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Abstract
Purpose Commonly employed in polyp segmentation, single-image UNet architectures lack the temporal insight clinicians
gain fromvideo data in diagnosing polyps. Tomirror clinical practicesmore faithfully, our proposed solution,PolypNextLSTM,
leverages video-based deep learning, harnessing temporal information for superior segmentation performance with least
parameter overhead, making it possibly suitable for edge devices.
Methods PolypNextLSTM employs a UNet-like structure with ConvNext-Tiny as its backbone, strategically omitting the
last two layers to reduce parameter overhead. Our temporal fusion module, a Convolutional Long Short Term Memory
(ConvLSTM), effectively exploits temporal features. Our primary novelty lies in PolypNextLSTM, which stands out as the
leanest in parameters and the fastest model, surpassing the performance of five state-of-the-art image and video-based deep
learning models. The evaluation of the SUN-SEG dataset spans easy-to-detect and hard-to-detect polyp scenarios, along with
videos containing challenging artefacts like fast motion and occlusion.
Results Comparison against 5 image-based and 5 video-basedmodels demonstrates PolypNextLSTM’s superiority, achieving
a Dice score of 0.7898 on the hard-to-detect polyp test set, surpassing image-based PraNet (0.7519) and video-based PNS+
(0.7486). Notably, our model excels in videos featuring complex artefacts such as ghosting and occlusion.
Conclusion PolypNextLSTM, integrating pruned ConvNext-Tiny with ConvLSTM for temporal fusion, not only exhibits
superior segmentation performance but also maintains the highest frames per speed among evaluated models. Code can be
found here: https://github.com/mtec-tuhh/PolypNextLSTM.
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Introduction

Colorectal cancer stands as a significant concern, ranking as
the secondmost common cancer amongwomen and the third
among men, contributing to approximately 10% of global
cancer cases. Its origin often traces back to the development
of adenomatous polyps [1], emphasizing the criticality of
early detection and removal to prevent cancer [2, 3].

Deep learning-based polyp segmentation models may
serve as secondary opinions for gastroenterologists, but lim-
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ited labelled data from full-length colonoscopy videos pose
a challenge [4]. Clinical reports storing still frames cre-
ate image-based polyp databases, enabling development of
architectures like UNet, Vision Transformers, and Swin
Transformers for segmentation [5–15]. A recent method by
Shaharabany et al. modifies the prompt encoder of the Seg-
ment Anything Model (SAM) [16], enabling it to accurately
segment polyp images, despite the image encoder being
trained on natural images [17]. While current models mostly
focus on single images, endoscopy units record video and
thereby, image-based models do not leverage the temporal
information to enhance segmentation. Image-based meth-
ods cannot contextualize within sequences, missing crucial
context for accurate segmentation. Processing videosmirrors
real-life scenarios and may ensure a more precise segmenta-
tion through the multi-view perspective of a suspected polyp
[4]. Another consideration to make is making models with
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less parameters so that they can still perform real-time infer-
ence.

In the realm of video-based polyp segmentation, tempo-
ral information integration remains a relatively unexplored
frontier. Puyal et al. [18] proposed hybrid 2D/3D network,
where individual images undergo independent encoding by
a shared backbone. Subsequently, 3D convolution layers
amalgamate information across frames to yield segmenta-
tion outcomes. Building upon this, Ji et al. [19] introduced
the PNSNet architecture in 2021, leveraging a novel ‘Nor-
malized Self-Attention Block’ for temporal assimilation.
Their subsequent iteration, PNS+, employs a global encoder
which processes an anchor frame, a local encoder which
processes subsequent frames and Normalized Self-Attention
Block for improved performance [20]. Zhao et al. [21]
advanced the field by devising a semi-supervised network.
Thismodel employsmulti-head attentionmodules separately
for temporal and spatial dimensions, supplemented by an
attention-based module during decoding. By reducing the
need for laboriousmask labelling, their approach aims tomit-
igate the time and effort involved in dataset annotation. Lin
et al. [22] include multiple frames into the segmentation pro-
cess by concatenating encoded images/using element-wise
addition and feeding the result through additional process-
ing blocks.

