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Time and dose selective glucose
metabolism for glucose homeostasis and
energy conversion in the liver
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Hepatic glucose metabolism serves dual purposes: maintaining glucose homeostasis and converting
glucose into energy sources; however, the underlying mechanisms are unclear. We quantitatively
measured liver metabolites, gene expression, and phosphorylated insulin signalingmolecules in mice
orally administered varying doses of glucose, and constructed a transomic network. Rapid
phosphorylation of insulin signalingmolecules in response toglucose intakewasobserved, in contrast
to the more gradual changes in gene expression. Glycolytic and gluconeogenic metabolites and
expressionof genes involved inglucosemetabolism includingglucose-6-phosphate,G6pc, andPck1,
demonstrated high glucose dose sensitivity. Whereas, glucokinase expression and glycogen
accumulation showed low glucose dose sensitivity. During the early phase after glucose intake,
metabolic flux was geared towards glucose homeostasis regardless of the glucose dose but shifted
towards energy conversion during the late phase at higher glucose doses. Our research provides a
comprehensive view of time- and dose-dependent selective glucose metabolism.

Glucose is an important constituent of tissues and blood. Most cells utilize
glucose as the principal and indispensable energy source1. Blood glucose
level is tightly controlled in humans and mammals within a narrow range;
this tight regulation is referred to as blood glucose homeostasis. Impaired
glucose homeostasis can cause serious disorders including seizure or loss of
consciousness in the case of hypoglycemia and diabetic ketoacidosis in the
case of hyperglycemia2. The liver plays a key role in maintaining blood
glucose homeostasis during both fasting and postprandial periods3–6.
Hepatic glucose production is responsible for∼90% of endogenous glucose
production during fasting7. After dietary glucose intake, the liver buffers the
blood glucose level to maintain glucose homeostasis and converts glucose
into other energy sources such as glycogen, amino acids, and lipids8. These

regulations collectively prevent either hypoglycemia or hyperglycemia and
lead to the storage of energy in the body for future utilization.

Oral glucose administration, also knownas the glucose challenge test, is
clinically used to detect the efficiency of the body to dispose of glucose after
an oral glucose load or meal9,10. Glucose administration triggers the release
of insulin from the pancreas and a series of complex biological reactions to
maintain glucose homeostasis throughmultiple organs including the liver11.
One of the key mechanisms that regulate postprandial liver metabolism is
the insulin signaling pathway. Insulin is an important hormone that triggers
multiple metabolic changes in various organs including the liver. Insulin
binds to the insulin receptor and causes tyrosine phosphorylation of
intracellular substrate proteins known as insulin-responsive substrates

1Department ofComputational Biology andMedical Sciences,GraduateSchool of Frontier Sciences, TheUniversity of Tokyo,Chiba, Japan. 2Department ofOmics
and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan. 3Laboratory for Integrated Cellular Systems, RIKEN
Center for IntegrativeMedical Sciences, Yokohama, Kanagawa, Japan. 4Department of Biological Sciences, Graduate School of Science, TheUniversity of Tokyo,
Tokyo, Japan. 5Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan. 6Molecular Genetics
Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo, Japan. 7Data Science Center, Nara Institute of Science and Technology,
Ikoma, Japan. 8Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. 9Metabolism and
Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan. 10Faculty of Agriculture, Ryukoku University,
Otsu, Shiga, Japan. 11Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan. 12Human Biology-Microbiome-QuantumResearch Center
(WPI-Bio2Q), Keio University, 108-8345 Tokyo, Japan. 13These authors contributed equally: Yifei Pan, Atsushi Hatano. e-mail: skuroda@bs.s.u-tokyo.ac.jp

npj Systems Biology and Applications |          (2024) 10:107 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-024-00437-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-024-00437-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-024-00437-2&domain=pdf
http://orcid.org/0000-0002-6468-0127
http://orcid.org/0000-0002-6468-0127
http://orcid.org/0000-0002-6468-0127
http://orcid.org/0000-0002-6468-0127
http://orcid.org/0000-0002-6468-0127
http://orcid.org/0000-0001-9502-2509
http://orcid.org/0000-0001-9502-2509
http://orcid.org/0000-0001-9502-2509
http://orcid.org/0000-0001-9502-2509
http://orcid.org/0000-0001-9502-2509
http://orcid.org/0000-0001-5059-8299
http://orcid.org/0000-0001-5059-8299
http://orcid.org/0000-0001-5059-8299
http://orcid.org/0000-0001-5059-8299
http://orcid.org/0000-0001-5059-8299
mailto:skuroda@bs.s.u-tokyo.ac.jp
www.nature.com/npjsba


(IRS). IRS bind to signaling molecules including phosphoinositide 3-kinase
and thus activates insulin signaling12. The activation of insulin signaling in
the liver promotes glycogenesis and suppresses gluconeogenesis through the
activation of AKT and extracellular signal-regulated kinase (ERK)13,14.
Insulin signaling also regulates protein abundance through transcriptional
or translational regulation, including the expression of glucokinase (Gck)
and phosphoenolpyruvate carboxykinase 1 (Pck1)15,16. In addition, altered
metabolite concentrations after glucose administration also influence
multiple metabolic pathways including glycolysis, gluconeogenesis, glyco-
genesis, amino acid metabolism, and lipid metabolism by regulating the
abundance of substrates and products and the allosteric regulation of
metabolic enzymes14,16–18.

Glucose metabolism involves the coordination of multiple processes
including gene expression, protein synthesis, and substrate regulation.
However, few studies have investigated the dose-dependent features of
dynamic glucose metabolism including glucose dose sensitivity and
response time after glucose administration in vivo across various types of
metabolic regulation19,20. In this study, we investigated these features using
transomic analysis.Wepreviously proposed transomic analysis to construct
a global regulatory network for metabolism with multi-omics datasets21–23.
We used this method to investigate the dose-dependent regulatory meta-
bolism after treatment of cell models with insulin and the construction of
differential networks betweenobese andhealthy subjects24–29.Wepreviously
showed that the stimulation of FAO cells derived from rat hepatoma with
different doses of insulin led to selective responses with different insulin
sensitivities including the regulation of induced and basal insulin stimula-
tion across multiple omics24,30. Metabolic responses across omics after glu-
cose administration have also been observed in mice25.

Here, we constructed a transomic network of glucose metabolism
by integrating western blotting, transcriptomic, and metabolomics
data of the mouse liver following multiple doses of glucose adminis-
tration. We identified time- and dose-dependent glucose-responsive
molecules.We found features of different types of metabolism in terms
of their glucose responsiveness and proposed high glucose dose sen-
sitivity as a potential indicator of glucose homeostasis, and low glucose
dose sensitivity as a potential indicator of energy conversion. We also
investigated the dose-dependent features of dynamic flux using a
kinetic model of the transomic network. We examined the glucose
responsiveness of fluxes and provided a potential mechanism for time-
and dose-dependent glucose conversion. We found that metabolic flux
was geared towards glucose homeostasis regardless of the glucose dose.
However, during the late phase (60–240 min), the flux shifted towards
energy conversion, but only at higher glucose doses. Thus, our kinetic
transomic analysis provides insights into the possible dynamic
mechanism of central carbohydrate metabolism in the liver.

Results
Overview of the study approach
We fasted 10-week-old wild-type (WT) mice for 16 h and orally adminis-
tered five different glucose doses (0.25, 0.5, 1, 2, 4 g/kg) or water. We col-
lected the livers and blood samples at 0, 20, 60, 120, and 240min after
administration. We measured metabolite abundance (Metabolomics data,
Supplementary Data 1), gene expression (Transcriptomic data, Supple-
mentary Data 2), and total protein and phosphorylation levels of insulin
signaling molecules (Phosphorylation data, Supplementary Data 3) in the
liver samples; and blood insulin and glucose levels in the blood samples
(Fig. 1A).

We performed transomic analysis of dose-dependent glucose-
responsive metabolism in the liver in seven successive steps (Fig. 1B).
Among the measured omics data, we selected all molecules with at least
three replicates for each time point in the analysis (Step 1). We excluded
outliers of everymolecule using the boxplotmethod31 (Supplementary Data
4). We defined molecules that responded both temporally and indepen-
dently towater after glucose administrationas glucose-responsivemolecules
(see “Methods” section). We identified the dose-dependent glucose-

responsive molecules and their responsive patterns using the cleaned data
(Supplementary Fig. 1; Step 2).

To understand the characteristics of the dose-dependent glucose-
responsive molecules, we calculated the indicators of dose sensitivity and
response time to glucose administration (Step 3; Supplementary Fig. 1).We
evaluated the dose-dependent glucose responsiveness of molecules using
two indicators: the dose required to achieve 50% of the maximal effect
(ED50) and the half time to maximum response (T1/2). We also performed
cluster and classification analyses of dose-dependent glucose-responsive
metabolites and genes in terms of their time courses and glucose-
responsiveness indicators (Step 4). We deduced the transcription factors
(TFs) and allosteric modulation that regulate those glucose-responsive
molecules using information from databases including Kyoto Encyclopedia
of Genes and Genomes (KEGG) and BRaunschweig ENzyme DAtabase
(BRENDA) (Step 5)32–34. Using the dose-dependent glucose-responsive
metabolites, genes, phosphorylation level of insulin signalingmolecules, TF,
and allosteric regulation, we constructed a glucose-responsive transomic
network of the mouse liver (Step 6).

