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BACKGROUND: Despite the worldwide progress in cancer diagnostics, more sensitive diagnostic biomarkers are needed. The
methylome has been extensively investigated in the last decades, but a low-cost, bisulfite-free detection method for multiplex
analysis is still lacking.
METHODS: We developed a methylation detection technique called IMPRESS, which combines methylation-sensitive restriction
enzymes and single-molecule Molecular Inversion Probes. We used this technique for the development of a multi-cancer detection
assay for eight of the most lethal cancer types worldwide. We selected 1791 CpG sites that can distinguish tumor from normal
tissue based on DNA methylation. These sites were analysed with IMPRESS in 35 blood, 111 tumor and 114 normal samples. Finally,
a classifier model was built.
RESULTS: We present the successful development of IMPRESS and validated it with ddPCR. The final classifier model discriminating
tumor from normal samples was built with 358 CpG target sites and reached a sensitivity of 0.95 and a specificity of 0.91. Moreover,
we provide data that highlight IMPRESS’s potential for liquid biopsies.
CONCLUSIONS: We successfully created an innovative DNA methylation detection technique. By combining this method with a
new multi-cancer biomarker panel, we developed a sensitive and specific multi-cancer assay, with potential use in liquid biopsies.
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INTRODUCTION
Cancer remains one of the most lethal diseases worldwide. Breast,
lung, colorectal, and prostate cancer are amongst the most
common cancers, with each over 1.4 million cases per year [1].
Diagnosis typically occurs in an advanced disease stage due to the
lack of clear symptoms and the absence of effective screening
programs for most cancer types [2]. This is reflected in the
percentages of late-stage diagnoses, for example, 68% and 59% in
lung and colorectal cancer respectively [3]. Clearly, there is an
unfulfilled need for effective diagnostic biomarkers.
An interesting biomarker candidate for cancer detection is DNA

methylation. Genome wide epigenetic reprogramming of tumors
occurs early in carcinogenesis. Methylation patterns of many
tumor types are widely dysregulated compared to those of
healthy cells, but the tumor type specific patterns are very
distinctive [4–6]. Many studies have investigated the potential of
the methylome in recent years but, to date, there are only a few

successful methylation biomarkers for cancer in a clinical setting.
Our research group has already shown the promise of methylation
as a diagnostic biomarker [6]. We demonstrated the capability to
discriminate 14 different cancer types from normal tissue and
from each other using methylation biomarkers in silico, with high
sensitivity and specificity.
It is important to detect biomarkers in a sensitive and specific

manner. Currently, bisulfite sequencing is still considered the gold
standard for DNA methylation analysis. However, bisulfite is a
harsh chemical that degrades DNA, limiting the sensitivity of
downstream applications [7]. Alternative bisulfite-free techniques,
such as affinity-based methods (e.g. MeDIP-seq, Methyl Cap), are
shown to have a lower accuracy compared to bisulfite sequencing
[8]. Other bisulfite-free methods include restriction enzymes,
which can either be methylation-dependent, digesting only
methylated CpG sites (e.g., MspJI), or methylation-sensitive,
digesting only unmethylated CpG sites (e.g., HpaII). Recently,
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two enzymatic technologies for DNA methylation detection were
launched, called TET-assisted pyridine borane sequencing (TAPS)
and Enzymatic Methyl sequencing (EM-seq) [9, 10]. In TAPS, ten-
eleven translocation (TET) oxidation is combined with pyridine
borane reduction [10]. EM-seq consists of two conversion steps as
well, using TET2 and APOBEC3A [9, 11]. The enzymatic treatment
in these techniques is a first step towards eliminating the need for
bisulfite conversion [9, 11, 12]. However, genome-wide methyla-
tion detection techniques come at a high cost which hampers
their implementation in routine diagnostics [13]. Clearly, there is
an urgent need for a low-cost, bisulfite-free detection method for
the simultaneous analysis of multiple methylation regions that
allows accurate prediction of disease.
In this paper, we describe a novel high-multiplex methylation

detection technique called IMPRESS (Improved Methylation
Profiling using Restriction Enzymes and smMIP sequencing).
Methylation-sensitive restriction enzymes (MSREs) have already
been used for a very long time for the analysis of methylation in
specific regions of the genome [14]. Single-molecule Molecular
Inversion Probes (smMIPs) are very efficient for capturing and
enriching carefully chosen informative regions of the genome.
They are extremely suitable for multiplex analysis of thousands of
genomic regions [15]. smMIPs have been used for mutation
detection and CNV analyses in different research fields [16, 17] but
have never been described for DNA methylation detection. We
used this technique for the development of a diagnostic
biomarker assay discriminating tumor samples from normal
samples. For the selection of the biomarker targets, methylation
data of tissue samples from eight of the most lethal cancer types
worldwide and normal adjacent tissue were used. Furthermore,
methylation patterns of normal blood samples were included for
the target selection, ensuring the development of a biomarker
panel that is also suitable for use in plasma derived liquid biopsies
in the future. In this study, the proof-of-principle of the biomarker
assay combining the new IMPRESS technique and the biomarker
panel, is described.

MATERIALS AND METHODS
Development of new DNA methylation detection technique
The IMPRESS technique is a novel combination of MSRE digestion and
smMIP sequencing. An overview of the technique is given in Fig. 1 and the
molecular details are shown in Supplementary Fig. 1. Details of the
protocol are described in the Supplementary Methods.

