Skip to main content
. 2024 Sep 30;15:232. doi: 10.1186/s13244-024-01804-7

Table 2.

Univariate analysis of radiomics features of PVAT among non-growing and growing AAA

Variables Non-growing AAA Growing AAA p-value
Shape features
 Surface area to volume ratio 0.63 ± 0.14 0.70 ± 0.13 0.04
Grey-level co-occurrence matrix features
 Correlation 0.53 ± 0.07 0.50 ± 0.05 0.04
 Informational measure of correlation 1 0.14 ± 0.03 0.13 ± 0.02 0.03
 Inverse variance 0.46 ± 0.02 0.47 ± 0.02 0.04
 Maximal correlation coefficient 0.63 ± 0.11 0.57 ± 0.08 0.04
 Maximum probability 0.22 ± 0.04 0.20 ± 0.04 0.03
Grey-level dependence matrix features
 Dependence non-uniformity normalised 0.05 ± 0.01 0.06 ± 0.005 0.02
 Dependence variance 29.88 ± 4.51 26.96 ± 4.13 0.01
 Large dependence emphasis 141.17 ± 27.97 124.55 ± 22.08 0.02
Grey-level run length matrix features
 Long run emphasis 4.76 ± 1.00 4.20 ± 0.78 0.01
 Run length non-uniformity normalised 0.50 ± 0.05 0.52 ± 0.04 0.01
 Run percentage 0.64 ± 0.04 0.66 ± 0.03 0.01
 Run variance 1.80 ± 0.53 1.50 ± 0.42 0.01
 Short run emphasis 0.72 ± 0.04 0.74 ± 0.03 0.04

PVAT perivascular adipose tissue, AAA abdominal aortic aneurysm