Lastly, we conducted kinetic modeling of central carbohydrate meta-
bolism of the transomic network and simulated the dynamic flux in the
model after glucose administration (Step 7). Based on the simulated
dynamic flux, we calculated the glucose responsiveness of the flux and dose
sensitivities of their glucose responsiveness tomodelingparameters.Wealso
investigated whether glucose dose sensitivity can be an indicator of how
glucose-responsive molecules and reactions are involved in energy con-
version after glucose administration. Analyses of the glucose responsiveness
of the simulated flux revealed time- and dose-dependent hepatic glucose
metabolism formaintenance of glucosehomeostasis and energy conversion.

Identification of dose-dependent glucose-responsive
metabolites
To construct the transomics network, we first identified dose-dependent
glucose-responsive metabolites and calculate their glucose responsiveness
for understanding the static responsive features of metabolome to glucose
administration. After glucose administration, both the blood glucose and
blood insulin level after all doses of glucose administration peaked at 20min
and decreased at about 120min. By contrast, glycogen level gradually
increased in the liver until at least 120min (Fig. 2A).

Among the 510 quantified liver metabolites, 119 had at least three
replicates at each time point andwere used for further quantitative analyses.
Among the 119 metabolites, 50 were identified as dose-dependent glucose-
responsivemetabolites (Table 1, Supplementary Fig. 2, SupplementaryData
5) including 17 increased, 32 decreased metabolites and the liver glycogen.

To classify thesemetabolites, we grouped them into four clusters using
hierarchical cluster analysis, based on which had the largest silhouette value
(Fig. 2B, Supplementary Figs. 2, 3). Metabolites in Clusters 1 and 2 both
decreased until 20 or 60min after glucose administration. After glucose
administration, metabolites in Cluster 2 quickly recovered to water dose
level after 120min, whereas those in Cluster 1 did not (Fig. 2C).Metabolites
inCluster 1 include branched-chain amino acids (BCAAs, leucine [Leu] and
valine [Val]), 3-hydroxybutyrate, and uridine diphosphate (UDP)-glucose
while theCluster 2 includedmetabolites such as citrulline andGlutamic acid
[Glu] (Fig. 2D). The average time course of metabolites in Cluster 3
increased until 20min after glucose administration, subsequently decreas-
ing to the water dose level. These metabolites included citrate and succinate
in the tricarboxylic acid cycle (TCA) cycle, as well as fructose 2,6-bispho-
sphate (F2,6BP) and lactate. Metabolites in Cluster 4 increased after glucose
administration but did not recover. These metabolites included glucose-6-
phosphate (G6P) in glycolysis; related molecules such as glucose
1-phosphate (G1P) and fructose 6-phosphate (F6P); glycogen in glyco-
genesis; fumarate andmalate in the TCA cycle; and the amino acids alanine
(Ala), histidine (His), and aspartate (Asp). Clusters 1 had lowmedian ED50

and T1/2 values of less than 1 g/kg and 20min, respectively, suggesting that
metabolites in this cluster generally have high glucose dose sensitivity and a
rapid response time to glucose administration. Cluster 2, on the hand, had
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Fig. 1 | Overview of the transomic analysis and kinetic modeling of dose-
dependent glucose-responsive metabolism in the liver. AWe used WT mice and
collected the liver and blood samples from 16 h-fasted mice after six doses of oral
glucose administration. We measured the time series data of signaling molecules,

gene expression, metabolites in the liver, glucose, and insulin in the blood. We used
n = 5 as themouse replicates for each time point in the analysis.BThe seven steps for
the analysis of time- and dose-dependent glucose metabolism in the transomic
network in the liver.
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highermedian ED50 despite similarmedian T1/2 as Cluster 1.Metabolites in
Cluster 3 responded to glucose with a slightly higher median T1/2 of
20.11min, median ED50 of 0.91 g/kg. By contrast, metabolites in Cluster 4
had higher values of bothmedian ED50 and T1/2 of 1.03 g/kg and 47.14min,
respectively, compared with other clusters. Median ED50 and T1/2 were
significantly different among clusters (P < 0.05)35, indicating that glucose
dose-responsive metabolites were characterized by different glucose dose
sensitivities and response times (Fig. 2E). Metabolites in Clusters 1 had
relatively higher glucose dose sensitivities to glucose administration than
those in the other clusters, indicating that BCAAs, and 3-hydroxybutyrate
have higher glucose dose sensitivities than the other metabolites. Metabo-
lites in Cluster 4 had relatively slower response times with metabolites

related with the central carbohydrate metabolism (Fig. 2F). These results
indicate that the time course of metabolites after glucose administration
reflects the features of their metabolic regulation. Metabolites, especially
those related to carbohydrate and amino acid metabolism, responded dif-
ferently in terms of their patterns and dose sensitivities to glucose
administration.

Identification of dose-dependent glucose-responsive genes and
insulin signaling molecules
As the transomics network also require layers for gene expressions and
signaling molecules, we further identified dose-dependent glucose-
responsive genes and insulin signalingmolecules and calculate their glucose

Fig. 2 | Identification of dose-dependent glucose-responsive metabolites. A Time
courses of blood insulin, blood glucose, and liver glycogen.BHierarchical clustering
of the time courses of dose-dependent glucose-responsive metabolites from the
livers after administration of six doses of oral glucose (n = 5mice per dose at all time
points). Six-time courses for each metabolite were z-score normalized. Metabolites
were ordered by hierarchical clustering using Euclidean distance and Ward’s
method (Table 1, Supplementary Data 5). The colors of the dendrogram represent
the clustering results (Red: Cluster 1, Blue: Cluster 2, Cyan: Cluster 3, Gray: Cluster
4). The color bar at the right of the heatmap represents their responsive patterns
(Blue: Decrease, Red: Increase). C z-score average of time courses of metabolites in
each cluster and the median ED50 and T1/2 of these clusters. This panel shared the
same legend as Fig. 2A. D Examples of the time course of dose-dependent glucose-
responsive metabolites in each cluster. The colors of the boxes show the clustering

result of highlighted dose-dependent glucose-responsive metabolites. Data are
shown as the mean and standard error of the mean (SEM) of five mice per dose.
Metabolites are abbreviated as follows: Val valine, Leu leucine, Ile isoleucine, Trp
tryptophan, Ser serine, F2,6P fructose 2,6-bisphosphate, G6P glucose-6-phosphate,
F6P fructose 6-phosphate, G1P glucose 1-phosphate, Ala alanine. This panel shared
the same legend as Fig. 2A. E Boxplot of ED50 (Top) and T1/2 (Bottom) for each
cluster. Kruskal–Wallis tests for ED50 and T1/2 in each cluster were conducted to
investigate whether there was statistical significance. The P values of Kruskal–Wallis
tests are shown above the boxplot. F The dose-dependent glucose-responsive
metabolites projected onto the KEGG metabolic pathways. The directions of the
scatter marks represent their responsive patterns. The colors of the scatter marks
represent the clustering result of these metabolites. Black scatter marks represent
glucose or glycogen.
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responsiveness to glucose administration. The expression of 55,487 genes or
transcriptswasmeasured, ofwhich 6958had at least three replicates for each
time point and thus were used for further quantitative analyses. We iden-
tified 67 genes including 30 increased, 36 decreased, and 1 ambiguous
(Rnf125) gene (Table 2, Supplementary Fig. 4, Supplementary Data 6). Our
previous study identified2420 (1369 increased and1151decreased) glucose-
responsive genes in WT mice25. However, these results did not exclude the
effects of water administration, and the pairwise test was used to compare
the 0min control with each time point rather than analysis of variance,
which can detect a temporal change in the temporal dynamics of genes.
Hence, the method we used in this study can better detect the dose-
dependent features of glucose-responsive molecules.

We grouped all of the identified glucose-responsive genes into
five clusters using hierarchical cluster analysis, based on which had
the largest silhouette value (Table 2, Fig. 3A, Supplementary Fig. 5).
The expression of genes in Clusters 1 and 2 decreased after glucose
administration until 60 min, whereas that in Cluster 2 gradually
returned to water levels at 60 or 120 min after glucose administration
(Fig. 3B). Cluster 2 included G6pase and Pck1 genes encoding PEPCK
and G6Pase, respectively, which are important enzymes for gluco-
neogenesis (Fig. 3C). Clusters 3 and 5 consisted of increased meta-
bolic enzyme genes such as Gck, but genes in Cluster 5 peaked at
60 min and recovered to equilibrium at 240 min after glucose
administration. Cluster 4 included genes that significantly responded
to particular doses, which were mainly those that were false positively
identified as glucose-responsive with large responses to low glucose
doses (0.25 and 0.5 g/kg) alone (Supplementary Data 5). All clusters
of genes except Cluster 4 had a similar median ED50 and T1/2 of about

1 g/kg and 40 min, respectively, suggesting that this hierarchical
cluster analysis grouped genes according to their response trends and
overall temporal patterns rather than their indices of glucose dose
sensitivities and response times after glucose administration
(Fig. 3A, B).

