean ±
SEM. qPCR results were normalised to PPIA housekeeper and expressed as fold
change relative to healthy control mean expression. N = 3–5 mice per group and
timepoint analysed. Error bars are SEM. aGroup 1 and group 7 expression of p21 at
D3, D7 and D14 following AAV8.TBG.Cre induction. Results show dose and time

dependent changes in expression of this senescent marker. Ordinary One-Way
Anova relative to healthy control mean with Dunnett’s Multiple Comparisons test.
b Representative histological staining demonstrating dose and time dependent
changes in hepatic p21 expression. Scale bars 100 µm. c, dMathematical prediction
for evolution of theM1 andM2macrophage populations forHigh,Medium, Low and
critical initial senescence over time. Different levels of senescence induce a transient,
senescence dependent increase in both macrophage populations before dropping to
homoeostatic values. e Change in gene expression of CD80 and CD86M1 macro-
phage markers over time following severe and mild senescence driven injury
induction in theMdm2model. fChange in gene expression of CD163 andCD206M2

macrophage markers over time following severe and mild senescence driven injury
induction in the Mdm2 model. Results in (e, f) demonstrate that the numerical
predictions in (c, d) mirror the experimental trends.

Fig. 5 | Mathematical predictions for the evolution of activated endothelial cells
at High, Medium and Low doses of initial senescence match characterisation
results following induction of severe and mild senescence driven liver injury in
Mdm2 mice. All numerical simulations were computed with parameter values set
equal to 1, apart from the value of the initial senescenceTin whichwas varied as stated
in captions. For numerical simulations the light blue line represents the low dose,
orange line the high and black the medium, Tin ¼ 0:6; 2:2 and 1:4, respectively. For
biological doses orange and light blue refer to severe (group 1) and mild (group 7)
injury respectively. Purple dashed lines are healthy control mean ± SEM. qPCR
results were normalised to PPIA housekeeper and expressed as fold change relative
to healthy controlmean expression.N = 3–5mice per group and timepoint analysed.
Error bars are SEM. aMathematical prediction for evolution of activated endothelial

cells for High,Medium, Low initial senescence. Different levels of senescence induce
a transient, senescence dependent increase in activated endothelial cells before
dropping to homoeostatic values. bRepresentative immunofluorescentmicrographs
showing co-staining of the endothelial ERG marker and activated endothelial cell
marker VCAM-1 at D3, D7 and D14 following senescence induction of severe and
mild injury, alongside quantification of ERG+VCAM-1+ cells. Scale bars 100 µm,
insets 20 µm. c Results show a time and dose-dependent increase in dual-positive
endothelial cells with expression resolving to healthy control animal levels by D14.
d Fold change in total gene expression of the activated endothelial cell markers
VCAM-1, ICAM-1 and ACKR3 following severe and mild senescence induction,
supporting the immunofluorescence results. Numerical simulation results in (a)
mirror these experimental trends.
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Focusing on the critical initial level of senescence allows us to explore
the potential impact of interventions in decreasing the likelihood of
uncontrolled inflammation in a number of ways. We have shown how T�

in
depends on the parametersG and BE , and we can also explore the impact of
other model parameters on the critical initial senescence level, e.g. the
impact of an increase in the rate of ECM deposition by myofibroblasts, via

adjustments to BC in this case. A further example of how the model can be
used to explore the impact of interventions is to explore key signalling
pathways, for example those associatedwithWNTsignalling and the impact
on hepatocytes21. The theoretical predictions could then be tested experi-
mentally by ‘priming’ the animal model prior to administration of the
injury.
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Themodel can also be exploited to investigate the impact of parameters
on the time for clearance of senescent cells within the system. The rate of
removal of senescent hepatocytes (T) depends on the number ofM2 which
in turn depends on the rate of their recruitment, B2, and the rate of
M2-mediated removal of senescent cells,K . Figure 7b, c predicts the effect of
different initial senescence values on clearance time, which is defined as the
time at which the senescent cell population reaches 10% of the initial value.
Increased rates of B2 or K result in faster removal of the senescent popu-
lation (and hence a lower tc). These simulations show that an enhancement
of the parameters bymodulating the microenvironment can result in lower
injury levels. This highlights the potential use for mathematical models to
aid development and predict outcomes in experimental interventional
therapies.