The limited research in video-based polyp segmentation
is partly due to the scarcity of adequately large, densely
labelled datasets. Ji et al. [20] addressed this in 2022 by
introducing the SUN-SEG dataset, a restructured version
of the SUN database [23, 24]. With meticulously created
segmentation masks for positive cases across 1013 video
clips, 158,690 images, and defined training and test set
splits, this dataset stands as the largest fully segmented
resource available, serving as a benchmark for polyp video
segmentation. Another reason for limited research is that
computational efficiency poses a challenge. Models must
strike a balance between lightweight design, high inference
speed while having high segmentation performance. Image-
based segmentation models, focusing on individual images,
often display superior computational efficiency compared to
their video-based counterparts. In response to these chal-
lenges, we propose the PolypNextLSTM, a novel video polyp
segmentation architecture. This framework integrates the
latest ConvNext backbone [25] and a bidirectional Convo-
lutional Long Short Term Memory (ConvLSTM) module as
our temporal fusion module. Notably, our model maintains
the lowest parameter count among image and video-based
state-of-the-art (SOTA)modelswhile ensuring real-time pro-
cessing capabilities. Our investigation delves into diverse
temporal processing strategies beyond LSTM, considering
computational cost, inference speed, and segmentation per-
formance to inform our architectural choices. Overall, our
main contributions are fourfold:

• Introduction of the PolypNextLSTM architecture, lever-
aging a pruned ConvNext-Tiny [25] backbone integrated
with a bidirectional convolutional LSTM to encapsulate
temporal information making it the leanest model while
still being the fastest and best performing model.

• We analyse the optimal video sequence length to process
simultaneously.

• We explore the impact of different backbone architec-
tures and temporal fusion modules and justify the reason
for choosing ConvLSTM as a temporal fusion block.

• We analyse the optimal placement of ConvLSTM, dis-
cerning its effects on overall performance metrics, infer-
ence speed, and model parameter count.

Method

Dataset

The SUN-SEG dataset, derived from the SUN-database [23,
24], establishes a segmentation benchmark by meticulously
crafting segmentation masks for each frame. Comprising
originally of 113 videos, each video is segmented into
smaller clips of 3–11s each; at a frame rate of 30FPS, the
dataset consists of 378 positive and 728 negative cases. Some
of the smaller clips have polyps in the frame and some
have no polyps, constituting ‘positive’ and ‘negative’ clips,
respectively. Only the positive polyp clips are used for the
experiments. In the training set there are often multiple clips
which show the same polyp. The amount of clips per polyp
ranges from one to sixteen. To keep the amount of training
data on a level that is easier to manage, only the first clip for
each polyp is used. This leads to a training set of 51 clips
of different polyps with a total of 9704 frames. The prede-
fined test sets remain as they are. The test set, categorized
as SUN-SEG-Easy (119 clips, 17,070 frames) and SUN-
SEG-Hard (54 clips, 12,522 frames), is entirely designated
for testing, stratified by difficulty levels across pathologi-
cal categories as outlined by the original work [20] as well
as mentioned in their code repository.1 The predefined test
sets, SUN-SEG-Easy and SUN-SEG-Hard, encompass two
colonoscopy scenarios-‘seen’ and ‘unseen’. ‘Seen’ delin-
eates instances where the testing samples originate from
the same case as the training set (33 clips in SUN-SEG-
Easy, 17 clips in SUN-SEG-Hard). Conversely, ‘unseen’
indicates scenarios absent in the training set (86 clips in SUN-
SEG-Easy, 37 clips in SUN-SEG-Hard), enabling a more
comprehensive evaluation of model performance under dis-
tinct conditions.