Using dose-dependent analysis, we also found several dose-
dependent glucose-responsive genes, including some that have not
been described in studies on glucose metabolism36–38 (Fig. 3C). For
example, arrestin domain-containing 3 (Arrdc3) in cluster 5, which is
a member of the α-arrestin family, is an important regulator of insulin
action and glucose metabolism in the liver36. Other identified dose-
dependent glucose-responsive genes included glutamic-oxaloacetic
transaminase 1 and solute carrier family 25 member 47 (Slc25a47) in
cluster 1; insulin-like growth factor binding protein (Igfbp1), Slc25a25,
5′-aminolevulinate synthase 1, and major facilitator superfamily
domain-containing 2A in cluster 2; and Slc1a2, six-transmembrane
epithelial antigen of the prostate 4, glycine C-acetyltransferase, and
protein phosphatase 1 regulatory subunit 3B in cluster 5. These results
indicate that dose-dependent analysis may be a more powerful tool
than single-dose analysis to identify unknown regulators in metabo-
lism in terms of specificity. Unlike metabolites, genes in different
clusters did not show statistical significance in ED50 or T1/2 (P > 0.05;
Fig. 3D).

We alsomeasured the phosphorylation and total protein levels of 13
insulin signaling molecules (glycogen synthase [GS], GS kinase 3 beta
[GSK3β], IRS1, mammalian target of rapamycin, forkhead box protein
O1 [FOXO1], Acc, AKT, ribosomal S6 kinase [S6], cAMP-response
element-binding protein [CREB], eukaryotic translation initiation

Table 1 | Dose-dependent glucose-responsive metabolites

Name Pattern Cluster ED50 (g/kg-weight) T1/2 (min) Name Pattern Cluster ED50 (g/kg-weight) T1/2 (min)

2-Hydroxybutyrate Decrease 1 0.00 10.81 F2,6P Increase 3 3.98 23.12

3-Hydroxybutyrate Decrease 1 1.61 13.56 Lactate Increase 3 1.01 10.00

Glutarate Decrease 1 0.00 10.95 Citrate Increase 3 0.44 10.00

UDP-glucose Decrease 1 1.91 53.21 Succinate Decrease 3 1.04 34.71

Gly Decrease 1 2.07 39.29 N-Acetylglutamate Decrease 3 3.12 10.00

beta-Ala Decrease 1 0.00 10.00 Taurocholate Increase 3 1.48 10.00

3-Aminoisobutyrate Decrease 1 0.00 10.00 UDP-N-
acetylglucosamine

Increase 3 0.52 39.22

2AB Decrease 1 0.00 102.10 Urea Decrease 3 0.00 35.52

Val Decrease 1 0.16 11.38 Hypotaurine Decrease 3 2.11 17.11

Ile Decrease 1 0.24 74.79 Pipecolate Decrease 3 0.00 24.74

Leu Decrease 1 0.24 112.03 Creatine Decrease 3 0.44 177.19

Ornithine Decrease 1 0.00 10.00 Phosphorylcholine Increase 3 0.93 10.00

alpha-Aminoadipate Decrease 1 0.04 170.71 G1P Increase 4 0.68 48.49

Ru5P Decrease 2 2.80 10.00 G6P Increase 4 0.86 47.14

Sarcosine Decrease 2 0.97 25.26 F6P Increase 4 0.85 52.66

N,N-Dimethylglycine Decrease 2 4.14 10.00 Fumarate Increase 4 1.71 52.47

Hydroxyproline Decrease 2 0.00 10.00 Malate Increase 4 2.03 63.80

Glu Decrease 2 0.80 39.33 S7P Increase 4 0.99 46.99

Citrulline Decrease 2 0.73 10.00 Mucate Decrease 4 1.52 16.63

Adenosine Decrease 2 4.19 39.70 Adenylosuccinate Decrease 4 4.04 67.25

Inosine Decrease 2 0.00 30.14 GTP Increase 4 0.36 39.18

Saccharopine Decrease 2 1.99 13.39 Ala Increase 4 1.03 13.78

Ophthalmate Decrease 2 0.42 11.75 Asp Increase 4 1.41 30.36

Glucose Increase 1.26 10 His Increase 4 0.62 39.10

Glycogen Increase 4 2.15 59.19 Trp Decrease 4 0.92 31.54

Glutathione(red) Increase 4 3.98 115.26
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factor 4E, ERK, insulin receptor B) by western blotting, and quantified
them after glucose or water administration. The phosphorylation level of
insulin signaling molecules was determined by dividing their phos-
phorylation level by their total protein level. We identified nine glucose-
responsive phosphorylated insulin signaling molecules including three
with decreased phosphorylation (p-GS, p-S6, p-CREB) and six with
increased phosphorylation (p-GSK3β, p-IRS1, p-FOXO1, p-AKT, p-
ERK, p-IRB)14 (Fig. 3E, SupplementaryData 7). Thesemolecules showed
statistically significant temporal changes and response to glucose doses
in their phosphorylation level at either 120 or 240 min.Nearly all of these
signaling molecules, except p-IRS1, were rapidly phosphorylated (T1/

2 < 20 min). However, their dose sensitivity responses to glucose were
different after glucose administration. Molecules in the p-FOXO1 sig-
naling pathway including insulin, p-AKT, p-IRB, and p-FOXO1 showed
particularly lower dose sensitivity responses to glucose (ED50 > 2 g/kg),
whereas others such as p-S6 and p-GS were relatively more dose-
sensitive (ED50 < 0.5 g/kg), indicating that there were two different
phosphorylation regulatorymechanisms with different dose sensitivities
after glucose administration.

Inference of regulatory allosteric and TF regulation after glucose
administration
To clarify the regulatorymechanisms of glucose-responsivemetabolites and
genes, we determined the allosteric regulation of metabolic enzymes by the
glucose-responsive metabolites (Fig. 4A) and the TFs that regulate gene
expression (Fig. 4B, Supplementary Data 8). For allosteric regulations, we
identified anallosteric regulationwhenametabolite is served as the allosteric
regulator of an enzyme. Allosteric regulatory connections were assigned
according to the concentration of metabolites, Ki (inhibitory constant)
values, and regulatory connections from the BRaunschweig ENzyme
DAtabase (BRENDA) database(see Method)25. We also included some
important literature-curated regulations (6-phosphofructokinase,Glycogen
phosphorylase and Glycogen synthase) that are not included with quanti-
tative Ki values in the BRENDA databases. We discovered a total of 17
regulatory allosteric regulations between 14 enzymes and 10 metabolites
using a method that combined data from databases and the quantitative
calculation of experimentally measured data Some of these allosteric reg-
ulations are well-known such as the allosteric regulation of
6-phosphofructokinase by succinate and F2,6P and glutathione transferase

Table 2 | Dose-dependent glucose-responsive genes

Name Pattern Cluster ED50 (g/kg-weight) T1/2 (min) Name Pattern Cluster ED50 (g/kg-weight) T1/2 (min)

G0s2 Decrease 1 1.57 106.9 Cyp2a5 Increase 3 3.84 11.96

Slc22a5 Decrease 1 0 89.67 Slc16a10 Decrease 3 0 179.37

Slc17a8 Increase 1 4.26 37.87 Rtn4ip1 Increase 3 3.15 19.77

Id2 Decrease 1 0.72 39.58 Lpin1 Increase 3 1.94 73.11

Arhgef3 Decrease 1 4.04 14.76 Susd6 Increase 3 1.56 135.66

Cdkn1a Increase 1 3.5 38.94 Mtss1 Increase 3 4.28 39.79

Ik Decrease 1 1.06 76.97 Wdr12 Decrease 3 1.17 10

Got1 Increase 1 2 140.4 Upp2 Increase 3 0 10

Rpf1 Decrease 1 4.16 17.06 Pitpnm2 Increase 3 0.42 21

Hnrnpdl Decrease 1 0.4 38.53 Saa4 Increase 3 0.62 38.01

Cfap20 Decrease 1 4.15 10 Nrd1 Decrease 3 3.92 39.8

Rnf125 Decrease 1 Zfand2a Increase 3 1.05 88.83

Hist1h1c Decrease 1 4.12 10 Chd9 Decrease 3 0.44 120.7

Tob1 Increase 1 2.17 88.46 Saa2 Decrease 3 0.66 178.18

Arhgap29 Decrease 1 0.3 71.16 Kalrn Decrease 3 4.07 42.15

Slc25a47 Decrease 1 0.91 31.11 Saa1 Increase 3 1.96 59.01

Ndst1 ambiguous 1 0.39 16.28 Speer6-ps1 Increase 3 0 35.63

Serpinb6a Decrease 1 1.01 39.33 AY036118 Increase 3 0.29 131.35

Acot1 Decrease 1 0.1 12.78 Cela1 Increase 4 0.29 179.35

Nlrp12 Decrease 1 1.32 20.76 Amy2a5 Increase 4 0.79 10

Gm12840 Increase 1 0.51 178.52 Amy2b Increase 4 0.31 13.84

Gm45551 Decrease 1 0.19 39.31 Slc1a2 Increase 5 4.06 102.12

Hipk1 Decrease 2 1.58 19.39 Gcat Decrease 5 4.47 43.78

Wsb1 Decrease 2 2.07 178.95 Steap4 Decrease 5 1.46 55.17

Igfbp1 Decrease 2 0.17 19.94 Srek1ip1 Increase 5 1.02 39.5

Gadd45g Increase 2 0.12 150.04 Fubp1 Increase 5 0.47 10

Slc25a25 Increase 2 1.09 80.83 Eif3f Increase 5 4.07 43.66

Pck1 Decrease 2 1.02 74.06 Slco2a1 Decrease 5 0.21 10

Mfsd2a Decrease 2 0.22 48.93 Gck Decrease 5 1.65 54.5

Alas1 Decrease 2 0 39.75 Ppp1r3b Increase 5 1.65 41.09

Txnip Decrease 2 0.92 10 Nags Increase 5 1.11 87.15

Zfp281 Decrease 2 3.21 47.91 Atp6v1a Increase 5 3.12 87.42

G6pc Decrease 2 0.63 55.99 Gm10175 Decrease 5 1.55 10

Arrdc3 Increase 5 0.31 39.69
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by glutathione. For TF regulation, we found 27 TF regulations between 18
TFs and 10 genes using a literature-curatedmethod39 (Fig. 4B) including the
TF regulation of FOXO1 and CCAAT/enhancer-binding protein alpha,
consistent with our previous studies24,25 (Fig. 4B).

