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1  Introduction

As we move forward managing COVID-19 alongside 
other communicable diseases, following the World Health 
Organization declaring the end of the global health emer-
gency in May 2023 [1]. Widespread public health measures 
have now ended [2] as the immediate threat of COVID-19 
has faded following a successful global vaccination effort 
and the occurrence of less severe variants circulating [3] 
although the aftermath of the pandemic including loss of 
life, and economic and societal upheaval endures and will 
do so for many years to come. COVID-19 is now considered 
endemic in humans alongside seasonal influenza and respi-
ratory diseases such as respiratory syncytial virus (RSV), 
human metapneumovirus (HMPV) and others, while the 
risk of more virulent or vaccine-avoidant variants of SARS-
CoV-2 or other viruses causing severe outbreaks in the 
future remains [4]. 

In recent years, with the increasing effects of climate 
change and other environmental and land use changes, the 
threat of emerging infectious diseases (EIDs) from spillover 
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The last decade has seen major advances and growth in internet-based surveillance for infectious diseases through 
advanced computational capacity, growing adoption of smart devices, increased availability of Artificial Intelligence (AI), 
alongside environmental pressures including climate and land use change contributing to increased threat and spread of 
pandemics and emerging infectious diseases. With the increasing burden of infectious diseases and the COVID-19 pan-
demic, the need for developing novel technologies and integrating internet-based data approaches to improving infectious 
disease surveillance is greater than ever. In this systematic review, we searched the scientific literature for research on 
internet-based or digital surveillance for influenza, dengue fever and COVID-19 from 2013 to 2023. We have provided an 
overview of recent internet-based surveillance research for emerging infectious diseases (EID), describing changes in the 
digital landscape, with recommendations for future research directed at public health policymakers, healthcare providers, 
and government health departments to enhance traditional surveillance for detecting, monitoring, reporting, and respond-
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events has grown amidst warnings from experts [5]. Over 
the last decade [6], recent epidemics/pandemics caused by 
zoonotic spillover events have occurred [7], Avian influenza 
(H7N9) (2013-17), Swine flu (H1N1) (2009-10) alongside 
increasing occurrence and range of mosquito-borne diseases 
including Japanese Encephalitis virus (Australia 2022), 
Zika virus (2015–2016), and Dengue fever (continuous and 
ongoing in many countries) [8]. The emergence of the novel 
coronavirus in December 2019 leading to the COVID-19 
pandemic has led to a renewed interest in disease surveil-
lance and outbreak tracking with the need for integrative 
digital early warning and surveillance systems more pro-
nounced than ever [9]. 

The COVID-19 pandemic caused significant disruption 
to global health, with widespread impacts on existing pub-
lic health measures, vaccination and prevention programs 
and community surveillance programs for many diseases. 
In particular, pandemic response measures for the control 
of COVID-19 including non-pharmaceutical interven-
tions (i.e., hygiene measures, masking, social distancing) 
[10] and travel restrictions (border closures and movement 
restrictions) contributed to decreased influenza circulation 
and other respiratory disease activity during this time [11–
13]. These actions have resulted in the global disappearance 
of Influenza B/Yamagata strain [14], and altered patterns 
of dengue outbreaks in non-endemic countries [15], even 
as overall annual incidence and distribution have increased 
[16]. 

While research interest in digital surveillance has 
remained high over the previous decade, particularly for 
influenza outbreak detection [17], the COVID-19 pandemic 
was an unprecedented opportunity to employ methods in 
real-time to detect outbreaks, forecast epidemic growth and 
tailor effective and locally relevant public health messag-
ing [18, 19]. Internet-based or digital surveillance systems 
[20], use online data sources to detect digital signals for 
potential indicators or early signs of infectious disease out-
breaks based on online information seeking and trends in 
user behaviours from a range of social media and search 
engine sources. Predictive modelling and forecasting use 
digital signals to estimate the risk of an outbreak, rate of 
transmission or forecast the spread of disease. By analysing 
large volumes of online data in real-time, predictive models 
can be used to identify high-risk clusters, trends and early 
warning signs often preceding traditional surveillance meth-
ods for disease detection (i.e., laboratory-confirmed testing 
or diagnosis in a healthcare setting) and can provide early 
warning of outbreaks prior to these health system alerts, and 
are complementary to event-based electronic surveillance 
systems such as GPHIN and ProMED [21]. Over the last 
decade, there have been many changes in the online ecosys-
tem, with emerging social media platforms, changing user 

behaviours, and the emergence of AI chatbots integrated 
into search engines and social media, blurring the lines 
between sources of information. With the emergence of and 
widespread implementation of Artificial Intelligence (AI), 
as described in recent reviews including Brownstein et al. 
[22], and Macintyre et al. [23], the potential applications in 
the digital space continue to grow, alongside increased com-
puting capability and signal detection to improve the speed 
and capacity of existing EWS and surveillance, enabling 
earlier detection to manage serious epidemics and pandem-
ics in the future [24]. 