IMPRESS technique protocol. In brief, the first step was a combined
digestion of 50 ng DNA with four MSREs. The MSREs cleave unmethylated
DNA at their recognition sites, while methylated CpG sites block the
restriction enzymes, which results in unaffected CpG regions. The
methylated CpG regions were captured by the smMIPs through hybridiza-
tion of the smMIP binding arms. Elongation and ligation of the smMIP
created a circular DNA fragment. All remaining linear fragments were
degraded by an exonuclease reaction. Thereafter, the circular fragments
were amplified by PCR. Finally, all samples were pooled, purified, and
sequenced by Next Generation Sequencing. In each sample, lambda phage
DNA was spiked in as an internal digestion control.

Data analysis pipeline. For the analysis of the NGS output, a bioinformatic
pipeline was built using Snakemake [18]. Configuration was done in a json
file, where all pipeline parts can be configured separately. Both MiSeq and
NextSeq output can be handled, and as the pipeline has a modular
structure, parts can be added or removed very easily. Computational
parallelization was achieved per sample for both MiSeq and NextSeq data.
First, the reads were split per sample by using the two sample barcode

reads (Supplementary Fig. 1), allowing for one base error per barcode.
Reads were then quality trimmed and subsequently mapped to either the
human (hg19) or lambda phage genome using the bwamem algorithm
with default parameters [19]. Next, Picard MarkDuplicates was used for
duplicate removal, based on the single molecule tags of ten nucleotides in
total [20]. Then, reads were filtered out based on mapping quality and

mapping flags, keeping only properly paired reads with quality above 15.
Finally, reads were counted per smMIP location, only retaining a pair when
both reads match the target location within an error margin of 5 base
pairs. This way, a dataset with counts for all smMIPs for each sample was
obtained.

Internal control for digestion. To check whether each sample was
sufficiently digested, we used the read counts of the smMIPs targeting
spiked-in lambda phage DNA. Two types of lambda phage DNA smMIPs
were included: (a) smMIPs targeting a CpG with one of the MSRE
recognition sites, and (b) smMIPs targeting a reference site, without
recognition site or without CpG site. The percentage of non-digested DNA
of each sample was calculated as described below. A threshold of 5% non-
digested fragments was set.

Percentage ofnon� digestiondigested sample ¼
ΣCpG smMIP countdigested sample

ΣReference smMIP countdigested sample

� �

Averageall undigested samples
ΣCpG smMIP countundigested sample

ΣReference smMIP countundigested sample

� �

Development of multi-cancer biomarker panel
Target sites selection. For the development of the multi-cancer detection
assay, a panel with candidate methylation biomarkers was built using
online available 450 K methylation array data (Table 1). Methylation data
processing and analysis were performed based on the methods previously
described by Ibrahim et al. [6].

smMIP design. Using the MIPGEN software [21], smMIPs were designed for
both DNA strands (i.e. double-tiled) for each selected target site. smMIPs in
our design contain (a) a common smMIP backbone of 30nt, (b) single
molecule tags of 5nt on each side, and (c) two binding arms of circa 20nt
that were specifically designed for each target to have an insert size of
50nt (Fig. 1). The single molecule tags differ per smMIP copy and allow
filtering for PCR duplicates. Next, smMIPs covering SNPs and/or repeats
were removed, and a final selection was made.

Sample collection and processing
Control samples. Lambda phage DNA was purchased from Thermo
Fisher Scientific (USA). Human methylated and non-methylated (WGA)
DNA was purchased from Zymo Research (USA). Four cancer cell lines
were provided by the Centre for Oncological Research (CORE, Antwerp),
and one line was purchased from the German Collection of Microorgan-
ism and Cell cultures (DSMZ, Germany) (Supplementary Table 1). All cell
lines were cultured according to standard protocols from the American
Type Culture Collection (ATCC). The cell lines were authenticated at the
start of the study and routinely tested for mycoplasma contamination,
which was negative. Genomic DNA was extracted using the Blood & Cell
culture DNA Maxi kit (Qiagen, Germany). DNA was stored at −20 °C until
further use. For the liquid biopsy experiments, cfDNA material was
provided by the diagnostics department of the Center of Medical
Genetics. This cfDNA was anonymized residual material obtained from
NIPT plasma samples. cfDNA was stored at −20 °C until further use. For
limited research use of this type of residual material, no additional
ethical approval is required.

Blood samples. A total of 35 whole blood samples were collected from
healthy volunteers. Genomic DNA (gDNA) was extracted using a standard
salting-out process. The DNA was stored at 4 °C until further use.