Classificationofdose-dependentglucose-responsivemolecules
in the liver
To understand glucose responsiveness in the liver across omics, we
classified dose- and time-dependent glucose-responsive molecules into
four different classifications according to their dose-responsiveness
indicators: ED50 and T1/2. We set the threshold for each indicator using
the triangle method40 and classified each identified dose- and time-

dependent glucose-responsive molecule as high or low glucose dose
sensitivity and rapid or slow response time. Molecules with
ED50 > 1.2 g/kg and T1/2 > 20 min were considered to have lower glu-
cose dose sensitivity and slower response time, respectively. By contrast,
those with ED50 < 1.2 g/kg and T1/2 < 20 min were considered to have
higher glucose dose sensitivity and more rapid response time, respec-
tively (Fig. 5). The classification results are shown in Table 3.

With the classification of dose-dependent glucose-responsive mole-
cules, the ED50 values of most molecules (74 of 127) fell into the glucose
dose-sensitive groupof lower than thresholdED50, but they generally had an
even distribution in both classifications. By contrast, with the classification
of time-dependent glucose-responsive molecules, the T1/2 values of most

Fig. 3 | Identification of dose-dependent glucose-responsive genes and insulin
signaling molecules. A The time courses of dose-dependent glucose-responsive
genes from the livers after administration of six doses of oral glucose (n = 5mice per
dose at all time points). Six-time courses for each gene were z-score normalized.
Genes were ordered by hierarchical clustering using Euclidean distance andWard’s
method (Table 2, Supplementary Data 6). The colors of the dendrogram represent
the clustering results (Red: Cluster 1, Blue: Cluster 2, Cyan: Cluster 3, Gray: Cluster 4,
Gold: Cluster 5)B z-score the average of time courses of genes in each cluster and the
median ED50 and T1/2 of these clusters. This panel shared the same legend as Fig. 3C.
C Highlighted time courses of dose-dependent glucose-responsive genes in each
cluster. The colors of the boxes show the clustering result of highlighted genes. Data
are shown as the mean and SEM of five mice per dose. Genes are abbreviated as
follows: Got1 glutamic-oxaloacetic transaminase, Slc25a47 solute carrier family 25
member 47, Rnf125 ring finger protein 125, Pck1 phosphoenolpyruvate carbox-
ykinase 1, G6pc Glucose-6-phosphatase, Igfbp1 insulin-like growth factor binding
protein 1, Slc25a25 solute carrier family 25 member 25, Alas1 5’-aminolevulinate

synthase 1, Mfsd2a major facilitator superfamily domain-containing 2A, Slc1a2
solute carrier family 1 member 2, Steap4 six-transmembrane epithelial antigen of
prostate 4, Gcat glycine C-acetyltransferase, Ppp1r3b protein phosphatase 1 reg-
ulatory subunit 3B, Arrdc3 arrestin domain-containing 3, Gck glucokinase, (Black:
0 g/kg [OWTT], Blue: 0.25 g/kg, Cyan: 0.5 g/kg, Green: 1 g/kg, Orange: 2 g/kg, Red:
4 g/kg). D Boxplot of ED50 (Left) and T1/2 (Right) for each cluster. Kruskal–Wallis
tests for ED50 and T1/2 in each cluster were conducted to investigate whether there
was statistical significance. The P values of the Kruskal–Wallis tests are shown above
the boxplot. E Time courses, ED50 and T1/2 of dose-dependent glucose-responsive
phosphorylation of insulin signaling molecules. Data are shown as the mean and
SEMof fivemice per dose. Insulin signalingmolecules are abbreviated as follows: GS
glycogen synthase, GSK3β glycogen synthase kinase 3 beta, IRS1 insulin receptor
substrate 1, S6 ribosomal protein S6, CREB cAMP-response element-binding pro-
tein, ERK mitogen-activated protein kinase 1, FOXO1 forkhead box protein O1,
AKT serine/threonine-specific protein kinase, IRβ insulin receptor β. This panel
shared the same legend as (C).
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metabolites and insulin signaling molecules were within a very low time
range (<10min) (Fig. 5). The rapid response of metabolites and insulin
signaling molecules to glucose administration was consistent with our
previous study showing that the WT-specific regulation of metabolic
reactions by glucose-responsive metabolites has the advantage of rapidness
and is generally controlled by allosteric and phosphorylation
regulations25,28,29.

Blood glucose (T1/2: 10.0 min, ED50: 1.26 g/kg) and insulin (T1/2:
10.0min, ED50: 2.15 g/kg) had a more rapid response time and were less

dose-sensitive to glucose administration (Fig. 5, Table 3). This is contrast to
most metabolites in central carbon metabolism such as G1P (T1/2:
48.59min, ED50: 0.68 g/kg) and G6P (T1/2: 47.14min, ED50: 0.68 g/kg).
Blood glucose and insulin also had similar responsiveness to the phos-
phorylation of upstream molecules in the insulin signaling pathway such
as p-AKT (T1/2: 10.0 min, ED50: 2.81 g/kg), p-IRβ (T1/2: 10.0min, ED50:
2.77 g/kg), p-FOXO1 (T1/2: 10.0min, ED50: 2.01 g/kg), and insulin (T1/2:
10.0min, ED50: 2.15 g/kg). However, other insulin signaling molecules,
specifically p-S6 (T1/2: 10.0 min, ED50: 0 g/kg) and p-ERK (T1/2: 10.0min,

Fig. 4 | Inference of regulatory allosteric and TF regulations after glucose
administration. A The inferred allosteric regulations of metabolic enzymes by the
glucose-responsive metabolites. The metabolites serving as activators (orange) and
inhibitors (blue) in the row labels regulate metabolic enzyme in the column labels.
Bar charts on the left are the number of regulatory metabolites allosterically

regulating each enzyme. The bar charts at the bottom are the number of enzymes
allosterically regulated by each metabolite. B The inferred TF regulation of dose-
dependent glucose-responsive genes by TFs using literature curations. The row
labels are the dose-dependent glucose-responsive genes, regulated by the inferred
TFs in the column label.

Fig. 5 | Classification of dose- and time-dependent
glucose-responsivemolecules in liver.Distribution
of ED50 (horizontal axis) and T1/2 (vertical axis) for
dose- and time-dependent glucose-responsive
molecules including metabolites (Brown), Enzyme
RNAs (Green), and insulin signaling molecules
(Purple). The directions of the scatter marks repre-
sented their responsive patterns (up: increase, down:
decrease). Histograms of these indicators are on the
right (T1/2) and upper (ED50) part of the scatter plot.
Red dotted lines suggest the calculated threshold of
ED50 (vertical, 1.2 g/kg) and T1/2 (horizontal,
20 min) using the triangle method.
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Table 3 | Classification of molecules

Rapid sensitive Rapid insensitive Slow sensitive Slow insensitive

Lactate Metabolites Ru5P Metabolites G1P Metabolites F2,6P Metabolites

Citrate 3-Hydroxybutyrate G6P Fumarate

2-Hydroxybutyrate N-Acetylglutamate F6P Malate

Glutarate Mucate Succinate Adenylosuccinate

beta-Ala Taurocholate S7P UDP-glucose

Ala N,N-Dimethylglycine GTP Gly

3-Aminoisobutyrate Hypotaurine UDP-N-
acetylglucosamine

Asp

Val Saccharopine Urea Adenosine

Hydroxyproline Glucose Sarcosine Glutathione(red)

Ornithine 2AB Glycogen

Citrulline Pipecolate

Phosphorylcholine Creatine

Ophthalmate Ile

Leu

Glu

His

alpha-Aminoadipate

Trp

Inosine

pGs Insulin signaling
molecules

pGsk3b Insulin signaling
molecules

pIrs1 Insulin signaling
molecules

Insulin signaling
molecules

pS6 pFoxo1

pCreb pAkt

pErk pIrb

Insulin

Igfbp1 Genes Cyp2a5 Genes Slc22a5 Genes Slc1a2 Genes

Wdr12 Hipk1 Slc16a10 Gcat

Upp2 Rtn4ip1 Id2 G0s2

Fubp1 Arhgef3 Gadd45g Steap4

Slco2a1 Rpf1 Srek1ip1 Wsb1

Txnip Cfap20 Cela1 Slc17a8

Ndst1 Hist1h1c Ik Lpin1

Acot1 Gm10175 Slc25a25 Susd6

Amy2a5 Pck1 Mtss1

Amy2b Mfsd2a Cdkn1a

Hnrnpdl Got1

Pitpnm2 Eif3f

Alas1 Tob1

Arhgap29 Zfp281

Saa4 Gck

Nags Ppp1r3b

Slc25a47 Atp6v1a

Zfand2a Nrd1

Chd9 Kalrn

Saa2 Saa1

Serpinb6a Nlrp12

Arrdc3

G6pc

Gm12840

Speer6-ps1

AY036118

Gm45551
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ED50: 0.46 g/kg), were more rapidly phosphorylated in response to glucose
administration andmore sensitive to glucose doses. In addition, most of the
molecules with a rapid response time had aT1/2 value of 10min, because the
first measured time point was 20min and most of the rapid-responsive
molecules reached a maximum within 20min.