1.1  Objectives

In this review, we evaluated studies from the past decade 
(2013–2024) to capture changing trends in digital surveil-
lance for influenza, COVID-19 and dengue, as representative 
of broader respiratory and vector-borne diseases with high 
levels of surveillance. We describe the changes over time in 
digital surveillance, and forecasting for selected infectious 
diseases since our previous review [20], the advantages and 
limitations of using digital surveillance data, and advances 
in AI and digital technology. Due to the increasing range of 
social media and search engine data sources and increased 
integration of multiple data sources the included studies 
have been grouped by disease of interest rather than data 
source, these are summarized in Table S2. Finally, we make 
recommendations for future research into digital surveil-
lance for useful early warning systems (EWS).

2  Methods

Using a systematic review approach, we searched PubMed 
and Scopus databases for peer-reviewed original research 
publications between July 1, 2013, and March 31, 2024, 
according to PRISMA 2020 guidelines (See Supplementary 
Table S1) [25]. Additional relevant publications were identi-
fied from references.

2.1  Search Strategy and Selection Criteria

We performed searches with the following terms: “den-
gue” OR COVID-19 OR “influenza” AND “early warning”, 
“Google”, “Google Trends”, “internet”, “search engine”, 
“social media”, “Twitter”, “Facebook”, OR “digital disease 
detection”, “infodemiology”, “infoveillance”, “real-time 
disease surveillance”, and “syndromic surveillance”. To be 
eligible for inclusion, studies needed to be peer-reviewed 
and describe the use of internet-based data for surveil-
lance, predictive modelling, forecasting or early warning 
for influenza, COVID-19, or dengue. Studies were excluded 
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if they were not original research, did not include digital 
data sources (social media or search trends), or did not dis-
cuss influenza, COVID-19, or dengue. Mathematical and 
computational modelling studies using simulated data were 
excluded. Due to the evolving nature of AI in its current 
form and limited access to user data, no studies were pub-
lished that the authors are aware of at this time. The data for 
full-text screened articles were extracted and summarized 
See Supplementary Table S2. Due to varying study designs, 
methodologies, models, statistical analysis and potential 
confounders, no meta-analysis was performed.

3  Results

A total of 1040 studies were identified through the literature 
search and reference checking, and 131 duplicate records 
were excluded (Fig.  1). The remaining 909 papers were 
assessed for eligibility and screened by checking the title 
and abstract for relevance. Subsequently, 828 papers were 
excluded, leaving 81 papers for full-text review where refer-
ences were checked for additional relevant papers, 43 full-
text papers were excluded.

Of the 39 selected studies, 17 focused on COVID-19, 15 
studies described influenza or influenza-like illnesses (ILI), 
and 7 studies described dengue fever (Fig. 2). Digital data 
sources included Google Search Trends and Community 
Mobility, Apple Mobility, Baidu Search (the main search 
engine used in China), Bing Search, Wikipedia, and social 
media including X (formerly known as Twitter), Weibo and 

Fig. 1  Flowchart with article 
selection
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Baidu search (β = 0.008, p < 0.001) and Weibo (β = 0.002, 
p = 0.036) for search terms “H7N9”, “avian influenza”, 
and “live poultry” to explore the association with weekly 
laboratory-confirmed H7N9 cases. Yang et al. [37] devel-
oped deep learning prediction models for ILI, reporting that 
integrating both climate factors and search trends enhanced 
model accuracy. Additionally, Google and Baidu search 
queries were used to forecast seasonal influenza outbreaks 
cross-hemisphere for the United States, United Kingdom, 
and China using Australian Influenza surveillance data. 
The resulting SARIMA models demonstrated high cor-
relation coefficients (China = 0.96, the US = 0.97, the 
UK = 0.96, p < 0.01) and low Maximum Absolute Percent 
Error (MAPE) values (China = 16.76, the US = 96.97, the 
UK = 125.42), significantly improving predictive accuracy 
over case-only models [38]. 