Fresh frozen tissue. Tumor tissue and normal adjacent tissue samples
were routinely collected by the biobank of the Antwerp University Hospital
(UZA, Belgium). All normal tissue cited throughout this manuscript is
normal tissue adjacent to tumor tissue, except for the normal breast
samples, which originate from breast reductions of healthy women. A total
of 225 fresh frozen tissues stored at −80 °C were used (Table 1). Tissue
type, presence of invasive tumor, and overall tumor cell percentage (TcP)
were verified by a pathologist (D.P.) through microscopic examination of
hematoxylin-eosin-stained sections. Samples with a minimum of 5% TcP
were retained for analysis. DNA was extracted using the QIAamp DNA
Micro Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
protocol. The DNA was stored at −20 °C until further use.
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Classifier model construction based on NGS data
For each smMIP, linear discriminant analysis was carried out using the lda
function from the MASS package in the software package R (version 4.0.2)
[22]. A model was first constructed and then validated using the ROCR
package [23]. Five-fold cross validation was carried out with a randomiza-
tion restriction to proportionally represent the tumor types across the five
folds. Predictive accuracy of the LDA models was expressed using the Area
under the ROC curve (AUC).
Finally, the least efficient smMIPs were removed with a cutoff of 1000

cumulative counts in all undigested samples, since a minimal number of
counts is needed to make a robust classifier. All smMIP models with a
cross-validated AUC below 0.8 were removed for the final model. In case of
double-tiled smMIPs, the best performing smMIP was selected. All
remaining single smMIP models were combined into the final model.
The prediction cutoff for each single smMIP model was determined by the

lowest sum of false positives and false negatives. The combination of all
single predictions was then assessed by a ROC curve and the prediction
cutoff was determined based on the highest overall accuracy to produce
the final classifier model.

Validation of the IMPRESS technique with digital droplet PCR
A duplex and triplex ddPCR assay including one and two target sites
respectively, as well as a reference site, were developed. These targets
overlap with three smMIP targets of our classifier model. For a more
detailed description of the assay development and calculations, see
Supplementary Methods. The ddPCR assays were used to assess 103 fresh
frozen tumor samples and 109 fresh frozen normal adjacent tissue samples
(Table 1). These samples were the same as in the IMPRESS experiment,
except for the samples with insufficient concentration. For each target site,
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Fig. 1 Overview of the IMPRESS technology. During combined digestion with four MSREs, unmethylated recognition sites are digested,
whereas methylated CpG sites, blocking the MSREs, remain intact. Subsequently, methylated CpG sites are captured by hybridization of the
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Eventually, PCR products are pooled, purified and sequenced simultaneously. Created with BioRender.com.
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sensitivity and specificity were calculated based on the methylation level
of each sample.

Statistics and calculations
For the power calculations, we used online datasets to obtain the mean
and the standard deviation of the methylation level of the selected targets
for the tumor and the normal group. We used the target with the smallest
Cohen’s D effect size. A sample size with 67 cases and an equal number of
controls holds 80% power to detect any difference between the tumor
group (methylation level = 0.50 ± 0.24) and the normal group (methylation
level = 0.30 ± 0.20), corrected for multiple testing (1791 CpG sites) with a
two-sided test. We were able to collect 111 tumor samples and 149 normal
samples. This holds a power of 99%.
For the statistical analyses, differences in average methylation levels

between tumor and normal adjacent samples within one tissue type were
tested using the Mann-Whitney U test (two-sided). The performance of the
IMPRESS and ddPCR was expressed in terms of specificity and sensitivity.
Differences in sensitivity and specificity were tested for significance using a
test for differences in proportions. To measure the repeatability of our
technique, the Pearson correlation between normalized counts from two
separate sequencing runs calculated. In addition, a Bland-Altman analysis
was performed using the normalized counts of two independent runs.
For all analyses, p-values lower than 0.05 were considered significant. All

statistical tests were performed in R (version 4.0.2) or GraphPad Prism
(version 10.0.0) for macOS, GraphPad Software, Boston, Massachusetts
USA, www.graphpad.com.
Normalized counts for each smMIP were calculated as follows:

Normalized count smMIP i in sample A ¼ Absolute count i in AP
reference smMIP counts in A

Sensitivity, specificity, accuracy and balanced accuracy are calculated as
follows with the following abbreviations: true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN).

Sensitivity ¼ TP
TP þ FN

Specificity ¼ TN
TN þ FP

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

Balanced accuracy ¼ Sensitivity þ Specificity
2

Ethical approval
This study was conducted in accordance with Good Clinical Practice
guidelines and the Declaration of Helsinki. Fresh frozen tissue samples
used in this study were previously collected in the Biobank of the Antwerp
University Hospital and retrospectively used in this study. According to
Article 20 of the Belgian Law on the procurement and use of human
corporal material intended for human application or scientific research of
19 December 2008, patients provide consent for the use of their bodily
material in research when consenting to an invasive procedure. As such,
no additional consent was needed for the use of these retrospective
samples. For prospectively collected blood samples, informed consent was
given by each subject. The study protocol and any modifications thereof
were approved by the UZA ethical committee (Ref. N°20/02/056 and Ref.
N°41/14/426) before experimental analyses were performed.