On the other hand, transcriptional regulation such as the gene
expression of key glucose metabolism enzymes (e.g., G6pc and Gck)
responded much slower (T1/2: 56.0 and 54.5 min) than blood glucose after
glucose administration. However, the glucose responsiveness of gene
expression was similar to metabolites in glycogenesis such as glycogen
(T1/2: 59.19min, ED50: 2.15 g/kg) and UDP-glucose (T1/2: 53.20min, ED50:
1.91 g/kg) (Fig. 5, Table 3).

Construction of the dose- and time-dependent glucose-
responsive transomic network
Using all of the identified dose-dependent glucose-responsivemolecules, we
constructed a global transomic network consisting of five layers, namely,
Insulin Signal, TF, Enzyme mRNA, Reaction, and Metabolite layers,
according to our previousmethod24,25 (Fig. 6A, Supplementary Data 9). The
nodes of the Insulin Signal layer included all of the identified dose-
dependent glucose-responsive phosphorylated insulin signaling molecules.
The nodes of the TF layer included all of the deduced TFs regulating gene
expression or having dose-dependent glucose-responsive phosphorylation.
The nodes of the Enzyme layer included all of the identified dose-dependent
glucose-responsive genes encoding metabolic enzymes. The nodes of the
Reaction layer includedmetabolic reactions in the KEGG reaction database
in which at least one of the associated substrates, products, and enzymes
were included in the Enzyme or Metabolite layer (see below). The Meta-
bolite layer included the dose-dependent glucose-responsive metabolites.

We connected nodes between layers with edges representing dose-
dependent glucose-responsive regulations between layers (Fig. 6A, Sup-
plementary Fig. 5A). We used the KEGG database to identify substrate/
product regulations between the Reaction layer and the Metabolite layer.
We also connected regulations of the Reaction layer and the Enzyme layer
with the KEGGdatabase.We included the inferred TF regulations from the
TF layer to the Enzyme layer and allosteric regulations from theMetabolite
layer to theReaction layer,whichresulted in the transomicnetwork (Fig. 6A,
Supplementary Fig. 5).

The global transomic network included nodes of 10 insulin signaling
molecules, 18 TFs, 67 genes encoding metabolic enzyme mRNAs, 483
reactions, and 51 metabolites (Fig. 6A). All nodes in the network were
classified according to their glucose dose sensitivity and response time. In
the Insulin Signal layer, all signalingmolecules showed rapid responses. The
AKT pathway including p-Akt, p-FOXO1, and p-GSK3β showed low glu-
cose dose sensitivity, whereas the ERK pathway including p-ERK and
p-CREB showed high glucose dose sensitivity. Themolecules in other layers
including the Enzyme mRNA layer and Metabolite layer showed a wide
range of glucose dose sensitivity and rapid/slow responses.

To understand the types of metabolism regulation, we further con-
structed a condensed transomic network and merged the metabolic reac-
tions into nodes that contained metabolic pathway information, and
determined the glucose responsiveness of pathways according to the type of
metabolism (e.g., carbohydrate metabolism, amino acid metabolism) (Fig.
6B)25. We identified all pathways that included glucose dose-responsive
metabolic reactions from the original global transomic system network
according to their KEGG pathway classification (Supplementary Fig. 7C).
The condensed network for dose-dependent glucose metabolism in the
mouse liver included five omics layers, namely Insulin Signal Molecule, TF,
EnzymeRNA (encoding enzyme), Pathway, andMetabolite. By condensing
metabolic reactions into pathway nodes, we found that most dose-
dependent glucose-responsive reactions were connected to pathways in
carbohydrate metabolism and amino acid metabolism (Fig. 6B). Among
them, allosteric and substrate regulations rather than enzyme regulations
were responsible for most of the dose-dependent glucose-responsive reg-
ulations (Fig. 6B, Supplementary Fig. 7C). The most regulated pathways

were alanine, aspartic acid, and glutamate metabolism (mmu00250); argi-
nine and proline metabolism (mmu00330); cysteine and methionine
metabolism (mmu00270); glycolysis/gluconeogenesis (mmu00010); gly-
cine, serine, and threonine metabolism (mmu00260); and starch and
sucrose metabolism (mmu00500).

Regarding the glucose responsiveness of pathways, high glucose dose-
sensitive regulations were more abundant in amino acid than carbohydrate
metabolism (Fig. 6B). Themajority of pathways in lipidmetabolism showed
low glucose dose sensitivity but a rapid response time. These differences in
response time and glucose dose sensitivities suggest different glucose
responsiveness of different types of metabolism. The metabolites and reg-
ulators with low glucose dose sensitivity were mainly molecules such as
UDP-glucose (ED50: 1.91 g/kg), glycogen (ED50: 2.15 g/kg), Gck (ED50:
1.65 g/kg), and ketone bodies (ED50: 1.61 g/kg) in glycogenesis or upper
insulin signaling molecules including insulin (ED50: 2.15 g/kg) and
p-FOXO1 (Fig. 6A). As these metabolites or regulators are critical for the
energy conversion of glucose into other sources such as glycogen, fatty acid,
or proteins, we compared the ratio of classified glucose dose sensitivity of
aminoacid and lipidmetabolism indegradative and synthetic pathways.We
found that synthetic reactions were less dose-sensitive to glucose compared
with degradative reactions in both amino acid and lipid metabolism (Sup-
plementary Fig. 7B).

in silico dynamic analysis using the kinetic modeling of
metabolic fluxes
As theomics analysis only catches static snapshots ofmetabolites,we further
used in silico kinetic modeling to estimate metabolic flux after glucose
metabolism. Metabolic flux is the turnover rate of molecules through a
metabolic reaction and is important for understanding dynamic metabo-
lism. To examine dynamic metabolic fluxes of glucose metabolism, we
performed kinetic modeling of metabolic fluxes based on the dose-
dependent glucose-responsive transomic network. To reduce the com-
plexity of the metabolic network, we focused on the reactions in glyco-
genolysis; glycolysis; gluconeogenesis; lactate, Asp, andAlametabolism; and
the TCA cycle (Fig. 7A, Supplementary Fig. 7, SupplementaryData 10). The
metabolic fluxes were modeled using the experimental measured metabo-
lites of blood glucose, citrate, alanine, glycerophosphate, aspartic acid,
malate, lactate, and steady-state fluxes.

The estimated fluxes of reactions in glycolysis and gluconeogenesis,
especially those in upper glycolysis (R1+ R2, R3, and R4+R5), increased
in a glucose dose-dependentmanner (Fig. 7B, Supplementary Data 11). It is
worth noting that both R1+ R2 and R4+ R5 were combined because the
estimated fluxes of both directions were identical or the reaction was not
glucose-responsive (Supplementary Fig. 8). Estimated flux of reactions of
blood glucose transport (R1+R2) was glucose responsive as it reflected the
high Km value of hepatic glucokinase41. Fluxes of reactions in lower gly-
colysis and gluconeogenesis (R6 and R7) and glycogenesis (R15), however,
responded differently. Fluxes of reactions of the conversion between F16P
and 3PG (R6) in lower glycolysis and gluconeogenesis were generally stable,
whereas fluxes of other reactions such as the glycerol synthesis (R7) and
glycogen synthesis of the mutual conversion of G6P and G1P (R15) were
transiently increased. Contrary to the transient increase in net glycogen
synthesis (R15), the fluxes of reactions in glycogenesis and glycogenolysis
such as the conversion of G1P to UDP-glucose (R16), conversion of UDP-
glucose to glycogen (R17), and conversion of glycogen toG1P (R18) showed
a sustained increase. We calculated the area of the curve (AOC) (see
“Methods” section) of the metabolic fluxes, which reflected the total
amounts of metabolites conserved in reaction fluxes (Fig. 7C, Supplemen-
tary Fig. 9). The AOCs of fluxes in glucose transport (R1+R2), mutual
conversion of G6P and F6P (R3), conversion between F6P and F16P
(R4+ R5), glycerol synthesis (R7), and glycogen synthesis (R15) exhibited a
clear dose-dependent increase, indicating that these fluxes contributed to
the conversion of glucose into other energy sources such as glycerol and
glycogen. It is worth noting that although some steady-state fluxes (e.g.,
R7+R15) in the estimation were calibrated based on experiments in a
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Fig. 6 | Construction of the dose- and time-dependent glucose-responsive
transomic network.ATheregulatory transomicnetwork for dose-dependent glucose-
responsive metabolic reactions. The left diagram represents the network as colored
nodes in the layers and edges between the layers. Colored nodes represent the
responsiveness of dose-dependent glucose-responsive molecules: Orange, high glucose
sensitivity and rapid; Pink, high glucose sensitivity and slow; Light green, low glucose
sensitivity and rapid; Aquamarine, low glucose sensitivity and slow. Colored edges
represent interlayer regulatory connections: Red, upregulated regulations; Blue,
downregulated regulations; Purple, both upregulated and downregulated regulations;
Gray, other regulations such as TF regulations and ambiguous regulations. The num-
bersof each type of glucose-responsive node and edgeare shownwith the samecolors in
the network summary to the right. The insulin signal layer is the insulin signaling
pathway constructed in our previous phosphoproteomic study25. The enzyme, reaction,