Beyond search queries, text mining of symptom key-
words on social media enabled near real-time syndromic 
surveillance for flu/unwell in Australia [39], identifying 
changes in frequency counts compared to public health noti-
fications. Natural Language Processing was used to detect 
avian influenza notifications, by processing Tweets, 75% of 
official outbreak notifications (i.e. farm records, outbreaks 
and individual cases) were identified from the sample data-
set, and a third of these detections were identified earlier 
than official notifications [40]. Using Twitter/X geolocation 
data, Nagar et al [41]. used tweet vector maps to identify 
clusters of ILI in New York providing insight into spatio-
temporal patterns of ILI. Another study [42] found there 
was a strong temporal association with flu-related Tweet 

WeChat in China (equivalent to Twitter/X and WhatsApp). 
Models and methodologies varied ranging from simple 
correlation (Pearson’s or Spearman’s Rank Correlation) 
and Time Series Cross Correlation to spatial and temporal 
models including Poisson linear regression, generalized 
linear models, predictive models including SARIMA and 
ARIMA, LSTM, Prophet and SVR through to machine 
learning, NLP and neural networks. All these models have 
varying strengths and limitations, certain models may be 
more appropriate in specific situations, particularly when 
considering computational complexity for low resource 
settings, further discussion on modelling for EWS can be 
found in Haque et al. [26]. 

3.1  Disease Specific Internet-Based Surveillance

3.1.1  Influenza and ILI Surveillance

This review identified research using search queries for sur-
veillance and early warning for influenza/ILI from Mexico 
[27], the United States [28, 29], Australia [30], Hong Kong 
[31], South Africa [32], and a multi-country study [33]. 
These studies reported Google search results with climate 
and weather variables included in models enhanced predic-
tive accuracy and emerging outbreaks and seasonal varia-
tions for ILIs and respiratory diseases were detected weeks 
earlier compared with conventional surveillance [34]. Stud-
ies from China utilised Baidu search, Guo et al. proposed 
a surveillance framework based on significant keywords 
[35], Chen et al. [36] used seasonal SARIMA models with 

Fig. 2  Number of selected articles by year of publication and disease of interest from PubMed and Web of Science using digital big data for early 
warning, surveillance and predictive modelling (Data up to March 2024)
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DF up to 8 weeks in advance, with the strongest association 
at lag week 1 [50]. 

3.1.3  COVID-19 Pandemic

From the initial detection of COVID-19 in December 2019 
to the present, the novel pandemic situation received sig-
nificant attention and resulted in extensive epidemiological 
research. Early research concentrated on the initial outbreak 
and the first wave in China, using search queries (Baidu) 
and social media/microblogs (Weibo, WeChat and Douyin/
TikTok) to detect early signals of the emerging pandemic as 
people searched for the latest news and updates on escalat-
ing outbreaks [51]. 

Studies using Baidu search data found search terms asso-
ciated with COVID-19 valuable for early outbreak warning. 
Tu et al. reported an average “search to confirmed interval” 
of 19.8 days, with optimal time lags for search queries at 
0–4 days [52]. Li et al. reported significant lags at 4–7 days 
preceding conventional surveillance identification, with 
early warning signs up to 20 days earlier than lockdown pol-
icy implementation [53]. Integrating multiple data sources 
enhanced predictive accuracy and early warning capabili-
ties. Gong et al. compared search interest and microblogs 
for daily new cases, new deaths and outbreak severity, 
revealing advanced trends between lags of 3–16 days for 
both Baidu and Weibo [54]. Baidu and Weibo showed a 
significant positive correlation with cases and deaths, with 
Baidu search having a stronger correlation.

Weibo keyword trends for symptoms and diagnosis were 
useful for detecting early signals of COVID-19. Guo et al. 
used Weibo data to improve the predictive accuracy of early 
epidemic models and Shen et al. used social media data to 
accurately identify early digital disease signals [55, 56]. Li 
et al. combined diverse internet data, including online news 
articles, microblogs and search trends to improve model 
forecasting accuracy providing early warning signals for 
outbreaks 2 to 6 days in advance [57]. Gao et al. utilized 
search queries and video-based social media Douyin key-
word trends to predict asymptomatic or undetected trans-
mission [58], capturing data from younger subpopulations.