RESULTS
Development of novel DNA methylation detection technique
IMPRESS technique. The first part of this study was the
development and optimization of the IMPRESS technique, which
combines MSREs and smMIPs [15, 24, 25]. This unique combina-
tion allows the use of smMIPs for DNA methylation detection,
which has never been described before. An overview of the
technique is given in Fig. 1.Ta
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The first step was a combined digestion of the DNA with four
MSREs (HpaII, HpyCH4IV, AciI and HinP1I). Each MSRE recognition
site has a CpG site in the middle (C^CGG, A^CGT, C^CGC and
G^CGC). The efficiency of the four MSREs is optimal in the same
buffer and at the same temperature, and together they cover 39%
of all CpG sites in the human genome [14]. During digestion,
unmethylated recognition sites were cleaved. Methylated CpG
sites blocked the restriction enzymes which resulted in uncut CpG
sites. As a control, undigested samples were also included and
treated similarly, except for the omission of MSREs. As a control for
digestion, lambda phage DNA was spiked into each sample. After
the combined digest, all recognition sites in the lambda DNA were
expected to be cleaved, as lambda DNA is not methylated.
In the next step, CpG sites of interest were targeted by a pool of

phosphorylated smMIPs. A smMIP is a DNA fragment containing a
common backbone of 30nt, single molecule tags of 5nt on each
side, and two binding arms of circa 20nt (Fig. 1). Unmethylated
CpG regions were cleaved by the MSREs and therefore smMIP
capturing was not possible in these regions. Methylated CpG
regions remained intact and were captured by the hybridization of
the binding arms of the smMIPs. In addition, regions without
enzyme recognition sites were targeted as a reference. Elongation
and ligation of the smMIP created a circular DNA fragment. In all
capture reactions, some smMIPs were ligated without a 50nt
insert. These so-called empty smMIPs were eventually removed

through purification and through filtering during data analysis.
After the capture reaction, an exonuclease treatment was

performed, in which all linear fragments such as unbound smMIPs
or original DNA strands were degraded, and only circular
fragments remained intact. These fragments were amplified by
PCR. Finally, all fragments were purified and sequenced by NGS.
In addition to our wet lab protocol, an accompanying

bioinformatics analysis pipeline was developed to process the
NGS data. Using a Snakemake workflow, all sequencing reads were
deconvoluted per sample and mapped to the genome. Next, all
duplicates were removed. After quality filtering, reads per smMIP
location were counted for each sample and a counts table was
obtained.

Efficiency of the methylation-sensitive restriction enzymes. To test
the cutting efficiency of the combination of the four selected
MSREs, both a methylated and an unmethylated lambda DNA
sample were digested by the MSREs. Subsequently, the digested
samples were amplified in triplicate with primer pairs hybridizing
around one of the MSRE recognition sites in a qPCR experiment.
Undigested, (un)methylated lambda DNA samples were also
included as positive controls.
According to the Lightcycler software (Roche), the undigested

samples had an average Ct value of 5.0 and the unmethylated
digested sample had an average Ct value of 22.0 (ΔCt=17) (Fig. 2).
This means that merely 1 in 217= ~ 131,000 DNA molecules were
not digested. Thus, the remaining fraction of undigested DNA in
unmethylated samples is negligible. The methylated digested
sample had an average Ct value of 5.7, indicating that methylation
effectively blocks digestion by the MSREs.

Repeatability. To evaluate the repeatability of the IMPRESS
technique, two independent experiments were performed on a
set of 29 fresh frozen tissue samples (Table 1). We used the
smMIPs designed for the multi-cancer biomarker panel (see
Development of a multi-cancer biomarker panel). The two libraries
were sequenced together, and data processing was performed.
The normalized counts (calculation in Statistics and calculations)
of the same samples for both experiments were compared, and a
Pearson correlation coefficient of r= 0.99 was obtained (Fig. 3a). In
the Bland-Altman analysis, the bias was 0.007502 ± 0.03066 with
95% limits of agreement of −0.05259 and 0.06759 (Fig. 3b). These
results prove the high repeatability of the IMPRESS technique.

Development of a multi-cancer biomarker panel
The second part of this study was the development of a multi-
cancer diagnostic biomarker panel, which could subsequently be
validated by the IMPRESS technique to develop a multi-cancer
detection assay. For the selection of potential biomarkers, online
available methylation data of eight of the most lethal cancer types
worldwide and healthy blood samples were used (Table 1). In
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total, 1791 hypermethylated CpG sites (Fig. 4) were selected based
on the following parameters: (a) a minimum average methylation
level of 0.5 in the tumor tissue samples of eight cancer types, (b) a
maximum average methylation level of 0.3 for the normal
adjacent tissue and blood, and (c) the presence of at least one
restriction site for one of the four used MSREs. On average, four
recognition sites were interrogated per region. Normal blood
datasets were included for biomarker selection, resulting in a
biomarker panel that is suitable for liquid biopsies as well.
Secondly, a total of 2739 reference sites were selected from the
human genome. These reference sites were included to estimate
the effective total amount of input DNA and allow normalization
of the results per sample. Reference sites were chosen to (a) not
contain a recognition site of the selected MSREs (1000 sites), or (b)
not contain a CpG site (1,739 sites). These regions are never
cleaved by the enzymes and are therefore always captured by the
smMIPs. Lastly, both CpG (10 per MSRE site) and reference sites
(15 without recognition site, 15 without CpG site) were selected in
lambda phage DNA. Lambda phage DNA is never methylated and
is used as an internal control for the enzymatic digestion reaction.
For these 1791 hypermethylated CpG sites, 2739 reference sites,

and 70 lambda phage DNA sites, smMIPs were designed for both
DNA strands (Fig. 4). After the removal of smMIPs covering SNPs
and/or repeats, 2331 CpG smMIPs and 600 reference smMIPs (300
without recognition site and 300 without CpG site) were selected
for human targets. For lambda phage DNA, 12 CpG smMIPs (3 per
restriction site) and 10 reference smMIPs (5 without recognition
site and 5 without CpG site) were selected.