The SUN-SEG database offers another advantage. All
clips are labelled with visual attributes that occur in it. Split-

1 https://github.com/GewelsJI/VPS?tab=readme-ov-file.
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Table 1 Overview on the visual
attribute labels in the SUN-SEG
database

ID Name Description

SI Surgical Instruments The endoscopic surgical procedures involve the positioning
of instruments, such as snares, forceps, knives and
electrodes

IB Indefinable Boundaries The foreground and background areas around the object
have a similar colour

HO Heterogeneous Object Object regions have distinct colours

GH Ghosting Object has anomaly RGB-coloured boundary due to
fast-moving or insufficient refresh rate

FM Fast Motion The average per-frame object motion, computed as the
Euclidean distance of polyp centroids between
consecutive frames, is larger than 20 pixels

SO Small Object The average ratio between the object size and the image
area is smaller than 0.05

LO Large Object The average ratio between the object bounding-box area
and the image area is larger than 0.15

OCC Occlusion Object becomes partially or fully occluded

OV Out of View Object is partially clipped by the image boundaries

SV Scale Variation The average area ratio among any pair of bounding boxes
enclosing the target object is smaller than 0.5.

Descriptions are copied from the official Git repository https://github.com/GewelsJI/VPS

ting results by visual attributes allows for a more in-depth
analysis and can help to identify strength and weaknesses of
models. All possible visual attributes and a description are
listed in Table 1.

Proposedmethod

We propose a new video polyp segmentation network which
is based on a ConvNext-tiny backbone and uses a bidirec-
tional convolutional LSTM to incorporate temporal informa-
tion. The proposed model is shown in Fig. 1. The different
components are explained in more detail in Fig. 2.

We opt for the ConvNext-tiny as our backbone due to its
recent advancements in convolutional neural networks, strik-
ing a balance between precision and efficiency. This model
refines ResNet by integrating design elements like grouped
convolution, inverted bottleneck, larger kernel sizes, and
micro designs at the layer level [25]. Our customized version,
termed ‘reduced ConvNext-tiny’, is achieved by eliminating
the classification layers and the final downsampling stage,
resulting in a more lightweight model. Unlike the original
four-stage ConvNext-tiny with (3, 3, 9, 3) ConvNext blocks,
our reduced backbone operates with three stages containing
(3, 3, 9) ConvNext blocks. By omitting the parameter-heavy
final blocks, we significantly trim down the model parame-
ters, reducing from 27.82 million to 12.35 million.

The ConvNext block (depicted in Fig. 2a) comprises
a depthwise 7 × 7 convolution followed by two 1 × 1
convolutions. Additionally, our architecture employs a bidi-

rectional convolutional LSTM (illustrated in Fig. 2b) to
fuse information across consecutive frames, operating in a
‘many-to-many’, i.e. F segmentation mask generated for
F images. This ConvLSTM maintains the input channel
integrity despite halving the channel count from 384 to 192
during convolution by concatenating the forward and back-
ward features. All convolutions in the ConvLSTM cells use
a kernel size of 3× 3 with zero padding of 1× 1 to maintain
the spatial dimensions. A single ConvLSTM cell is used for
the forward and the backward pass, respectively. We utilize
the implementation from a publicly available Git repository:
https://github.com/ndrplz/ConvLSTM_pytorch.

Drawing inspiration from the UNet decoder, our model
gradually upsamples images while incorporating earlier
encoder data through skip connections. The DoubleConv
block (shown in Fig. 2c) consists of two 3× 3 convolutions
with batch normalization and ReLU activation, halving the
channel dimensions. Upsampling is achieved using a 2 × 2
transposed convolution with a stride of 2 (exemplified in
Fig. 2f), ultimately reduced to a 1 × 1 convolutional output
layer (seen in Fig. 2g) for final segmentation masks, reducing
the channel dimension from 24 to 1.