Discussion
The global incidence and prevalence of acute and chronic liver diseases is
rising, despite advances indirect acting antivirals for hepatitis B andC.Non-
alcoholic fatty liver disease is the most prevalent liver disease world-wide
and alcohol related liver disease is on the rise in the UK. Outside of
orthotopic liver transplantation, current therapies slow the progression of
disease, but do not repair damaged tissue. Alternative therapies capable of
promoting liver regeneration and restoring functionareurgently required to
support a growing patient burden. Regenerative medicine in the form of
cellular therapy (macrophages, hepatocytes and stem cells) and tissue
engineering (implantable constructs of hepatic tissue, bioartificial livers)
approaches are of increasing interest in liver disease, but have not yet
reached widespread clinical application. A number of hurdles need to be
overcome to realise the clinical potential of regenerative therapies, including
safety, efficacy and immunogenicity challenges. The successful clinical
translation of regenerative medicine therapies requires robust preclinical
tools. Complementary in vivo and in silico approaches can be used to
advance pre-clinical studies.

Induction of hepatocyte senescence is a characteristic feature of
experimental liver injury models, with the level of induced senescence
representative of the severity of injury. This has been demonstrated across a
range of liver injury models including APAP, carbon tetrachloride (CCl4)
and dietary models inducing hepatocellular steatosis [via choline-deficient
ethionine diet] or biliary-related liver injury [3,5-diethoxycarbonyl-1,4-
dihydrocollidine (DDC)]2. Hepatic senescence profiles in animal models
accurately mimic the clinical scenario, wherein hepatocyte senescence and
p21 expression demonstrate correlation with progression of fibrosis or
cirrhosis independent of disease aetiology. This has been independently
validated in samples from patients with viral hepatitis, autoimmune hepa-
titis, alcohol related liver disease, primary sclerosing cholangitis, primary
biliary cirrhosis22,23, NAFLD6 and steatosis4. Despite this, an understanding
of how the degree of senescence impacts key components of the liver injury
microenvironment, and how these components change over time remains
lacking. To address this here we developed an integrated in silico-in vivo
model to capture the dynamics of key players in the regenerative response to
acute senescence-mediated liver injury. We show that the mathematical
model captures the host response to moderate liver injury via qualitative
comparison of the model predictions with the in vivo experimental data.

Importantly, we then show evidence of the predictive potential of in silico
modelling, where we used our theoretical model to predict the host’s
response to milder and more severe injury. These predictions were tested
in vivo, where we obtained excellent qualitative agreement and validation of
our mechanistic mathematical model. In addition, the model was able to
determine a critical level of induced senescence that the system is unable to
resolve due to uncontrolled inflammation.Whilst untested in this study for
ethical reasons, the prediction fits with previous experimental experience of
high dose AAV8.TBG.cre resulting in excess severity limits for mice. Of
particular interest was how the numerical simulations could provide insight
into potential mechanisms of therapy.

The depth of in vivo data included here did not always allow for
experimental statistical significance, however, it provided an exciting
opportunity to build a predictive mathematical model. The process of
constructing themathematicalmodelwas iterative, requiringdecisions to be
made about key players and their interactions. These were then refined
through comparison of the mathematical model predictions and inter-
rogation of the data. The experimental and theoretical variables selected
were subjective and do not encompass the full complexity of the wound-
healing response. Such a response involves numerous interactions between
system components including multiple cell types (of which many are not
captured in this study), the composition of the ECM and interstitial fluid
across spatial and temporal scales24. Experimental data revealed a 30-fold
increase in the expression of CD80 at the day 3 timepoint with moderate
injury induction, this reached 100-fold in more severe injury, but only 10-
fold with mild-induction. Given its role in T-cell activation, these data
suggest exploration of the CD28 co-stimulatory pathway with possible
incorporation of T cells into the mathematical model as a key parameter.
Building and ensuring adequate model complexity with respect to the
context of the biological question will improve the effectiveness of the
mathematic approach.

Indeveloping themathematicalmodelling framework,we considered a
‘well-mixed’ ODE model which neglected spatial effects, and assumed that
the numbers of cells and concentration of ECM can be represented by
variables that depend continuously on time only. Thismodelling choicewas
motivated both by a ‘simplest-first’ approach tomathematicalmodelling, as
well as the nature of the experimental data, which corresponds to %FOV of
stained regions inhistological sections formarkers of our key cellular players
and ECM, as well as fold changes in gene expression. Including a spatial
component is an exciting future research avenue. For example, we can again
adopt a continuum approach and assume the cells and ECM are char-
acterised by density and concentration fields that depend continuously on
space as well as time. Mobile species, e.g. macrophages, would be governed
by reaction-diffusion equations, with the reaction terms accounting for
macrophage phenotypic switching and cell death. Nonlinear ODEs would
again describe ECM production by myofibroblasts and ECM degradation
by pro-regenerative macrophages. In addition to initial conditions, appro-
priate boundary conditions that capture the tissue domain would be spe-
cified to close the model. We note also, that in contrast to continuous
models, discrete approaches also exist in which cells are represented by
discrete entities, accounting for their interactions both with each other and
with the surrounding microenvironment, behaving according to well-