As COVID-19 spread globally, international travel 
restrictions and public health measures were implemented 
following the WHO pandemic declaration [59]. The num-
ber of studies using digital signals grew quickly, with an 
English study using Bing search to detect early warning of 
COVID-19 [60], and X data to explore symptom keywords 
for early detection of COVID-19 in Europe and globally 
[61, 62]. During this time, there was an increasing use of 
multisource digital data, combining search trends and social 
media data. Twitter/X data proved useful for providing early 
warning of outbreaks in studies from the United States and 

activity for healthcare seeking behaviour preceding official 
reports of influenza cases by up to one month, and identified 
hotspots related to public spaces.

3.1.2  Dengue Fever (DF) Surveillance

While there were fewer studies on internet-based surveil-
lance for DF compared with Influenza and COVID-19, the 
magnitude of dengue outbreaks significantly increased in 
2023, compared with the previous periods from 2018 to 
2022. This may potentially be attributable to public health 
interventions during the pandemic response impacting 
transmission and testing availability and research focus on 
COVID-19 over this time [43]. These studies covered China, 
Brazil, the Philippines, and Indonesia. In China, researchers 
used Baidu Search trends for dengue to determine thresh-
olds to detect outbreaks. Weekly search indexes showed a 
positive correlation with incidence rates, and a lagged mov-
ing average of 1–3 weeks greater than 99.3, indicated there 
was an 89.28% chance of an outbreak in Guangzhou. In 
Zhongshan, weekly BSI at 1–5 weeks was over 68.1 with the 
chance of an outbreak increased by 100% [44]. In Guang-
dong province, Guo and co-authors developed a forecasting 
model using Baidu search queries and weather factors, with 
support vector regression (SVR) model consistently demon-
strating lower prediction error rates [45]. 

Liu et al. reported increased predictive accuracy of 
models using weather, Baidu search and demographics in 
Guangzhou city [46]. Li et al [47]. found that dengue-related 
searches at a lag of one week were positively correlated 
with DF occurrence. The model including search indexes 
had greater predictive capability (ICC:0.94, RMSE:59.86) 
compared to the model without search data (ICC:0.72, 
RMSE:203.29). Ho et al. explored temporal and spatial 
patterns of dengue incidence in Manila, Philippines, using 
Google Dengue Trends (GDT). Weekly values of DF inci-
dence were moderately associated (r = 0.405) with weekly 
GDT values, while spatial analysis was not significant 
(r = 0.223, p = 0.283) [48]. In Indonesia, Husnayain et al. 
reported a significant correlation with Google search terms 
for dengue symptom, dengue and dbd (dengue abbrevia-
tion) showing the highest correlation one week preceding; 
r = 0.937, 0.931 and 0.921 respectively (p ≤ 0.05) [49]. 

Finally, Marques-Toledo and co-authors explored multi-
ple digital data sources for estimating and forecasting DF at 
the city level in Brazil. They accessed Google Search, X and 
Wikipedia to explore real-time health-seeking behaviour 
for DF. The authors reported a positive linear association 
with Tweets (r = 0.87, p < 0.001), Google Trends (r = 0.92, 
p < 0.001), and Wikipedia (r = 0.71, p < 0.01). Tweets 
selected by city were used to develop nowcasting and fore-
casting models, demonstrating temporally association with 
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tools, ProMED-mail suffers from funding shortages reduc-
ing the availability and capacity for detecting future out-
breaks. Another well-known digital surveillance system, the 
Global Public Health Intelligence Network (GPHIN) [72], 
an event-based EWS developed by the Canadian Govern-
ment to collect global and multilingual media reports to 
create alerts in the wake of SARS. Having successfully 
detected early signs of outbreaks including the Middle East 
Respiratory Syndrome (MERS), influenza pandemics, and 
Zika virus, leading up to the COVID-19 detection, GPHIN 
alerts were increasingly limited by outdated system capa-
bilities and downgraded reporting and response.