Multi-cancer detection assay
Data exploration. To evaluate the biomarker panel and the
IMPRESS technique, we performed an experiment on fresh frozen
tissue and blood samples (Fig. 4). First, we prepared a sequencing
library with 111 tumor samples, 114 normal adjacent tissue
samples and 35 whole blood samples (Table 1) targeted by a total
of 2953 smMIPs (2331 CpG smMIPs, 600 reference smMIPs and 22

lambda smMIPs). Capillary electrophoresis analysis of this library is
shown in Supplementary Fig. 2. Sequencing was performed on the
Illumina NextSeq system and NGS parameters are shown in
Supplementary Table 2. After the first analysis of the raw data,
read counts for all smMIPs for each sample were obtained. Based
on the characterization experiments, a minimum read count
threshold of 5000 counts per sample was determined, and all
samples met this requirement (Supplementary Table 3).
The efficiency of the MSRE digest was verified in each sample by

the spiked-in lambda phage DNA as an internal control (calcula-
tions in part 2.1.3). A threshold of 5% non-digested fragments was
set. One out of 260 samples exceeded this threshold (9.7%) and
was removed from further analyses. On average, only 1.3% of the
DNA in each sample was not properly digested (Supplementary
Figure 1). In total, 19 underperforming CpG smMIPs with no
counts in any sample were removed from the analysis. Finally,
normalization was executed per sample to correct for the amount
of input DNA. Hereto, we divided the counts of every CpG smMIP
by the sum of all reference smMIP counts, resulting in a final
dataset with counts of 2,312 CpG targeting smMIPs for
259 samples. The normalized count is assumed to be higher in
samples methylated for our targets (i.e., tumor samples) and lower
in samples unmethylated for our targets (i.e. normal samples). An
overview of the sample distribution of the sum of the normalized
CpG smMIP counts is given in Fig. 5. Tumor samples showed
higher and more spread normalized counts, while normal samples
showed lower and more similar normalized counts. However, the
normalized counts for normal colorectal tissue are higher than all
other normal tissues and overlap with some of cancer types. The
blood samples had the lowest normalized counts compared to all
other tissue types. Within each tissue type, the average normal-
ized counts of tumor and normal samples were significantly
different.

Selection of the most efficient and discriminating smMIPs. To
determine the final biomarker panel for the classifier model, the

smMIP selection to build classifier model
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Fig. 4 Overview of the main analyses for the multi-cancer detection assay. The two main experiments are shown: One experiment by
IMPRESS and one experiment by digital droplet PCR (ddPCR). The first experiment is used for the determination of the final classifier model.
The second experiment validates the IMPRESS technology by the gold standard ddPCR technique. Created with BioRender.com.
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most efficient and discriminating smMIPs were selected. Using the
final dataset with counts of 2,312 CpG targeting smMIPs for 259
samples, a single smMIP linear discriminant analysis (LDA) model
was constructed using 5-fold cross validation and the mean cross
validated AUC (cvAUC) was calculated for each smMIP. ROC curves
for three selected smMIPs are shown in Fig. 6 (left panels). These
smMIPs target the same regions as the ddPCR validation assays
(see 3.4.2). The distribution of cvAUC is shown in Supplementary
Fig. 4. We used a cvAUC cutoff of 0.8 for selecting the best
differentiating smMIPs, and a cutoff of 1,000 cumulative counts
per smMIP in all undigested samples as a measure for smMIP
efficiency. This resulted in a set of 511 CpG smMIPs. Additionally,
for CpG sites targeted by multiple smMIPs (i.e. double-tiled), the
best performing one was selected. The 511 remaining CpG
smMIPs targeted 358 CpG sites. Of these sites, 153 were targeted
double-tiled. The difference in cvAUC between smMIPs targeting
the same CpG site was less than 0.05 for 84.3% of the multi-
targeted CpG sites. The correlation coefficient of these cvAUC
values is r= 0.668 (Supplementary Figure 5). Finally, 358 single-
tiled CpG smMIPs remained for further analyses (Supplementary
Table 4). For the reference smMIPs, only the efficient smMIPs were
selected, with the same count cutoff of 1,000 cumulative counts in
all undigested samples. As a result, 529 reference smMIPs were
selected.

Classifier model. The remaining 358 CpG smMIP models were
then combined into a single model by first selecting the cutoff for
every single model for which the sum of false positives and false
negatives was the lowest. Then all predictions were combined,
and the cutoff was selected based on the highest overall accuracy,
which was achieved when 114 single smMIP models agreed on a
tumor classification. This final model has a sensitivity of 0.95, a
specificity of 0.91, and an accuracy of 0.92 (Table 2).
In addition, we investigated the results per cancer type (Table 2).

Accuracy per cancer type ranged from 0.88 to 1, with the
exception of colorectal cancer, which performed significantly
worse than all other types (accuracy of 0.47). Sensitivity was very
high overall, with only 6 false negatives among liver, pancreas and
head and neck tumors. False positives are attributed to five tumor

types, with colorectal tumors among the highest (specificity 0.10),
which skews the overall specificity. However, when exclusively
investigating colorectal samples, the cutoff can be adjusted to 282
single smMIP models to obtain a classification accuracy of 1.
Interestingly, healthy blood samples never showed up as false
positives.