Fig. 6 |Mathematical predictions for tissue remodelling via evolution of activated
myofibroblasts and ECM at High, Medium and Low doses of initial senescence
match characterisation results following induction of severe andmild senescence
driven liver injury in Mdm2 mice. All numerical simulations were computed with
rates equal to 1. For numerical simulations the light blue line represents the low dose,
orange line the high and black the medium level of senescence, Tin ¼ 0:6; 2:2 and
1:4, respectively. For biological doses orange and light blue refer to severe (group 1)
and mild (group 7) injury respectively. Purple dashed lines are healthy control
mean ± SEM. qPCR results were normalised to PPIA housekeeper and expressed as
fold change relative to healthy controlmean expression.N = 3–5mice per group and
timepoint analysed. Error bars are SEM. Mathematical prediction for evolution of

activated myofibroblasts (a) and ECM (b) for High, Medium and Low senescence
over time. Different levels of senescence induce a transient, senescence dependent
increase in both populations before dropping to homoeostatic values.
c, d Representative histological micrographs and quantification showing the tran-
sient, dose-dependent increase in staining for the activated myofibroblast marker α-
SMA. Scale bars 100 µm. e Analysis of changes in gene expression of the activated
myofibroblast markers α-SMA and PDGFRB over time by qPCR. f, gRepresentative
histological micrographs and quantification showing the transient, dose-dependent
increase in staining for collagen-I. Scale bars 100 µm. h Analysis of changes in gene
expression of the pro-alpha1 and pro-alpha2 chains of collagen-I (COL1A1 and
COL1A2) over time by qPCR.
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defined rules. Hybrid discrete-continuummodels are also possible in which
discrete cell-based models are integrated with continuum models for the
surrounding cellular microenvironment, or discrete (low cell numbers) and
continuum (high cell numbers) models are used in different regions of the

spatial domain as appropriate (see Waters, Schumacher and El Haj (2021)9

for further details of the possible modelling approaches).
It is important to recognise thatwhile adding a spatial component to the

model would inevitably provide further insights, it comes at the expense of
introducing more parameters into the model, many of which cannot be
directly obtained from existing literature and require access to higher fidelity
experimental data. Such spatially resolved data would, for example, examine
the proximity of pro-inflammatory and pro-regenerative macrophages to
senescent hepatocytes or activated endothelial cells across different levels of
induced injury within liver tissue. Such results would enhance our under-
standing of the paracrine impact of the senescent cell population on these key
players within the niche, beyond simply understanding how their total cell
number or concentration changes.Where potential therapeutic interventions
are explored, for example administration of cell therapies to modulate the
niche, spatial resolution could be achieved by incorporating real-time in vivo
imaging approaches within experimental studies to track the fate of admi-
nistered cells (e.g. utilising radionuclide reporter gene expression in ther-
apeutic cells combinedwithPositronEmissionTomography to generate high
resolution 3D data25). This would allow powerful repeat quantitative spa-
tiotemporal data to be collected from the samemice across different stages of
the injury repair process.Althoughbeyond the scopeof this present study, the
development of a spatial mechanistic model underpinned by spatially-
resolved experimental data will be a focus of our future work.

Despite thenecessary simplifications toobtain aqualitative framework,
running numerical simulations enabled greater insight into potential
mechanisms of therapy. By directly modulating different parameters in the
system, we were able to assess how these different parameters impact the
critical initial senescence level captured by the ODE model. For example, a
faster macrophage phenotypic switch from pro-inflammatory to pro-
regenerative, or the addition of pro-regenerative macrophages into the
system, allowed for a higher level of initial senescence to be tolerated and for
an accelerated rate of senescent cell clearance. These data indicate that
targeted therapeutic strategies capable of increasing the rate of macrophage
phenotypic switch in the liver could enhance regeneration in hepatic liver
injury where high levels of senescence are evident. Alternatively, pre-
conditioning treatment with adoptively transferred pro-regenerative mac-
rophage therapy could also be beneficial. This hypothesis is in support of the
use of macrophages for the treatment of liver cirrhosis26 (Phase II trial
recently completed; ISRCTN10368050) and alternatively activated, pro-
regenerative macrophages for experimental acetaminophen (APAP) liver
injury13. Future studies can now focus on small experimental deviations but
with higher n numbers for statistical power.