andmetabolite layers areorganized into a globalmetabolicpathway (mmu01100) in the
KEGG database. B The condensed dose-dependent glucose-responsive regulatory
transomic network of the hepatic response to glucose in mice liver. The color of the
outer circle of nodes represents the response time of a glucose-responsive molecule or
the share of classified response time that is connected to a pathway (Yellow, rapid;
Aquamarine, slow). The color of the inner circle of nodes represents the glucose sen-
sitivity of a glucose-responsivemolecule or the share of classified glucose sensitivity that
is connected to a pathway (Orange, high glucose sensitivity; Blue, low glucose sensi-
tivity). The color of the edges represents the responsive pattern of each regulation (Red,
high glucose sensitivity; Blue, low glucose sensitivity). Dashed boxes show the type of
metabolism these pathways. C The number of dose-dependent glucose-responsive
reactions classified according to their glucose responsiveness across various types of
metabolism. (e.g., carbohydrate metabolism, amino acid metabolism).
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previous study42,43, distributions betweenR7 andR15 in the combinedfluxes
were not calibrated and may not have accurately reflected the real fluxes.
This may explain the larger estimated flux AOC values in glycerol synthesis
(R7) than in glycogen synthesis (R15) in our flux estimation.

To investigate the dose- and time-dependency of fluxes after glucose
administration, we calculated the ED50 values of flux and fluxAOC, and the
T1/2 values of flux and fluxAOC for each reaction with the same calculation
method as used in the transomic analysis (Fig. 7D, E, Supplementary Fig. 10,
Supplementary Data 12). Flux ED50 values were similar between reactions,
whereas flux T1/2 values were different between reactions. T1/2 values of flux
R5 (52min), R8 (177min), R9 (90min), R13 (177min), and R18 (64min)
were larger than those of other fluxes. Specifically, the response time of
glycogenolysis flux (R18) was larger than fluxes in glycogenesis (R16 and
R17), indicating a slower response in glycogen degradation flux than its
synthesis. The ED50 values of the flux AOCs were different between reac-
tions and the ED50 values of the flux AOCs in net glycogen synthesis (R15)
were larger than those of glycogenesis (R16 and R17) and glycogenolysis
(R18), indicating the lower dose sensitivity of glycogen synthesis than other
fluxes. These results support the hypothesis from the transomic analysis that
reactionswith low glucose dose sensitivity are a potential indicator of energy
conversion (Figs. 6, 7).

Because of the different T1/2 values between reactions, we performed
principal component analysis (PCA) for each time point and dose of z-score
normalized fluxes (Supplementary Fig. 10). PC1 (41.93% of the total con-
tribution of a variable) scores separated 0min and other time points,
whereasPC2 scores (22.22%of the total contributionof a variable) separated
20min and other time points. The PCA results indicated that the flux time
course could be divided into the early phase (0–60min) and the late phase
(60–240min). We calculated the corresponding glucose-responsiveness
indicator of ED50 for estimated fluxes in the early and late phases (Fig. 7F,
Supplementary Fig. 10). Most ED50 values of estimated fluxes in the late
phase (60–240min) were larger than those in the early phase (0–60min).
These results showed that the glucose dose sensitivities offluxes after glucose
administration were heterogeneous during different time periods. Specifi-
cally, the glucose dose sensitivity in net glycogen synthesis flux (R15) was
significantly lower during the late phase than in the early phase. Thus, the
estimated fluxes were used to elucidate the conversion of glucose into other
energy sources especially glycogen during the late phase, whereasmetabolic
regulations reduced the blood glucose level during the early phase of glucose
metabolism (Fig. 2A).

Tounderstand towhat extent kinetic parameters influence thefluxes of
glucosemetabolism, we conducted parameter sensitivity analysis of the flux
ED50 values in the early phase of 0–60min and late phase of 60–240min
(Fig. 7G, H, Supplementary Data 13). Few flux ED50 values during the early
phase were sensitive to parameter changes, especially the regulatory para-
meters (kI and kA).However, therewere exceptions such as the kAPCKand
kASuccinate to R5 (conversion of F16P to F6P), KAF26P, KAGOT1, and
KAPCK1 to R6 (mutual conversion between F16P and 3PG), which are
consistentwith previous reports suggesting that changes in the transcription
of Pck1 andG6pc determine the gluconeogenic capacity of the liver and the
allosteric regulations of F26P regulated the glycolysis flux44,45. By contrast,
glycolysis (R1–R5) and glycogenesis (R15–R18) in the late phase were
sensitive to changes in the parameters of maximum reaction rate (k1) and
thermodynamic constant (k2) during the late phase (Supplementary Fig.
13). Fluxes in glycogenesis (R15–R18) were also sensitive to the Michaelis
constants for the substrate and production (kSG6P15, kPG1P) and con-
stants for allosteric regulation (kIG6P, kAG6P) in addition to the para-
meters of k1 and k2. These results indicate that there are more regulations
for glycolysis and glycogenesis in the late phase than in the early phase.

Taken together, we proposed a two-phase model of time- and dose-
dependent selective glucosemetabolism in the liver (Fig. 8).During the early
phase of hepatic glucose metabolism after glucose administration (20 and
60min), at both low (0.5 g/kg) and high (4 g/kg) glucose dose administra-
tion, blood glucose level similarly returned to basal level (Fig. 2A), andfluxes
showed a similar balance in each branch at the low and high glucose doses,

although the absolute fluxes were larger with the high glucose dose (Fig. 8).
These results suggest that fluxes are controlled for glucose homeostasis in
the early phase regardless of glucose dose. By contrast, in the late phase (120
and 240min), glycogenesis (R15, R16, R17, andR18) and glyceroneogenesis
(R7) were dominant at high glucose doses, resulting in more energy con-
version of glucose into glycogen and glycerol-only at a high dose of glucose.
Thus, in the early phase, fluxes flowed for glucose homeostasis at both the
low and high glucose doses, whereas in the late phase, fluxes flowed for
energy conversion only at high glucose doses. Together, these results
demonstrate the time- anddose-dependent selective glucosemetabolism for
glucose homeostasis and energy conversion in the liver.

Discussion
In this study,wemeasured the glucosedose-dependent timecourseofmulti-
omics data including metabolome, transcriptome, and phosphorylation in
the mouse liver. We identified metabolites, genes, and phosphorylation of
signaling molecules that dose-dependently responded to glucose adminis-
tration and their responsive patterns. With these identified molecules, we
elucidated the metabolic reactions, TFs, and allosteric regulations that are
involved in the metabolic regulations and constructed a dose-dependent
glucose-responsive transomic network of the mouse liver after glucose
administration. We found that the overwhelming majority of metabolic
regulations after glucose administration were upstream regulations
including the product and substrate regulation and allosteric regulation,
consistent with our previous studies25,29.

Dose-dependent analysis also allows more specificity in identifying
glucose-responsivemolecules. Instead of thousands of responsivemolecules
that are usually identified in single-dose analysis25,28, we narrowed down the
number of responsive molecules into a significantly smaller number using
dose-dependent analysis that excluded the water effect compared with our
previous study which identified 2420 (1369 increased and 1151 decreased)
glucose-responsive genes in WT mice. Among the identified dose-
dependent glucose-responsive genes, most of the genes encoding known
key enzymes for glucosemetabolism, suchasGck,Pck1, andG6pc, have been
identified46–49. This method identified some clear dose-responsive but less
studied genes such as Arrdc3, Igfbp1, and those in the SLC families, which
exhibits its potential for identifying novel candidate responsive
molecules50,51.

The transomic analysis revealed features of multiple types of meta-
bolism after glucose administration including carbohydrate, amino acid,
and lipidmetabolism.We found that the response of reactions in aminoacid
metabolism was rapid and dose-sensitive to glucose administration com-
pared with carbohydrate metabolism, whereas lipid metabolism was rapid
and with low glucose dose sensitivity. We previously reported the selective
response by basal and induced insulin stimulation in vitro across multiple
omics layers30,52,53. Basal insulin stimulates signaling through p-FOXO1 and
transcriptional regulation,whereas induced insulin stimulation activates the
phosphorylation of pS6 and protein synthesis. In this study, we calculated
the glucose responsiveness of response time and glucose dose sensitivity of
dose-dependent glucose-responsivemolecules and classified them into four
groups according to their glucose responsiveness. We found that molecules
in insulin signaling pathways across omics layers exhibited different glucose
dose sensitivities. Upstream insulin signaling molecules triggered by basal
insulin stimulation including p-FOXO1 and p-IRβ had low glucose dose
sensitivities, whereas some of their downstream regulators including genes
such as Pck1, G6pc, and the pS6 signaling molecule showed higher glucose
dose sensitivities. Although the higher glucose dose sensitivities of these
molecules were similar to the high insulin sensitivity in the insulin-
stimulated cell model of our previous study24, p-FOXO1, which had high
insulin sensitivity in our previous study, appeared to have low glucose dose
sensitivity in this study.However, in this study, p-FOXO1wasmore glucose
dose-sensitive than its upstream molecule p-AKT (Fig. 5), consistent with
our previous study where p-FOXO1 was more insulin-sensitive than
p-AKT53. In addition to glucose dose sensitivity, we also elucidated the
different characteristics of response time in each omics layer.We found that
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Fig. 7 | In silico kinetic modeling of metabolic fluxes and their glucose respon-
siveness. A Metabolic network used for kinetic modeling. Ret dots represent fitted
metabolites. Black dots represent input metabolites and gray dots represent sim-
plified metabolites that were not measured. Arrows represent metabolic reaction
fluxes.Molecules in dotted boxes representmetabolic regulators.BThe selected time
courses of simulated reaction fluxes for the modeled metabolic network. C The
selected time courses of simulated reaction fluxes AOC for the modeled metabolic