Validation with digital droplet PCR
We validated the IMPRESS technique with the gold standard
ddPCR technology. Therefore, we selected three target sites of our
final classifier model (see 3.3.3). For this selection, we started with
the top 200 best performing smMIP targets, for which we aimed to
design ddPCR primers and probes. Finally, we selected the three
targets with the best performing primers and probes for
the development and optimization of two ddPCR assays (see
Supplementary Methods). The assays were executed on 103 tumor
samples and 109 normal adjacent tissue samples that were used
for the IMPRESS experiments (Fig. 4). For each of the targets, a
single model was built to evaluate the sensitivity and the
specificity. In Fig. 6 the ROC curves for the three target sites are
shown both for the IMPRESS assay and for the ddPCR assay.
The sensitivity and specificity of the single ddPCR models were

compared with those from the single smMIP models for the three
targets. Figure 6 and Supplementary Table 4 show that only
minimal differences between both technologies are found,
admittedly favoring the IMPRESS technique. These results indicate
that the IMPRESS technique performs at least equally well as the
gold standard ddPCR.

Potential for liquid biopsies
To test whether the technique holds potential for use as a
multiplex tool for methylation detection in liquid biopsy samples,
several characterization experiments were performed. The results
are described below and are shown in Fig. 7.

Determination of the amount of input DNA. To test the possibility
of lowering the DNA input amount of the IMPRESS technique, we
tested different reaction conditions for the MSRE digestion and
the smMIP sequencing. The results indicate the feasibility of
lowering input amount to 5 ng and 10 ng DNA for the digest and
the smMIP sequencing, respectively (lowest amounts tested)
(Supplementary Methods and Supplementary Figure 6).

Cell free DNA. To further explore the lower limits of input DNA
and the feasibility of the technique to study liquid biopsies, four
cell-free DNA (cfDNA) samples were tested with 5 ng of input.
Besides MSRE digested samples, undigested samples were also
included as positive controls. The samples were captured by
smMIPs and sequenced according to our protocol. The sequen-
cing results were analyzed using our in-house developed pipeline
and read counts were obtained for the 2331 CpG smMIPs and 600
reference smMIPs. To normalize for the DNA input, the sum of CpG
smMIP counts was divided by the sum of reference smMIP counts
for each sample. Results showed that digested samples had an
average normalized count of 0.24 while the undigested samples
had an average normalized count of 2.24 (Fig. 7a). This indicates
that the samples were effectively digested by the MSREs as well as
efficiently captured by the smMIPs and sequenced.
To mimic the presence of circulating tumor DNA (ctDNA) in

cfDNA, DNA from three tumor cell lines was sheared into
fragments of 150–500 bp and spiked into cfDNA samples in
different percentages between 0% and 100%. The calculated
percentages based on the normalized counts (see Supplementary
methods) were closely correlated to their expected value, with a
correlation coefficient r of 0.97, 0.99 and 0.98 for the three
different cell lines (Fig. 7b). This indicates the applicability of the
technique for the quantification of methylation. The calculated
percentage of 20% spiked-in DNA (lowest percentage tested)
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ranged from 21% to 30%, while those of 0% spiked-in DNA (only
cfDNA) ranged from 6% to 13%. This means samples with 20%
spike-in of cell line DNA had on average a threefold higher
percentage of normalized counts than cfDNA samples without
spike-in.

Limit of methylation detection. To determine the limit of
methylation detection, we spiked human fully methylated DNA
into non-methylated DNA in different percentages between 0%
and 12.5% in triplicate. All samples were digested, captured by
smMIPs and sequenced following our protocol. The samples with
a low methylation level only resulted in background signal. We
calculated the limit of blank (LOB) and limit of detection (LOD)
following the formulas described by Armbruster et al. [26] to
determine the lowest detectable methylation level. The LOD
corresponds to a methylation level of 4.04% (Fig. 7c). For samples
with methylation levels above 4.04%, the measurements will
exceed the background signal.

DISCUSSION
In this study, we successfully created a novel methylation
detection technique by combining MSRE digestion with smMIPs.
Although digestion of DNA with MSREs has been described since
1978 [27] and has been standard practice for the past decades,
smMIPs were only described less than ten years ago [15]. To date,
the use of smMIPs was limited to the detection of DNA mutations,
microsatellite instability, gene amplifications and differential
expression (cDNA) [16, 24, 28]. In this regard, smMIPs have
frequently been proposed for use in routine diagnostics for cancer
detection in recent years. In concordance with our results, several
studies have demonstrated the high sensitivity of smMIP-
sequencing, as well as the possibility to use limited amounts of
material [16, 17, 28–31]. smMIPs have also demonstrated their
utility in other research fields [32, 33]. smMIP panels can be easily
adapted towards their intended application, which is extremely
useful with the rapid expansion of molecular markers in all fields
[16]. Taken together, this places our novel technique as a
promising and widely applicable epigenetic tool for the detection
and follow-up of many diseases.
We developed a multi-cancer methylation biomarker panel, and