The ability to predict the host’s regenerative response following the
adjustment of a key variable (in this case hepatocyte senescence) allows us to
build on these predictions in the future with the addition of further
experimental variables, such as intervention with a cellular therapy. Pre-
clinical cellular transplantation studies may benefit substantially from the
addition of predictive in silico modelling. We, and others, demonstrate the
therapeutic potential of cellular therapies for liver disease, utilising multiple
cell types (hepatocytes, hepatic progenitor cells, direct reprogrammed cells)
in a range of experimental hepatocellular and biliary injury models7,27–32. A
common feature uniting preclinical studies is significant variability in cell
engraftment efficiency and therapeutic efficacy, which resonates with the
variance observed in data fromclinical trials33.Mathematicalmodels can aid
in standardisation of experimental data9. Our future studies aim to develop
mathematical models that predict the effect of the host environment at the
time of transplant on the outcome of cellular transplantation in preclinical
models. Mechanistic modelling may be exploited to accelerate the transla-
tion of liver cell therapies into the clinic and opens up the prospect of
developing personalised regenerative medicine.

Methods
Selectionofkeycellularplayers in the liver regenerative response
Senescent cells aremetabolically active but non-proliferative andare capable
of secreting a range of molecular factors (chemokines, cytokines, proteases

Fig. 7 |Mathematical predictions for critical initial senescence and clearance time
based on the different rates of the system. Parameter study on the effect in critical
initial senescence and clearance time (tcÞ. a Effect of rate of macrophage phenotype
switch (G) and endothelial cell activation BE on critical initial senescence. All other
parameters are set to 1. The pale green, dark green and purple lines are contours of
T�
in = 0.5, 5.5 and 10:5. An increase inG allows higher critical initial senescence while

an increase in BE permits smaller initial senescence levels before uncontrollable
inflammation of the system is triggered. b Effect of the rate ofM2 recruitment,B2, on
clearance time for different initial levels of senescence, Tin . An increase B2 results in
faster clearance and therefore lower tc . Orange, black and blue dashed lines represent
Low, Medium and High initial senescence levels respectively. c Effect of the rate of
senescent cell removal by M2, KT , on clearance time for varying initial senescent
values. An increase in this rate will result in faster clearance and therefore lower tc .
Orange, black and blue dashed lines represent numerically Low, Medium and High
initial senescence levels respectively.
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and growth factors) collectively known as the senescence‐associated secre-
tory phenotype (SASP). SASP factors alter the cellular and structural
composition of the surrounding microenvironment by inducing inflam-
mation and immune cell recruitment, stimulating angiogenesis and mod-
ifying the ECM composition (e.g. through activation of myofibroblasts and
subsequent upregulation of collagen synthesis5,34). Changes in these vari-
ables are reported in a variety of acute liver injury models3,4,11 and can be
characterisedat different stagesof the injury and repair process in theMdm2
model through histological and gene expression analyses.

In this study we selected the key players to characterise in the experi-
mental studies and interrogate in the mathematical model based on their
previously reported critical roles in the inflammatory and/or regenerative
phases of liver injury. A range of immune cells, including natural killer cells,
neutrophils, T-cells and macrophages are activated in response to liver
injury and SASP factors, contributing to the initial inflammatory response
and subsequently repair11. In this study we focused on macrophage popu-
lations, as they play a critical role across the entire repair process, con-
tributing to both inflammation and regeneration of liver injury12,13. Pro-
inflammatorymacrophages (mathematically noted byM1)were considered
to express classical macrophage markers such as CD80 and CD86. CD80
expression is absent or expressed at very low levels on unstimulated
monocytes and macrophages during homoeostasis14,15, but expression is
elevated in response to injury/inflammationwithhighest expressionnotable
on bone-marrow derived Kupffer cells recruited to sites of local
inflammation35. Markers of alternative activation such as the scavenger
receptors CD163 and CD206 were used to delineate pro-regenerative
macrophages (M2 cells)