4.2  Emerging Trends in Digital Surveillance from 
the COVID-19 Pandemic

In the last decade, research consistently supports the use of 
internet-based data for infectious disease surveillance, with 
continued research using these methods, though more recent 
studies often utilised multi-source digital data i.e., both 
search queries and social media and an expanded range of 
sources. This approach offers advantages in capturing infor-
mation from difficult-to-reach sources beyond the medical 
system, including individuals seeking testing, accessing 
health resources, or being hospitalized. Digital surveillance 
excels at detecting early signals from recently exposed 
individuals, those with milder disease states, and younger 
demographics with limited access to regular healthcare or 
a lower inclination to seek care. Digital data provides near 
real-time availability, facilitates discussions about symp-
toms or keywords with geotagging functionality, and links 
online behaviours to unique user accounts and online net-
works, potentially reflecting real-world connections like 
family, friends, and co-workers.

Over the last decade, there have been many techno-
logical advances affecting internet usage and digital health 
care seeking. Levels of internet access in the home have 
increased alongside significant growth in smartphone usage 
since 2013, numbers of which are higher in advanced econ-
omies compared to regions with higher rates of poverty (see 
Fig. 3). Along with the proliferation of smart devices or the 
Internet of Things (IoT), GPS-enabled and WIFI-connected 
wearables and mobile devices are widespread and able to 
collect biometric, audio and location data in real-time poten-
tially able to diagnose IDs in pre-symptomatic infected 
individuals through biosignals or distinctive COVID-19 or 
pneumonia coughing [73].

4.2.1  Changing Digital Landscape and Data Availability

Along with the continuous 24-hour news cycle and inun-
dation of health information over a range of platforms; the 

Canada [63–65]. Symptom-based keyword searches for 
both Google search and X were temporally correlated, with 
Google searches for “cough,” “runny nose,” and “anos-
mia” correlated with COVID-19 incidence and peaked 9, 
11, and 3 days earlier than the incidence peak, respectively. 
This improved the predictive accuracy of LSTM forecast-
ing models (MSE = 124.78, R2 = 0.88) [66]. In California, 
Habibdoust et al used search volumes for “Fever,” “COVID 
Testing,” “Signs of COVID,” “COVID Treatment,” and 
”Shortness of Breath” to predict daily incidence comparing 
GMDH-type neural network and LSTM models over three 
time periods [67], where models with queries improved pre-
dictive accuracy by as much as 22.6%, 21%, and 37.3% in 
NRMSE across the different study periods.

In our study from Victoria, Australia, we used Google 
Mobility as a proxy for population movement and non-
pharmaceutical interventions on COVID-19 transmission, 
integrating search trends and weather factors to forecast epi-
demic growth [68]. The multivariable weather and mobil-
ity model demonstrated the highest predictive accuracy 
(R2 = 0.948, RMSE = 137.57, MAPE = 21.26) compared 
to cases only (R2 = 0.942, RMSE = 141.59, MAPE 23.19). 
Finally, Kogan et al. developed an integrated EWS for 
detecting ILI globally, monitoring COVID-19 activity using 
multiple digital sources including Google search trends, 
Apple Mobility, Twitter/X API with ILINet (CDC sentinel 
system) and UpToDate physician search trends and smart 
thermometer data and found digital proxies for COVID-
19 preceded detection through normal clinical surveillance 
[69]. 

4  Discussion

4.1  Brief Overview of EWS

Within the broader scheme of global outbreak detection and 
pandemic preparedness, timely disease detection and noti-
fications are limited by aging infrastructure and reduced 
public health funding leading to downgrading or discontinu-
ation of existing early warning surveillance systems. In the 
lead-up to the detection of atypical pneumonia and official 
reports to the WHO in December 2019–January 2020, the 
US dissolved the National Security Council (NSC) Direc-
torate for Global Health Security and Biodefense in May 
2018, responsible for monitoring global health risk and 
coordinating government response [70]. As the oldest digi-
tal surveillance system, ProMED-mail has provided reliable 
event-based surveillance for over 25 years [71], and suc-
cessfully detected the first alert of COVID-19 in December 
2019. Despite playing an important role in global public 
health surveillance, as with many pandemic preparedness 
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between digital signals from search engines and posting 
about symptoms on social media are increasingly blurring.

4.2.2  Integrating AI Technology and Advances in Digital 
Data

Emerging technological advances are accelerating hand 
in hand with changing usage trends, with potential uses in 
future research and applications in healthcare quickly evolv-
ing [78]. The growth of AI and machine learning algorithms 
and increased computing capability allow for processing 
more complex and larger data sets, faster data mining, and 
improved capacity for predictive models. With increased 
capability to deal with high volumes of text-based commu-
nications including surveillance reports and news coverage 
for identifying and classifying infectious disease signals and 
detecting epidemics [79]. 