Our network expects input of shape B× F×C×H×W -
batch dimension (B), frame sequence length (F), channel
count (C), image height (H ), and width (W ). Data process-
ing within the encoder and decoder involves flattening the
batch and frame dimensions into one dimension, ensuring
independent image processing. Only in the temporal fusion
module is the data processed in its original form.
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Fig. 1 The proposed model. A reduced ConvNext-tiny is used as the encoder. The information between the encoded frames is fused using a
bidirectional ConvLSTM. The decoder is inspired by the UNet. F is the number of subsequent frames being processed simultaneously by the model

Fig. 2 Key components of our network. The information in the boxes
refers to kernel size, output channel size and stride. If no stride is given,
it is set to 1. The C in a circle stands for concatenation along the channel
dimension. a ConvNextBlock—the main encoder building block. The
‘d’ in front of the kernel size stands for depthwise convolution. b Bidi-
rectional ConvLSTM—fuses information across frames. cDoubleConv
module—merges skip connection datawith upsampled information dur-

ing the decoding process. d Patch embedding layer—serves as the first
encoder layer. eDownsampling layer—used to reduce the spatial dimen-
sion and increase the channel dimension during encoding. f Upsampling
layer—used to increase the spatial dimensions and decrease the channel
dimension during decoding. The ‘T’ in front of the kernel size refers to
transposed convolution. gOutput layer—serves as the final model layer
and reduces the channel dimension to 1
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Implementation detail

We conducted all model training on a system equipped with
an AMD Ryzen 9 3950X CPU, an Nvidia RTX 3090 graph-
ics card, and 64 GBs of RAM, employing PyTorch 1.13
as the deep learning framework. Adhering to PyTorch’s
reproducibility guidelines,2 we ensure the replicability of all
experiments without variance in results. Our chosen configu-
ration includes a temporal dimension of 5 consecutive frames
(F) and a batch size (B) of 8. In the image-based model
segments—both encoder and decoder—the batch and tem-
poral dimensions are flattened into one, effectively creating a
batch size of 40. Consequently, inputs for modules involving
the temporal dimension take the shape of 8×5×C×H×W ,
where C signifies channel count and H & W denote height
and width, while the encoder and decoder operate on data of
shape 40 × C × H × W , all images standardized to a fixed
size of 256×256. Augmentation techniques include random
rotations, horizontal and vertical flips, and random centre
cropping, consistently applied to the five input images. For
the ConvNext-tiny backbone of PolypNextLSTM we utilize
the implementation from torchvision and initialize it with the
available pre-trained weights (‘IMAGENET1K_V1’).

For fairness in comparisons, we use a batch size of 8 and
5 consecutive frames for all SOTA. To align COSNet with
other models, we adjust its input by using the first and last
frames from sets of 5 frames. When temporal information
is not used, we flatten batch and frame dimensions for an
effective size of 40. Deep supervision techniques are applied
as per the authors’ recommendations.

We utilized Adam as the optimizer with an initial learn-
ing rate of 1e−4. The loss function is a fusion of Dice loss
and binary cross-entropy loss. Our experiments entail 5fold
cross-validation across 100 epochs. All models are evaluated
using four common segmentation metrics: Dice score, inter-
section over union (IOU), 95% Hausdorff distance (HD95),
and recall.

Results

Table 2 displays the comprehensive performance evaluations
of various methods on SUN-SEG-Hard test sets, categorized
as ‘EasyUnseen’ and ‘HardUnseen’. Ourmodel consistently
surpasses all comparative models across all metrics, includ-
ing ‘Seen’ and ‘Unseen’ scenarios.

In Table 2, PraNet emerges as the second-best performer
across most metrics, excluding HD95, where HybridNet
secures the second spot. Notably, PolypNextLSTM shows
better performance on the ‘Hard Unseen’ test set compared
to the ‘Easy Unseen’. There is an improvement on the

2 https://pytorch.org/docs/1.13/notes/randomness.html.