36.
Macrophages support angiogenesis through co-localisationwith newly

formed vessels and subsequent secretion of cytokines, interleukins and
growth factors which promote migration and proliferation of endothelial
cells. Liver sinusoidal endothelial cells, as a core component of the hepatic
vascular niche, secrete angiocrine factors such as hepatocyte growth factor
and Wnt2 which have a paracrine effect stimulating liver regeneration37,38.
Therefore, we also focused on investigating changes in the hepatic vascular
niche across the injury repair process. As well as considering classical
markers of endothelial cells that may reveal changes in vascular density/
induction of angiogenesis, such as CD31 and vascular endothelial growth
factor (VEGF), we also investigated markers with differential expression by
endothelial cells dependent on the stage of the injury repair process. Spe-
cifically, inflammatory cytokines such as TNF-A and IL-1B trigger VCAM-
1 expression on the surface of endothelial cells which in turn induces
adherence to and extravasation of leucocytes across blood vessel walls39.
Increased endothelial expression of VCAM-1 therefore enhances immune
cell infiltration to the site of injury. Similarly ICAM-1, which is pre-
dominantly expressed in endothelial cells, expression was also examined.
ICAM-1 is also involved in the pro-inflammatory phase of injury by pro-
moting leucocyte recruitment/transendothelial migration (T-cells, neu-
trophils, macrophages). Finally, atypical chemokine receptor 3 (ACKR3) is
upregulated in response to acute liver injury where it acts as a receptor for
CXCL12, functioning alongside CXCR4 to promote regeneration through
secretion of angiocrine factors40,41.

Tissue remodelling is a key part of the injury repair process. Activated
myofibroblasts play a pivotal and pleiotropic role in this process. Inflam-
matory cytokines such as IL-1β, TNF-α, CCL2, IL-6, transforming growth
factor β1 and platelet derived growth factors (PDGFs) are produced by
Kupffer cells and recruitedmacrophage populations following liver injury42.
This inflammatory cascade results in activation ofmyofibroblastswithin the
injured microenvironment. Upon activation activated myofibroblasts
express α-smooth muscle actin (α-SMA), matrix metalloproteinases
(MMPs) and tissue inhibitors of metalloproteinases (TIMPs) as well as
synthesise ECMproteins, includingCollagen type I, themain component of
fibrous scar43. Platelet derived growth factor receptor β isoform (PDGFRβ)
acts as the primary PDGFR isoform tomediate activation and profibrogenic
transdifferentiation of hepatic stellate cells into myofibroblasts during
hepatic fibrosis44 and therefore this was used as an additional mRNA

expression marker to assess changes in the activated myofibroblast popu-
lation over time.We note that activated myofibroblasts can also be derived
fromother cell sources, such as portalfibroblasts andBM-derivedfibrocytes
and these will also be captured by the assessment of their shared char-
acteristics (changes in α-SMA and ACTA2 expression). Scar resolution is
associated with recruitment and repolarisation of macrophages towards a
pro-regenerative phenotype after the initial inflammatory cascade, wherein
they secrete IL-10,MMPs and collagenases, inhibit the expression of TIMPs
and phagocytose ECM fragments36,42,45. Activated myofibroblasts are sub-
sequently cleared from the niche as a result of apoptotic cell death or de-
differentiation/inactivation into a state where they cease collagen
production19,20

Iterative cycle
Aniterative cycleofpredict-test-predict-refineunderpinned thedevelopment
of themathematicalmodel. Initial theoreticalmodel developmentwas guided
by existing literature and understanding of the host response to liver injury
(see ‘Selection of key cellular players’), allowing hypotheses to bemade for the
causal mechanisms underlying the biological system, which were then
representedmathematically.Model predictionswere then comparedwith the
experimental data, and the mathematical models were refined as necessary.
Once qualitative agreement was obtained, the mathematical model was
exploited to predict the response of the host to mild and severe injury.

Animals
Bothmale and femaleAhCreMdm2fl/flmice (Mdm2)7,46 andRosa26LSL-TdTomato

mice on a C57Bl/6 background were used in this study. Genotyping was
performed by the Transnetyx genotyping service. Animals were all within
14–27 weeks old at the start of the experiments. Mice were maintained in
pathogen-free conditions with sterile food andwater available ad libitum and
kept in individually ventilated plastic cages with environmental enrichment
and beddingmaterial. Cageswere held in dedicated, licenced air-conditioned
animal rooms, under light/dark cycles lasting 12 h daily. Maximum cage
occupancy was six animals and fresh cages were supplied at least weekly.
These studieswere conducted in accordancewith theDeclarationofHelsinki.
All animal experimentswere carriedoutunderprocedural guidelines, severity
protocols and with ethical permission from the University of Edinburgh
Animal Welfare and Ethical Review Body and the Home Office (UK, PPL
numbers 70/7847 and P231C5F81). Power calculations were not routinely
performed, but animal numbers were chosen based on the anticipated
magnitude of response from researchers’ experience with these strains and
kept to aminimum in linewith law and ethical guidelines for animal research
in the UK as were the in vivo endpoints.