Evaluating the usefulness of digital data sources is essen-
tial where some sources may contain a greater amount of 
noise and, positive signals can overwhelm the capacity of 
a system to recognise and respond to events in real-time. 
Ensuring data fidelity where data is captured accurately, 
with precision and timeliness, is essential [80]. This can be 
achieved through a range of methods including real-time 
monitoring and constant sampling to improve the detection 
of data signals and show complex patterns and changes over 
time can improve signal detection accuracy and are less 
prone to noise and artifacts in the data [81]. Methodologi-
cal approaches including multisource data and improved 
machine learning and neural networks can improve data 
fidelity, alongside real-world reporting and test results to 
validate and fine-tune models for best results, and is an 
important consideration in future research.

way users consume and interact with media for healthcare-
seeking and news has shifted over the last decade. Digital 
usage trends since the early 2020 pandemic lockdowns con-
tributed to changing online behaviours and increased digital 
communication. While social media is a useful medium for 
targeted public health messaging where users are increas-
ingly accessing news and health advice, information from 
official sources appears alongside content containing mis-
information and disinformation [74]. With the emergence 
of AI, unlimited access by LLM for training data has led 
to restrictions on data from many of the previously freely 
available data sources. Over time the scope and availability 
of aggregate data sets have changed, these changes will sig-
nificantly impact digital research, affecting applications in 
short- and long-term trend analysis for pandemic detection, 
disaster responses during social unrest, and extreme weather 
events [75]. 

While the potential applications for AI are evolving 
and changing rapidly, recent changes to integrate AI chat-
bots into search engines and social media i.e., Microsoft 
Bing and Google search engines powered by AI chatbots 
and Meta AI and X-AI on social media platforms are shap-
ing online user behaviour [76], meaning search results and 
social media algorithms are trained on user behaviour aim-
ing to provide faster, more accurate and relevant answers 
based on user profiles and behaviour across the online eco-
system [77]. Using AI trained on user-provided information 
across the digital landscape to answer user queries rather 
than directing traffic to websites will contribute to changes 
in the consumption of social media as a news source and 
information seeking, where users are increasingly search-
ing and accessing news and information from social media 
sources, i.e., health and government information releases 
and media coverage in real time, meaning the distinction 

Fig. 3  Individuals using the Internet per 100 population (Left) Active mobile-broadband subscriptions per 100 population (Right) (Data not avail-
able before 2015) by global development status. (Data Source: https://datahub.itu.int/). (Source: ITU)
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or vector-borne diseases [88], has the potential to enhance 
predictive modelling and early warning for outbreaks [89]. 

Using existing surveillance and wastewater monitoring, 
mHealth applications with AI chatbots, internet-based data 
and socio-environmental factors can be useful for the timely 
detection and notification of emerging outbreaks, identify-
ing spatiotemporal variations in outbreaks or hot spots or 
high-risk clusters. An EWS would facilitate timely public 
health notifications to the public and assist health staff and 
policymakers with broader applications in detecting mass 
gatherings and emergencies (See Fig.  4). Some related 
examples of this include EpiWatch [79], an AI-based sys-
tem providing early warnings of epidemics on a global scale 
based on open data, and HealthMap (https://www.health-
map.org), using natural language processing and Bayesian 
machine-learning classification trained to identify relevant 
information from digital data and PROMED-mail [71] 
alerts to identify infectious disease outbreaks.

4.4  Advantages and Limitations of Digital 
Surveillance

Digital data for infectious disease surveillance remains an 
important area of research. This approach offers advantages 
in capturing information from hard-to-reach sources outside 
the medical system i.e., people seeking testing, accessing 
health resources or hospitalised. Digital surveillance is use-
ful for detecting signals from recently exposed individu-
als, those experiencing milder disease states, and younger 

How users are interacting with AI chatbots, as an alter-
native to internet searches for self-diagnosis, may have the 
potential to transform healthcare, by capturing the health-
care-seeking actions of internet users to detect early warn-
ing signals [82]. Applications include the use of chatbots 
trained on medical research for answering consumer health 
questions as natural language alternatives to conventional 
keyword-based search methods for healthcare seeking [83, 
84], as mHealth (mobile health) applications with virtual 
educator interface for providing health information [85], 
diagnostic purposes and assessing illness severity.