‘Easy Unseen’ test set with +0.0129 (+1.71%) Dice score,
+0.0131 (+1.92%) IOU, −1.34 (−7.77%) Hausdorff dis-
tance, and +0.0152 (+2.1%) recall in comparisonwith PraNet
for each metric. The improvement on the ‘Hard Unseen’
test set is even more substantial, with +0.0319 (+4.24%)
Dice score, +0.0307 (+4.54%) IOU,−1.59 (−10.2%) Haus-
dorff distance, and +0.0323 (+4.41%) recall, indicating our
approach’s proficiency in detecting challenging polyps.

Furthermore, our model outperforms both image and
video state-of-the-art models while utilizing the fewest
parameters and exhibiting the highest inference speed. The
Frames Per Second (FPS) metric, evaluating the processing
speed for a video snippet of five frames at a resolution of
256× 256 pixels, illustrates our model’s efficiency.

We also present the Dice score results categorized by
visual attributes (seeTable 1) inTable 3 for the ‘EasyUnseen’
test set and in Table 4 for the ‘Hard Unseen’ test set. In the
‘Easy Unseen’ set, our model excels in multiple attributes—
HO, GH, FM, OV, and SV. Notably, our model demonstrates
significant improvement in SV, achieving +0.0255 (+4.04%)
compared to the second-best model, PraNet, in this category.
While our model performs competitively in other categories,
the largest margin appears in LO, where PraNet outperforms
by +0.0266 (+3.60%). In the ‘Hard Unseen’ test set, our
model emerges as the top performer across all categories.
Particularly noteworthy is the substantial improvement in IB,
showcasing +0.0321 (+5.24%) compared to the second-best
model (CASCADE). Given the generally lower scores, IB
stands out as the most challenging category.

In Fig. 3, we qualitatively compare the SOTA and our pro-
posed model. On the left side there are the results for four
cases from the ‘Easy Unseen’ (EU) test set and on the right
side for examples from the ‘Hard Unseen’ (HU) test set. The
case numbers are taken from the SUN-SEG dataset.

Experiments with ‘Seen’ test set configuration are pre-
sented in Online Resource section 1. For more insights into
the generalization capabilities of PolypNextLSTM, the per-
formance on the PolypGen dataset [31] compared to the
state-of-the-art models is shown in Online Resource Section
3.

Discussion

Comparisons with SOTA image and video-based segmen-
tation networks (Table 2) consistently position PolypNextL-
STM as the frontrunner. Its performance excels particularly
in ‘Unseen’ scenarios, indicating strength in resembling clin-
ical settings with new patients. We extensively justify the
choice of ConvNext as a backbone in our Online Resource
Section 2.1. Our investigation explores optimal ConvL-
STM placements within skip connections (Online Resource
Section 2.4) and the encoder network (Online Resource Sec-
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Table 2 Comparison of various state-of-the-art models on the unseen cases

Easy Unseen Hard Unseen Params FPS

Dice IOU HD95 Recall Dice IOU HD95 Recall

Image DeepLab [26] 0.7046 0.6196 22.28 0.6483 0.7107 0.6214 19.57 0.6651 39.63M 54

PraNet [27] 0.7557 0.6827 17.52 0.7198 0.7519 0.6760 15.96 0.7318 32.55M 45

SANet [28] 0.7412 0.6638 18.34 0.6951 0.7465 0.6624 17.12 0.7157 23.90M 71

TransFuse [14] 0.7058 0.6225 23.26 0.6549 0.6804 0.5973 24.84 0.6414 26.27M 63

CASCADE [29] 0.7419 0.6672 19.23 0.7042 0.7170 0.6393 20.28 0.6938 35.27M 54

Video COSNet [30] 0.6574 0.5761 27.01 0.6083 0.6427 0.5598 26.02 0.6085 81.23M 16