AAV8.TBG.Cre virus at the concentrations indicated was diluted in
sterile PBS to a final volume of 100 µl and administered by tail vein injection
to induce recombination. Dosing groups were randomly assigned with the
following virus concentrations administered (GCU): 1.25 × 1011 (Group 1,
‘Severe’ dose), 6.25 × 1010 (Group 2), 4.16 × 1010 (Group 3, ‘Moderate’ dose),
3.13 × 1010 (Group 4), 2.50 × 1010 (Group 5), 1.25 × 1010 (Group 6), 5.00 × 109

(Group 7, ‘Mild’ dose) plus 4.17 × 109 and 2.50 × 109 (Rosa26LSL-TdTomato mice
only, cf. Supplementary Fig. 1). Experimental endpoints were 3 days (Severe,
Moderate and Mild dose groups, Mdm2 mice), 7 days (all dosing groups,
Mdm2mice) or 14 days (all dosing groups bothMdm2 and Rosa26LSL-TdTomato

mice) after recombination induction with N = 3–5 animals per group and
timepoint analysed. Mice were euthanized according to UK Home Office
regulations. Bloodwas collected by cardiac puncture and livers were perfused
with PBS via the inferior vena cava to clear remaining blood. Subsequently,
organs were harvested and either snap frozen directly at −80 °C or fixed in
10% formalin (inPBS) for 8 h and stored in 70%EtOHprior to embedding in
paraffin blocks. Animals reaching experimental severity protocol boundaries
were excluded from analysis, otherwise all animals were included.

Immunohistochemistry
4 µm thick sections of formalin-fixed paraffin embedded tissue blocks were
collected onto glass slides, dewaxed and rehydrated prior to antigen

https://doi.org/10.1038/s41536-024-00371-1 Article

npj Regenerative Medicine |            (2024) 9:26 13

www.nature.com/npjregenmed


retrieval. For DAB-stained sections, tissue was blocked with Bloxall (Vec-
tor), Avidin/Biotin block (Invitrogen) and protein block (Spring
Bioscience). Sections were subsequently incubated at 4 °C overnight with
primary antibodies (concentrations and antigen retrieval conditions
detailed in Supplementary Table 1). Primary antibody detection was via
incubation with species-specific secondary biotinylated antibodies for
30min at room temperature (Vector) followed by R.T.U. Vectastain
(30min, room temperature), ABC reagent (Vector) and DAB chromogen
(Dako). Slides were counterstained with haematoxylin. For immuno-
fluorescence, sections were blocked for 30min in protein block, incubated
overnight with primary antibodies, washed extensively with PBS and
incubated with Alexa488 and Alexa647 conjugated secondary antibodies
(Invitrogen) for 30min at room temperature. Sectionswere counter-stained
with DAPI (4′,6-diamidino-2-phenylindole) and mounted with
Fluoromount-G (SouthernBiotech).

Immunohistochemistry quantification
Immunostained slides were imaged on a Vectra Polaris (Perkin Elmer) or a
Nikon Eclipse Ni microscope using a Teledyne Q-Imaging MicroPublisher
6 camera at 20 or 40x magnification. At least 10 randomly selected fields of
viewwere imaged per animal. Quantification of the proportion of each field
of view positively stained was performed using inForm software (CD206,
immunofluorescence, PerkinElmer), or using macros developed with Fiji
software (ImageJ) where intensity thresholds were set based on the isotype
control for eachmarker, whichwas stained in parallel (SupplementaryNote
2, Supplementary Note 3). For VCAM-1 and ERG co-staining double
positive cells were quantifiedusing a pipeline developed in inForm software.

RNA extraction and cDNA synthesis
Total RNAwas extracted from30–50mg samples of snap frozen liver tissue.
Tissue was homogenised in RLT buffer. Subsequently RNA was extracted
from tissue lysates using the RNeasy MiniKit (Qiagen) according to man-
ufacturer’s instructions. RNAconcentration andpurity of isolatedRNAwas
determined with a NanoDrop spectrophotometer. Samples with a 260/280
ratio ≥1.8, indicative of good quality RNA, were used for complementary
DNA synthesis (cDNA). cDNA was synthesised by reverse transcription
using the Quantitect Reverse Transcription Kit (Qiagen) according to
manufacturer’s instructions. Any contaminating genomic DNA was
removed with gDNAWipeout Buffer.