network.D Bar plot of ED50 and T1/2 values for simulated fluxes. E Bar plot of ED50

values for simulated fluxes AOC. F Bar plot of ED50 values for fluxes from 0–60 min
(black) and 60–240 min (red). G Heatmap of regulatory parameter sensitivity
analysis on the ED50 for estimated metabolic fluxes during 0–60 min.HHeatmap of
regulatory parameter sensitivity analysis on the ED50 for estimated metabolic fluxes
during 60–240 min.
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the phosphorylation of insulin signaling molecules was rapid, whereas the
transcriptomic expression of genes was slow in response to glucose
administration. Metabolites, however, exhibited different response times in
accordance with their time courses using clustering analysis. Metabolites in
amino acid metabolism and lipid metabolism such as Val, Ala, and ketone

bodieswere rapid,whereas the response time ofmetabolites in upper central
carbohydrate metabolism including G6P and glycogen was slow and even
sustained after blood glucose returned to its equilibrium. The long response
time of many metabolites indicated that the regulatory mechanism of glu-
cose metabolism is effectively longer than the course of the blood glucose

Fig. 8 | Time- and dose-dependent selective glucose flux control for glucose homeostasis and energy conversion.Numbers besides reactions are the optimal estimates of
fluxes subtracted by OWTT fluxes with the unit of nmol/mg-protein/min. The direction of catabolic reaction in bidirectional reactions is regarded as positive.
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level returning to its equilibrium. Most of the calculated T1/2 values were
consistent with the time constant calculated in our previous studies in the
glucose-administered mouse model, except metabolites such as UDP-
glucose and Leu24,25. Furthermore, the heterogeneity of response time and
glucose dose sensitivity in molecules, especially those in the same type of
metabolism, suggest that glucose responsiveness could be a potential feature
for differentiating different types of metabolism from their biological
functions.

After glucose administration, the regulation of metabolism through
allosteric and phosphorylation regulations responded rapidly in accordance
with the reduction of blood glucose level. Synthetic reactions and the energy
source of glucose metabolism such as glycogen and ketone bodies exhibited
lower glucose dose sensitivities than degradative reactions and inter-
mediated metabolites. These results indicate that two different types of
metabolism may exist after glucose administration that are either respon-
sible for translating the excess glucose into other energy sources with low
glucose dose sensitivity ormaintaining blood glucose homeostasiswith high
glucose dose sensitivity. Other evidence for this hypothesis was the low
glucose dose sensitivity of hepatic ketone bodies in this study (ED50: 1.61 g/
kg). As a well-known alternative energy source for glucose, blood ketone
bodies were previously recognized as being sensitive to insulin54; however,
the results of this study suggest that hepatic ketone bodies have low glucose
dose sensitivity similar to blood glucose and insulin in the liver. The low
glucose dose sensitivity of hepatic ketone could be the result of a compen-
satory downregulation for the increased utilization of glucose for energy
sources after glucose administration. Given the above glucose-
responsiveness features of molecules and regulatory pathways, we con-
sidered low glucose dose sensitivity to be a potential indicator of glucose
conversion after glucose administration.

In this study, we observed that glucose responses varied significantly
across different omics layers, exhibiting different glucose dose sensitivities
and response times. These responses were systematic and complex, making
it challenging to categorize them into precise biological terms with our
current knowledge. As the regulation of glucose metabolism after glucose
administrationmainly serves two biological objectives: maintaining glucose
homeostasis, and energy conversion of glucose into metabolites including
glycogen, lipids, amino acids, and lactate7,47.We therefore used the concepts
of glucose homeostasis and energy conversion to summarize the potential
biological functionalities of these systematic responseswithdifferent glucose
sensitivities. We believe these concepts best capture the functionalities of
these indicators, providing a clearer framework to understand their roles in
metabolic regulation. We found that molecules and reactions that respon-
ded after glucose administration exhibited distinct glucose dose sensitivities
and response times. Regulation by phosphorylation in insulin signaling
pathways and allosteric regulation exhibited rapid response times in
accordance with the rapid responses of insulin and blood glucose. These
results indicate the potential role of these types of metabolic regulations in
glucose homeostasis maintenance after glucose administration. By contrast,
transcriptomic regulations and some substrate and product regulations,
especially those in upper glycolysis, exhibited slow responses and low glu-
cose dose sensitivities, suggesting that metabolic regulations with slow
responses and low glucose dose sensitivities may be related to metabolic
functions other than glucose homeostasis maintenance after glucose
administration. In addition, thosemolecules and reactions with low glucose
dose sensitivities are typically related to the conversion of glucose and
synthesis of energy sources55. Hence, low glucose dose sensitivitymay reflect
the conversion of blood glucose into other energy sources.

We simulated the dynamic fluxes of glucose metabolism after
glucose administration using kinetic modeling and calculated their
indicators of glucose responsiveness and the dose sensitivity of each
parameter based on measured omics data and steady-state flux value.
The reconstructed dynamic modeling gave us a glimpse of the pos-
sible metabolism of central carbohydrate metabolism. The estimated
fluxes and their AOCs suggested low glucose dose sensitivities in
fluxes that were mainly responsible for the conversion of glucose in

the liver, including net glycogenesis and glycerol synthesis. The
model showed that the sustained upregulation of glycogenesis at
higher glucose doses resulted in more conversion of glucose into
hepatic glycogen. This result indicated that glucose was converted
into hepatic glycogen mainly because of the different response times
between the response of glycogenesis and glycogenolysis. Further-
more, we found high Pearson correlations between the time course of
Gck expression (0.87), G6P (0.82), and glycogenesis fluxes (R16 and
R17) as well as the high dose sensitivity of glycogenesis flux ED50

values (R15) to parameters related to G6P allosteric regulations and
Gck transcriptional regulation during 60–240 min (Fig. 7H, Supple-
mentary Fig. 11). These results are consistent with previous studies
suggesting that the Gck- and G6P-mediated activation of liver gly-
cogen synthase are key regulators of glycogenesis and glycolysis46,47,56.
In addition to the different sensitivities of flux ED50 to parameters
during two time periods, the sensitivity of flux for net glycogen
synthesis (R15) was different from that in glycogenesis (R16, R17)
and glycogenolysis (R18) during 60–240 min (Fig. 7H). The net
glycogen synthesis (R15) was sensitive to changes in the parameters
of p-GS, Pck, and Gck regulation, whereas fluxes of glycogenesis (R16,
R17) and glycogenolysis (R18) were not. This further suggested the
heterogeneity of dynamic regulations between the net glycogen
synthesis flux and unidirectional fluxes of glycogenesis or glycogen-
olysis. Based on the estimated fluxes, we proposed a potential
dynamic mechanism of glucose metabolism that involved two phases
with different glucose dose sensitivities and selective controls: an
early phase with high glucose dose-sensitive regulations that help
maintain glucose homeostasis to keep blood glucose level at its
equilibrium, and a late phase of low glucose dose-sensitive regula-
tions that dose-dependently convert glucose into glycogen (Fig. 8).

Our study revealed the heterogeneity of glucose dose sensitivity for
metabolic regulations in relation to different objectives. However, questions
remain regarding the mechanism underlying this heterogeneity of glucose
dose sensitivity. A possible explanation for this would be the different
natures of control systems required for these two objectives. Understanding
the mechanisms underlying glucose metabolism, especially those for
maintaining glucose homeostasis, is important for understanding the
pathologies of metabolic disorders such as diabetes. This may also con-
tribute to drug development for these diseases. Our study offers a novel
perspective of the complex glucose metabolism through glucose respon-
siveness, especially the glucose dose sensitivity ofmolecules and regulations.
Additional studies into these two objectives of energy conversion and the
maintenance of glucose homeostasis may reveal more regulatory details of
glucose metabolism.

Mathematical modeling plays a pivotal role in advancing our under-
standing of biological systems by providing a framework to quantitatively
analyze the behavior of complex biological processes. In this study, our
kinetic transomicmodel enabled the quantitative analysis of in vivo glucose
metabolism and insulin signaling pathways in a time- and dose-dependent
and dynamicmanner. The use of deterministicmodels like ours allows for a
systematic examination of how different factors, such as enzyme activities
and metabolite concentrations, interact over time. However, to capture the
inherent randomness and fluctuations in biological processes, stochastic
models are invaluable as well57,58. Thesemodels account for the probabilistic
nature of molecular interactions and the variability observed in biological
systems, which deterministic models might overlook. By incorporating
stochastic elements, researchers can gain a deeper understanding of the
robustness and variability in metabolic processes, thereby improving the
accuracy of predictions and identifying key regulatory mechanisms59.