HybridNet [18] 0.7350 0.6492 17.25 0.7013 0.7214 0.6334 15.66 0.7070 101.5M 67

PNSNet [19] 0.7313 0.6474 21.00 0.6805 0.7392 0.6526 17.97 0.7052 26.87M 61

PNS+ [20] 0.7422 0.6647 19.00 0.7010 0.7486 0.6660 16.11 0.7266 26.87M 57

SSTAN [21] 0.7157 0.6363 23.40 0.6760 0.6964 0.6163 24.05 0.6740 30.15M 101

Ours 0.7686 0.6958 15.91 0.7350 0.7838 0.7067 14.07 0.7641 21.95M 108

The top five models are image models, while the bottom five are video-based models

Table 3 Comparison of the Dice score divided by the visual attributes occurring in the clips of the ‘Easy Unseen’ test set

SI IB HO GH FM SO LO OCC OV SV

Image DeepLab [26] 0.7081 0.4844 0.8227 0.7382 0.6130 0.5400 0.6743 0.6391 0.6722 0.5840

PraNet [27] 0.7746 0.5490 0.8659 0.7867 0.6501 0.5979 0.7651 0.7155 0.7244 0.6317

SANet [28] 0.7683 0.5332 0.8471 0.7827 0.6392 0.5684 0.7444 0.6977 0.7126 0.6183

TransFuse [14] 0.6566 0.5292 0.7859 0.7262 0.6367 0.6005 0.6214 0.6201 0.6584 0.5594

CASCADE [29] 0.7111 0.5888 0.8510 0.7559 0.6455 0.6243 0.6753 0.6724 0.6826 0.6067

Video COSNet [30] 0.6306 0.4277 0.7684 0.7073 0.5887 0.4880 0.6062 0.6106 0.6051 0.5093

HybridNet [18] 0.7554 0.4973 0.8687 0.7875 0.6376 0.5447 0.7505 0.7109 0.7307 0.6006

PNSNet [19] 0.7415 0.5417 0.8504 0.7511 0.6163 0.6108 0.7073 0.6852 0.6916 0.6114

PNS+ [20] 0.7467 0.5272 0.8700 0.7742 0.6319 0.5974 0.7244 0.6874 0.7144 0.6300

SSTAN [21] 0.7095 0.4946 0.8428 0.7598 0.6248 0.5562 0.6837 0.6616 0.6797 0.5931

Ours 0.7510 0.5704 0.8837 0.7973 0.6638 0.6225 0.7385 0.7101 0.7337 0.6572

The best score for each category is marked in bold

Table 4 Comparison of the Dice score divided by the visual attributes occurring in the clips of the ‘Hard Unseen’ test set

SI IB HO GH FM SO LO OCC OV SV

Image DeepLab [26] 0.6984 0.5524 0.7519 0.7157 0.7131 0.6686 0.7583 0.7261 0.7453 0.6473

PraNet [27] 0.7709 0.5865 0.8247 0.7588 0.7342 0.7027 0.8250 0.7796 0.7847 0.6955

SANet [28] 0.7518 0.6011 0.8048 0.7464 0.7394 0.7011 0.8042 0.7755 0.7759 0.6831

TransFuse [14] 0.6287 0.5722 0.6537 0.6602 0.7274 0.6675 0.5848 0.6557 0.6697 0.6149

CASCADE [29] 0.6769 0.6125 0.7231 0.6969 0.7507 0.6889 0.6899 0.7194 0.7307 0.6524

Video COSNet [30] 0.6103 0.4801 0.6720 0.6303 0.6701 0.6037 0.6107 0.6463 0.6473 0.5880

HybridNet [18] 0.7257 0.5307 0.8102 0.7248 0.7131 0.6312 0.8130 0.7653 0.7712 0.6557

PNSNet [19] 0.7482 0.5901 0.7879 0.7400 0.7298 0.7162 0.7663 0.7569 0.7615 0.6970