Quantitative real-time PCR
Analysis of mRNA expression of marker genes for the parameters of
interest was performed by qPCR using the Fast SYBR green Master Mix
(Thermofisher) on a Roche Lightcycler 480 using 12.5 ng of cDNA per
reaction. Cycling conditions were: pre-incubation (95 °C, 20 s, 4.8 °C/s),
Annealing/Extension (95 °C for 3 s at 4.8 °C ramp rate, 60 °C for 30 s at
2.5 °C/s ramp rate, for 40 cycles), Cooling (95 °C, 30 s at 2.5 °C/s
ramp rate). Triplicate technical replicates for each biological sample
were assayed for each gene. Gene specific primers used are detailed in
Supplementary Table 2. Sample threshold cycle (Ct) values were nor-
malised to the murine peptidylprolyl isomerase (PPIA) housekeeping
gene (ΔCt = meanCt

target gene−meanCt
housekeeping gene). For each gene the

mean ΔCt for the healthy animal group was calculated (N = 5 biological
replicates) and set as the experimental control. The 2−ΔΔCt method was
subsequently used for analysis19, with results for each animal expressed
as the fold change in expression relative to the healthy control average.
Data points in gene expression graphs represent themean fold change in
expression for all biological replicates in each dosing group ± SEM
(N = 3–5 animals per group).

Mathematical model formulation
Variables T; M1; M2; E, and F describe the number of senescent cells, pro-
inflammatory macrophages, pro-regenerative macrophages, activated
endothelial cells and activated myofibroblasts, respectively. The ECM con-
centration is denoted by C. In a similar manner to the experimental model,

we do not distinguish between primary or ‘secondary’ senescent cells and
instead consider a single population of senescent cellsT . All cell populations
and ECM concentration correspond to dynamic fluctuations from homo-
eostasis, which arise due to the addition of senescent cells. The key inter-
actions between the variables are illustrated in Fig. 3a. The senescent cells,
macrophage populations and activated endothelial cell populations are
normalised with respect to the homoeostatic endothelial cell population, the
myofibroblasts with respect to the homeostatic myofibroblast populations
and the ECM concentration with respect to the homeostatic ECM con-
centration, so that dynamic changes in the variables represent fold changes
for homeostatic levels. Time is denoted by t, normalised on the timescale for
recruitment of macrophages by the activated endothelial cells.

Themathematicalmodel abstracts the interactions (see ‘Selection of key
cellular players’) into ODEs using the law of mass action. The equations are
as follows:

dT
dt

¼ �KTM2T � DT ð1Þ

dM1

dt
¼ B1T þ E � G

C þ 1ð Þ F þ 1ð ÞM1 � DM1 ð2Þ

dM2

dt
¼ B2T þ G

C þ 1ð Þ F þ 1ð ÞM1 � DM2 ð3Þ

dE
dt

¼ BEð1þ EÞM1 � DE ð4Þ

dC
dt

¼ BCF � KCM2C � DC ð5Þ

dF
dt

¼ BFM1 � KFM2F � DF ð6Þ

The terms on the left hand side (LHS) of Eqs. 1–6 denote the rate of
change of variables with respect to time. The assumption underpinning the
terms on the right hand side (RHS) of Eqs. 1–6 are as follows. Thefinal term
on theRHSof eachof theEqs. 1–6 captures the loss of the variable of interest
due to death or deactivation, with the parameter D capturing the rate of
death/deactivation, e.g. in Eq. 6 the term �DF captures the apoptotic cell
death or de-differentiation/inactivation of the activatedmyofibroblasts. The
pro-regenerative M2 population inhibits the generation of secondary
senescent cells via secreted anti-inflammatory cytokines and chemokines
(e.g. IL-10) and removes the primary senescent cells via phagocytosis. The
resulting reduction in the total senescent cell population is modelled via the
term�KTM2T in Eq. 1 whereKT captures the rate of removal of senescent
cells per pro-regenerative macrophage. The first term on the RHS of Eqs.
2 and 3 models the recruitment of pro-inflammatory and pro-regenerative
macrophages to the injured liver by the senescent cells at rates B1 and B2
per senescent cell respectively.The second termon theRHSofEq. 2 captures
the recruitment of pro-inflammatory macrophages due to the activated
endothelial cells. Note that no constant rate parameter appears in this term,
reflecting the normalisation of time on the timescale for the recruitment of
macrophages by the activated endothelial cells. Changes in the local
environment impact macrophage polarisation withM1 switching to anM2
phenotype. The rate of this transition is impacted by ECM and activated
myofibroblast generation, under the influence of pro-inflammatory (e.g.
IFN-γ, TNF-α) and anti-inflammatory cytokines (e.g. IL-10)10. Excess ECM
deposition results in an increased tissue stiffness which drives further
recruitment of infiltrating immune cells and myofibroblast activation47,48.
Accumulated activated myofibroblasts secrete IL-6, TIMPs, TGF-β, VEGF,
epidermal growth factor (EGF) and CXCL10 which can reduce the polar-
isation of macrophages towards an M2 phenotype, impacting scar resolu-
tion and ECM turnover36,42,45. Turning to Eq. 4, the BEM1 term represents
activation of the homoeostatic endothelial cell population due to the
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inflammatory environment during injury, whichwe assume depends on the
concentration of pro-inflammatory macrophages, for simplicity. Here BE is
the rate of endothelial cell activation per pro-inflammatory macrophage.
The BEEM1 represents proliferation of the activated endothelial cell
population in response to local inflammation. In Eq. 5, BCF corresponds to
ECM deposition by the myofibroblasts10 with BC the deposition rate per
myofibroblast and KCM2C denotes breakdown of the ECM by pro-
regenerative macrophages, where KC is the rate of breakdown per pro-
regenerative macrophage10. Finally, we consider Eq. 6. Secretion of growth
factors, e.g. TGF-β, by the pro-inflammatory macrophages stimulates dif-
ferentiation of fibroblasts into contractile myofibroblasts which we model
via the term BFM1 where BF is the rate of differentiation per pro-
inflammatory macrophage. The second term captures deactivation of
activatedmyofibroblasts withKF the deactivation rate per pro-regenerative
macrophage.