we validated this panel by combining it with the IMPRESS
technique, resulting in a robust multi-cancer detection assay. With
an overall cross-validated accuracy of 0.92, this final model
performed very well in classifying samples. The overview of the
sample distribution (Fig. 5) shows a spread of tumor samples for
most of the tumor types, while normal tissues are grouped closer
together. There was no correlation between tumor cell percentage
and normalized counts (data not shown). The spread of tumor

samples is most noticeable for head and neck, and liver tumors.
The former is a heterogeneous group of locations and cell types,
which can account for this spread. For liver tumors, there is only
one cell type, but there was a lot of variety in the patient group.
Clinical records show that some of the samples originated from
patients with alcohol abuse and/or patients with hepatitis. This
could potentially have affected the methylation levels in the liver.
Most false positive predictions are the result of normal adjacent

colorectal tissue samples having a higher methylation for our
targets than the other normal tissue groups (Fig. 5). This could be
due to field cancerization, which causes (epi)genetic alterations in
histologically normal-looking tissue adjacent to cancerous lesions
[34]. Although this phenomenon has also been described in other
cancer types, this is not clearly seen in our analyses. In Fig. 5,
colorectal samples have the highest methylation rate, both for
normal samples and tumor samples. As a result, perfect separation
of tumor and normal samples is observed when taking only
colorectal samples into account, while many normal colorectal
samples are false positives in the overall model. This suggests that
colorectal cancer might not be a suitable addition to a multi-
cancer assay utilizing this biomarker panel, despite its potential
differentiating ability within colorectal samples.
While the final model does not make a correct prediction for all

samples (0.95 sensitivity and 0.91 specificity), for every sample there
are single-smMIP models that do. This emphasizes the exceptional
performance of our biomarker panel and confirms the presence of
significant methylation differences across all samples.
This model was specifically constructed to include many CpG

sites because we intend to use this assay in liquid biopsies in the
future. There, only a limited amount of ctDNA is available in the
cfDNA, especially in early tumor stages. This ctDNA is fragmented
and chances are small that the whole tumoral genome is covered
in a liquid biopsy sample.
With respect to liquid biopsies, we performed some additional

characterization experiments to thoroughly test the amount of
input DNA for the IMPRESS technique. For the digestion reaction,
the performance of the MSREs remained equal when lowering the
input amount to 5 ng. We also showed that an input of 10 ng can
discriminate between tumor cell lines and healthy blood samples
equally well as 20 ng and 100 ng (Supplementary Figure 6).
Moreover, the use of 5 ng cfDNA has been successfully tested in
our lab (Fig. 7a). This is extremely important in a liquid biopsies
context, where often even less than 5 ng is available. To mimic
cfDNA, we experimented with sheared tumor cell line DNA that
was spiked into normal cfDNA samples. The results demonstrated
the possibility to discriminate 20% spiked-in tumor DNA from
normal cfDNA. The high correlation coefficients indicated the
quantification potential of the technique. However, the counts
value is always a relative number and not an exact methylation

Table 2. Metrics of our classifier model.

Multi-
cancer

Lung Colorectal Liver Breast Pancreas Head and
neck

Esophagus Prostate Blood

True positives 104 21 7 11 10 19 11 10 15 -

True negatives 135 22 1 10 8 22 5 5 24 35

False positives 14 0 9 1 1 2 0 0 1 0

False negatives 6 1 0 2 0 1 2 0 0 -

Sensitivity 0.945 0.955 1.000 0.846 1.000 0.950 0.846 1.000 1.000 -

Specificity 0.906 1.000 0.100 0.909 0.889 0.917 1.000 1.000 0.960 1.000

Accuracy 0.923 0.977 0.471 0.875 0.947 0.932 0.889 1.000 0.975 -

Balanced
accuracy

0.926 0.977 0.550 0.878 0.945 0.934 0.923 1.000 0.980 -

The multi-cancer column combines the results of all tumor types.
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percentage, as the majority of the targeted regions contain several
CpG sites. In theory, we only sequence targets in which all the CpG
sites are methylated and as such, we measure the count of all fully
methylated fragments. Finally, we did a limit of detection
experiment. As there was some background signal, we deter-
mined the methylation value for which the measurement
exceeded the background signal. This limit of methylation
detection was 4.04%. A potential explanation for the background
signal is incomplete MSRE digestion. We know that a small
percentage of the DNA is not properly digested. This is estimated
to be 1.3% by the internal control. In addition, commercially
purchased 0% methylated DNA was used, although previous data
(not shown) indicate that a small degree of methylation is still
present.
In recent years, multi-cancer detection (MCD) has gained more

interest. The IMPRESS technique combined with the multi-cancer
biomarker panel shows great potential in this field. Most MCD
tests are described for liquid biopsies, which is yet to be done for
IMPRESS. Nevertheless, preliminary results show that IMPRESS
could become an important and novel addition to the liquid
biopsy field.
Cohen et al. described their CancerSEEK test in 2018. They

detected both circulating proteins and mutations in cfDNA of
eight different cancer types [35]. Although mutations and
proteins have often been the first choice when developing
biomarker assays, it has become clear that methylation
signatures possess some major advantages compared to the
former. Methylation occurs very early in cancer development,
possibly before actual neoplastic transformation, which renders