PNS+ [20] 0.7567 0.6026 0.8047 0.7565 0.7381 0.7165 0.7812 0.7693 0.7778 0.7070

SSTAN [21] 0.6721 0.5207 0.7405 0.6878 0.7184 0.6444 0.7232 0.7131 0.7230 0.6376

Ours 0.8000 0.6446 0.8461 0.7678 0.7693 0.7318 0.8326 0.7984 0.8153 0.7139

The best score for each category is marked in bold
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Fig. 3 Example results for cases
where our model performed
considerably better than other
state-of-the-art models. The left
four images are from the ‘Easy
Unseen’ test set and right frames
from the ‘Hard Unseen’ test set.
The top row shows the image
passed to the network and the
second row the groundtruth
mask. White areas denote polyp
regions and black areas stand for
non-polyp regions. The
remaining rows show the
predicted segmentation results
by the different networks

tion 2.5). Additionally, we validate our choice to use five
consecutive frames in Online Resource 2.7 and 2.8. Fur-
thermore, we delve into various temporal fusion modules,
including channel stacking, 3D convolutions akin to Hybrid-

Net [18], unidirectional ConvLSTM,multi-headed attention,
and normalized self-attention from PNSNet [19] and PNS+
[20]. Detailed analysis in Online Resource Section 2.3 con-
cludes that the bidirectional ConvLSTM at the bottleneck
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ensures optimal performance without compromising com-
putational efficiency or throughput. Models built around
ConvLSTM exhibit adaptability to varying input sequence
lengths without escalating parameters, distinguishing them
from convolution-based approaches (channel stacking, 3D
convolution) that inflate parameters with sequence length,
affecting speed and ease of training.

While PraNet stands out among image-based models,
our temporal information integration outperforms it with
nearly 50% fewer parameters and over double the FPS.
Surprisingly, models perform better on the ‘hard’ test set,
possibly due to a training set bias towards tougher cases. An
attribute-based analysis on the ‘Easy Unseen’ test set (Table
3) indicates our method’s strength across various attributes,
especially in handling heterogeneous objects, ghosting, fast
motion, out-of-view instances, and scale variation. Notably,
scale variation witnesses a significant +0.0255 (+4.04%)
Dice score improvement compared to the next-best approach
(PraNet). Temporal information proves beneficial for ghost-
ing and out-of-view cases, leveraging multiple frames for
better predictions despite visual artefacts. While our model
consistently performs above average, challenges surface in
segmenting large objects, where PraNet outperforms, pos-
sibly due to the network’s restricted depth arising from
certain ConvNext-tiny backbone layer removals. Intrigu-
ingly, results on the ‘Hard Unseen’ test set categorized
by visual attributes (Table 4) reveal our model’s domi-
nance across all categories, reinforcing the bidirectional
ConvLSTM’s role in precise segmentation through effective
multi-frame information fusion.

Although our study exhibits strong performance, it has
limitations. Primarily, we have tested ourmethod only on two
videopolyp segmentationdatasets. To establish its robustness
and generalizability, future work should evaluate this model
acrossmultiple image andvideo polyp datasets.Additionally,
as this study is retrospective, a prospective study would pro-
videmore accurate insights into its true performance.Despite
these limitations, our PolypNextLSTM stands out as the most
lightweight and high-performing video-based polyp segmen-
tation model. Its open-source implementations pave the way
for further advancements in this domain.

Conclusion

We devised PolypNextLSTM, an architecture employing
ConvNext-Tiny [25] as the backbone, integrated with Con-
vLSTM for temporal fusion within the bottleneck layer. Our
model not only delivers superior segmentation performance
but alsomaintains the highest FPS among the evaluatedmod-
els. Evaluations conducted on the SUN-SEG dataset, the

largest video polyp segmentation dataset to date, provide
comprehensive insights across various test set scenarios.
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