Equations 1–4 are solved subject to the following initial conditions

T ¼ Tin;M1 ¼ M2 ¼ E ¼ F ¼ C ¼ 0 at t ¼ 0 ð7Þ

where Tin captures the initial senescent cell population as a result of the
administration of theAAV8.TBG.Cre virus, and all other variables are set to
zero indicating the populations are initially at their homoeostatic levels.

The mathematical model has eleven parameters:
KT ;D; B1;B2;G;BE;BC;KC;BF ;KF and Tin, each corresponding to an
underlyingmechanism.The scopeof this paper is todetermine the impactof
key parameters on the system dynamics, which will allow us to determine
the dominantmechanisms in acute senescencedriven injury and repair. It is
beyond the scope of this study to undertake a comprehensive parameter
sweep, and insteadwe focus onfive keyparameters of interest:Tin;BE;G; B2
and KT , and set all other parameter values to be 1 throughout this paper.
VaryingTin models the different levels of induced senescence in response to
administration of the AAV8.TBG.Cre virus. The long-time steady states
admitted by the system do not depend on B2 and KT (as from Eq. 1 we see
that the steady solution has T ¼ 0 and hence parameters multiplying T do
not feature in the steady state solution).Weexplore the impact ofBE , the rate
of endothelial cell activation per pro-inflammatorymacrophage, andG, the
rate of phenotypic switching from pro-inflammatory to pro-regenerative
macrophages, as these processes underpin the competition between
inflammation and regeneration and (together with the death rate D)
determine whether the system admits one or two steady states (see Sup-
plementary Note 1). We further explore the impact of B2, the rate of pro-
regenerative macrophage recruitment and KT , the rate of clearance of
senescent cells per pro-regenerative macrophage, on the system dynamics,
acknowledging that the strength of themodel is that it facilitates exploration
of all parameter values.

Steady-state analysis of the governing equations reveals that two pos-
sible steady states exist, depending on parameter values: the trivial steady
state where all variables are zero (corresponding to the system returning to
homoeostasis) and the non-zero steady state where the senescent cell
population is zero but all other variables take non-zero positive values.
WhenG <BE � 1 only a single steady state existswhich is linear unstable, so
that in practice this state can never be reached (small perturbations from the
zero steady statewill grow), resulting touncontrollable inflammation.When
G >BE � 1 the system admits both steady states, with the trivial steady state
being linearly stable while the non-trivial steady state is linearly unstable.
Motivated by the experimental data which demonstrates that the system
resolves to homeostatic values for the selected doses of the AAV8.TBG.Cre
virus, we constrain the model to parameter set suchG >BE � 1. For details
of the steady states and linear stability analysis, see Supplementary Note 1.

TheODEsystem is solved inMatlab using ode45.We confirmedmodel
convergence by refining the time step and ensuring the solution did not
change. For the steady states and the stability analysis, the variables are set as
symbolic objects.We thenfind the Jacobian of the systemusing the jacobian
function and finally we solve the steady state system using solve.

Data availability
The data presented here are available on request from the first or corre-
sponding author(s). Corresponding authors: experimental, victor-
ia.gadd@ed.ac.uk; mathematical, waters@maths.ox.ac.uk.

Code availability
The code that was used to perform the simulations in this paper is available
at: https://github.com/EvaAnton/InjuryModelPaper. All data are provided
in the paper.
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