it especially interesting for early diagnosis. Given that no prior
knowledge is needed of the tumor molecular profile, methyla-
tion biomarkers are more universal than mutation markers. Since
methylation-based tests can be used off the shelf, they are much
faster and cheaper to use [36]. The utility of methylation
signatures was for example demonstrated by Chen et al., who
published the PanSeer test in 2020. The results obtained with
their blood-based test show that cancer is detected in 95% of
asymptomatic patients for five cancer types. Although further
investigation is needed to confirm the results, they claim that
several cancers can already be detected four years prior to
diagnosis, based on methylation biomarkers[37], which is very
promising for early cancer detection. Others have worked on the
use of methylation signatures for screening and early detection
as well. The biotechnology company GRAIL finances several
clinical trials where the use of their Galleri® test is evaluated.
These trials were started based on publications by Liu et al. and
Klein et al., who first tested and independently validated the
performance of targeted methylation analysis of cfDNA for
multiple cancer types [36, 38]. Both for the PanSeer as well as for
the first experiments with the Galleri® test, bisulfite-based
technologies were used [36–38]. We believe that the sensitivity
in cfDNA could be increased with our novel technique using
MSREs, as we avoid bisulfite conversion, which is a harsh
chemical treatment of DNA.
The use of enzymes has recently been gaining more attention.

A prime example is the recent development of the Enzymatic
Methyl sequencing (EM-seq) technology. This EM-seq technol-
ogy is for example used for targeted methyl-seq in combination
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with the Twist Human Methylome Panel (Twist Bioscience). In a
limited number of publications, EM-seq is described to be
superior to WGBS for sensitivity, repeatability and base
composition [9, 11, 12]. However, EM-seq requires a large
investment for library preparation [9]. TAPS was also recently
described in a few papers [10, 39, 40]. However, there are no
external publications comparing TAPS to other state of the art
technologies in literature. Considering smMIPs, Arts et al. already
described the low cost of smMIP-sequencing, which does not
drastically increase with MSRE treatment. Therefore, our novel
technique is more cost-effective compared to current bisulfite-
free alternatives on the market [24].
The application of the IMPRESS technique lies in targeted

biomarker sequencing. This type of targeted sequencing technol-
ogy is becoming more popular, and our technique can become an
important new platform to be used in this area. IMPRESS enables
the multiplexing of a considerable number of target sites,
extending to thousands, in contrast to methodologies like droplet
digital PCR (ddPCR), which offer limited multiplexing capabilities.
Additionally, compared to genome-wide techniques, our
approach presents a distinct advantage in terms of cost-
effectiveness. By selectively analyzing predefined sites of interest,
we substantially decrease sequencing costs. The technique is
easily implementable in standard equipped laboratories. We use
widely available reagents, and the protocols are straightforward,
making the technique easily applicable for research groups with
access to NGS infrastructure. The hands-on time from DNA
extraction to sequencing is approximately 4.5 h, which is
comparable with EM-seq [41]. Moreover, by sequencing the insert
fragment of interest, we can detect and correct for nonspecific
hybridization. Notably, our technique boasts high throughput,
facilitating the simultaneous analysis of 9x384 samples within a
single sequencing run. Depending on the desired coverage per
sample, a larger sequencing kit may be required. Furthermore, this
technique has the potential for integrating different genetic
information into one assay, for example, mutation and CNV
analysis. smMIPs could be designed for any target type, taking
the MSRE recognition sites into account, and combined into a
single assay. As such, one single experiment could provide the
information that is now only obtained after several analyses.
There are a few limitations in this study. The most important

one is that we have not yet tested liquid biopsies from cancer
patients. However, our results show that blood samples register
very low normalized counts by the IMPRESS technique for our
biomarker panel. In addition, we can efficiently use 5 ng of cfDNA
as input, and there is a limit of methylation detection of 4.04%. In
the future, more optimization steps will be executed, and liquid
biopsy samples from cancer patients will be tested.
Another limitation is that only 39% of the CpG sites of the

methylome are located in recognition sites of the enzymes used
in our assay [14]. This could easily be solved by using other or
additional restriction enzymes, through which a large majority of
CpG sites in the genome can be made available for analysis.
Furthermore, we could not include tissue from fully healthy

persons, instead, we used normal tissue collected at a distance
from the tumor. Clinical records do not show the exact distance. In
the literature, it has been described that tissue samples adjacent
to a tumor might have molecular alterations (e.g. field canceriza-
tion) but look microscopically like normal tissue [42, 43]. This
might result in a more difficult discrimination between normal and
cancer tissue by our classifier model.
Lastly, we did not yet include cancer type-specific smMIPs for

the detection of tissue-of-origin. Classification of cancers of
unknown primary is an important aspect of cancer diagnostics
and is increasingly described in the literature. It can already be
determined based on in silico analyses [44] and therefore,
including TOO determination in our assay is an important step

for the future. Analyses have been performed in our research
group to determine tissue-specific methylation patterns, for which
smMIPs will be designed and included in the future. This will not
cause any problems as we have already demonstrated the very
high multiplex capacity of our technique.
In conclusion, we developed a novel method for sensitive

detection of DNA methylation, we developed a multi-cancer
methylation biomarker panel, and we combined those two into a
multi-cancer detection assay. Our characterization experiments
already demonstrate the application of this technique and the
biomarker panel for low amounts of fragmented DNA. The
combination of multiple markers covered by the smMIPs allows
for the high sensitivity that is essential in liquid biopsies and early
cancer detection applications.
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