4.3  Developing Integrative Multisource Early 
Warning Systems

Developing integrated multisource EWS holds significant 
potential for improving the early detection of disease sig-
nals and identifying emerging outbreaks, particularly for 
climate and weather-sensitive vector-borne or respiratory 
diseases. This is particularly important in regions experi-
encing increasing climate stress, at greater risk of spillover 
events, and where the population may experience high levels 
of poverty or limited access to healthcare infrastructure. Our 
previous research has emphasised the usefulness of incor-
porating socio-environmental factors including weather 
with internet-based data across a range of diseases [86, 
87]. Additionally, utilizing Geographical Information Sys-
tems (GIS) at high spatial resolution for climate-sensitive 

Fig. 4  Integrating multisource internet-based data with existing surveillance methods using AI and machine learning for improving early warning 
of infectious diseases
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1.	 Development of novel dynamic GIS-based spatiotem-
poral models to link infectious diseases with internet-
based data and social-environmental data.

2.	 Integration of internet-based models with social-
environmental data to produce infectious disease sur-
veillance systems able to better identify vulnerable/
susceptible communities over space and time.

3.	 Developing innovative mHealth applications with a 
chatbot and virtual educator interfaces.

4.	 Expand the knowledge of big data utility in infectious 
disease early warning systems and development of 
functional infectious disease early warning systems, 
minimising noise and ensuring real signals are identi-
fied early and accurately without overwhelming exist-
ing system capacity.

5  Conclusion

With increasing internet access globally, the world is more 
connected digitally than ever before as the availability and 
range of digital data sources available for disease surveil-
lance have grown. Our increased interconnectedness and 
globalisation as COVID-19 swept through the world under-
lined the importance of consistent global surveillance, for 
the detection and reporting of such events. The next 10 
years will be a challenging period, and it remains to be seen 
if we can indeed achieve the holy grail of being able to fore-
cast existing or newly emerging diseases with accuracy and 
early enough to allow measures to be enacted that will miti-
gate or halt these outbreaks.
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demographics with limited access to regular healthcare or 
less likely to seek care. Digital data has near real-time avail-
ability, enables discussion of symptoms or keywords with 
geotagging functionality, and connects online behaviours to 
unique user accounts and networks, potentially representing 
real-world connections with family, friends, and co-workers 
[90]. However, the digital divide among social media users 
based on age may lead to under-detection for disease sur-
veillance purposes.

While internet-based surveillance holds significant poten-
tial for EWS, there are limitations to consider. Although 
internet access has improved, coverage remains limited in 
LMIC, reducing early signal detections for infectious dis-
ease surveillance, particularly in rural or remote areas [91]. 
Post-COVID changes in laboratory diagnostics and respi-
ratory disease surveillance may impact the future utility of 
these methods. Spatial resolution is limited [92], with lim-
ited availability of city-level data. Data sets are often dis-
continued or monetised, measurement indexes may have 
accuracy issues over time, potentially impacting research 
reproducibility across various geospatial contexts [93]. 

As Internet usage has increased, so has the availability 
of digital data. However, interpreting signals and predic-
tive values with appropriate sensitivity and specificity, and 
distinguishing true signals from false positives or noise, 
remains a significant challenge. Moreover, as internet usage 
has increased and data linkage raises ethical concerns about 
accessing and using personal health information [94, 95] 
with potential risks for user safety and privacy, care must 
be taken to ensure patient and individual privacy and per-
sonal data are protected. Finally, the current generation of 
AI chatbots have a tendency to ‘hallucinate,’ [96] provid-
ing incorrect or nonsensical responses which is particularly 
dangerous in healthcare scenarios.

4.5  Future Research

Future research must focus on a better understanding of dig-
ital health signals and digital surveillance, the growing use 
of AI, and how these are changing the online environment 
in terms of healthcare information-seeking and collation 
of web-available data. Finally, an informative and useful 
EWS based on an integrated framework including conven-
tional surveillance data, crowdsourced surveillance, and a 
wide range of internet-based surveillance sources to build 
the capacity of existing surveillance for the future requires 
global cooperation for information and resource sharing.

In summary, for improving infectious disease early warn-
ing surveillance we recommend:
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