Moreover, the integrationofAI andmachine learning (ML) techniques
withmathematicalmodeling has emerged as a powerful approach to handle
the complexity of biological data in recent years. AI/ML can optimizemodel
parameters, identify key features and biomarkers, and integratemulti-omics
data more effectively60. Incorporating these advanced methodologies in
future research could further advance our understanding of glucose
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metabolism and its regulation, leading to more precise and comprehensive
insights into the underlying biological processes.

The potential mechanism of hepatic glucose metabolism presented in
this study may not reflect the direct causal relationship and should be
validated in future experiments. In this study, we fasted the mice for 16 h to
stabilize the concentrations ofmetabolites. However, some previous reports
suggested that the fasting period (5 h) are more recapitulating to human
than overnight (16–18 h)61. Regarding transomic analysis, the limitations
include experimental variation during the measurement of omics data and
possible deficiencies of regulation estimation because of the inconsistency
between the model and prior knowledge from species, organs, and experi-
mental variations in the omics databases. Our calculation results of glucose-
responsiveness indicators, namely the ED50 and T1/2, may have also been
affected by experimental variationwhen the response in the time coursewas
less significant. Furthermore, our constructed transomic network did not
cover all metabolites and signaling molecules, including those of lipidome
and glucagon pathways, which also play important roles after the glucose
administration62,63. The high and low glucose dose sensitivities in this study
were defined by the calculated threshold of ED50. However, the exact
threshold value cannot be generalized to other studies and can vary across
different omics layers. This variability can lead to a lack of clarity in the
precise definitions of these terms, highlighting the difficulty and limitation
in accurately delineating systematic differences for biological functionality.

Regarding the in silico kinetic modeling of dynamic fluxes, the label-
free estimation of fluxes used in this study may have had larger errors or
inaccuracies in terms of flux calculation compared with traditional
isotope-labeledflux analysis. There are also technical reasons that protein-
levelmeasurements are difficult and some of the gene expression levels are
associate with protein-level changes.We used transcription-level changes
instead of protein-level changes for quantifying enzyme activities in this
study for both the omics analysis and flux simulation. Some of the fluxes
modeled in this study, especially in the downstream of glycolysis and
unidirectional reactions including the conversion between3PGandAla or
Asp, and the distributions of steady-state fluxes between glycogenesis and
glycerol synthesis were not calibrated by experimental measured fluxes64.
In addition, the network used in our kinetic modeling included simplified
reactions and metabolites as well as unknown regulators such as the
pyruvate of metabolites and TFs including CREB112,65–67. We also omitted
interorgan interactions for the simplification of in silico modeling. These
simplified molecules, reactions, and interactions were not measured or
modeled but may have important regulatory impacts on central carbo-
hydrate metabolism. We used glucose level derived from the tail vein
rather than the portal vein for the flux simulation. As the glucose level in
the portal vein is known to be higher than the tail vein after glucose
administration, thismay affect the result of simulated fluxes. Lastly, as the
error and confidence analysis aren’t directly applicable forODE functions,
there are also limitations of transparently elucidating uncertainties in the
flux modeling.

Methods
Mouse studies
Mouse experiments were approved by the animal ethics committee of The
University of Tokyo and according to the ARRIVE guidelines and the
University of Tokyo guidelines for the care and use of laboratory animals.
Ten-week-old male C57BL/6 J wild-type (WT) mice were purchased from
Japan SLC Inc. After overnight fasting (16 h), mice were administered 0,
0.25, 0.5, 1, 2, 4 g/kg bodyweight glucose or the sameamount ofwaterorally.
Blood glucose level was measured from the tail vein at 0, 20, 60, 120, and
240min after the glucose administration (ACCU-CHECK, Roche). After
the measurement of blood glucose level, mice were euthanized by cervical
dislocation, and the liver was dissected and frozen in liquid nitrogen
immediately. The frozen liver was pulverized with ShakeMaster NEO
(BMS) followed by multi-omic measurements. Plasma insulin concentra-
tion was determined using LBIS Mouse Insulin ELISA Kit (U-type) (633-
03411, Wako).

Metabolomic analysis
From the liver, total metabolites and proteins were extracted with metha-
nol:chloroform:water (2.5:2.5:1) extraction as previously described3. Briefly,
about 40mg of the liver was suspended in 500 µl of ice-cold methanol with
internal standards [20 µM l-methionine sulfone (Wako),
2-morpholinoethanesulfonic acid, monohydrate (Dojindo), and d-
camphor-10-sulfonic acid (Wako)] for normalization among MS runs.
Then, 500 µl of chloroformand 200 µl ofwaterwere added. Following to the
centrifugation at 4600 × g for 15min at 4 °C, the aqueous layer was filtered
using a 5-kDa-cutoff filter (Millipore) to remove protein contamination.
The filtrate was dissolved in 50 µl of water containing reference compounds
[200 µM each of trimesate (Wako) and 3-aminopyrrolidine
(Sigma–Aldrich)], following to the lyophilization and subjected to MS
analysis. The protein was precipitated by the addition of 800 µl of ice-cold
methanol after the removal of the aqueous layer. Following to the cen-
trifugation at 12,000 × g for 15min at 4 °C, the resultant pellet was washed
with 1mlof ice-cold 80%methanol. Thepelletwas sonicatedwithBioruptor
UCW-310 (SonicbioCo., Ltd.) in 500 µl ofwater, followedby the additionof
the same volume of sample buffer containing 2% SDS and 100mM Tris-
HCl (pH 8.8). After the incubation at 4 °C for 60min, the total protein
concentration was determined by bicinchoninic acid (BCA) assay for nor-
malization of metabolite concentration among samples.

All CE-TOFMS experiments were conducted using an Agilent 1600
Capillary Electrophoresis system (Agilent Technologies), a G1603AAgilent
CE-MS adapter kit, and a G1607A Agilent CE electrospray ionization
(ESI)–MS sprayer kit as previously described3. For cationic compounds, a
fused silica capillary [50 µm internal diameter (i.d.) × 100 cm]wasusedwith
1M formic acid as the electrolyte68.

Methanol/water (50%, v/v) containing 0.01 µM hexakis (2,2-difluor-
oethoxy) phosphazenewas used as the sheath liquid and the speedwas set to
10 µl/min. ESI–time-of-flight (TOF) MS was set to positive ion mode, and
the capillary voltage was 4 kV. Automatic recalibration for normalization of
each acquired spectrum was performed using the masses of the reference
standards [13 C isotopic ion of a protonated methanol dimer (2 MeOH+
H)]+, mass/charge ratio (m/z) 66.0631 and [hexakis(2,2-difluoroethoxy)
phosphazene+H]+, m/z 622.0290. To identify metabolites, the relative
migration times of all peaks were calculated using reference compound (3-
aminopyrrolidine). The metabolites were identified by referring their m/z
values and relative migration times to the standards. Quantification was
conducted by comparing peak areas to calibration curves generated using
internal standardization techniques with methionine sulfone. The other
conditions were the same as described previously69. For the anionic meta-
bolites, COSMO (+) (chemically coated with cationic polymer) capillary
(50 µm i.d. by 105 cm) (Nacalai Tesque, Kyoto, Japan) was used with a
50mMammoniumacetate solution (pH8.5) as the electrolyte.Ammonium
acetate (5mM) in MeOH/Water (50%, v/v) containing 0.01 μM Hex-
akis(2,2-difluoroethoxy) phosphazene was used as the sheath liquid at the
speed of 10 µl/min. ESI-TOFMS was performed in negative-ion mode, and
the capillary voltagewas 3.5 kV. Trimesate and d-camphor-10-sulfonic acid
wereused as the reference and the internal standards, respectively. Theother
conditions were identical to those described previously70. Data analysis was
performed Agilent MassHunter software (Agilent Technologies)69–71.

For the measurement of F1,6P and F2,6P separately, IC-QEMS72

analysis was conducted. The metabolites were separated with a Dionex
IonPac AS11-HC-4 µm column (250 × 0.4 mm, 4 µm; Thermo Fisher
Scientific)72 at 35 °C. KOH was used as an eluent at the speed of 0.02mL/
min, and the gradient was as follows: 1mM from 0 to 2min, 20mM at
16min, 100mM at 35min. Isopropanol containing 0.1% acetic acid was
used as sheath solution at the speed of 5 µl/min. The mass spectrometric
measurement was conducted in the ESI negative-ion mode. The ESI para-
meters are as follows: sheath gas, 20 (arbitrary units); auxiliary gas, 10
(arbitrary units); spray voltage, 4.0 kV; capillary temperature, 300 °C; S-lens,
50 (arbitrary units).Datawere acquired in fullMS scanmode. Parameters of
the scanning were as follows: resolution, 70,000; auto-gain control target,
3 × 106; maximum ion injection time, 100ms; scan range, 70–1000m/z.
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RNA sequencing
RNAeasy Mini Kit (QIAGEN) and QIAshredder (QIAGEN) were used to
extract total RNA from 10mg of liver samples following to the manu-
facture’s protocol. The quantity and the quality of the extracted RNA were
assessed by Nanodrop (Thermo Fisher Scientific) and the 2100 Bioanalyzer
(Agilent Technologies). Sequencing library was prepared as previously
described73 and subjected to sequencing using HiSeq 2500 (Illumina).

Quality filter and adapter trimming for fastaq files of sequences per-
formed with Trimmomatic (0.39). Mouse reference genome was built from
the Ensembl database (GRCm38/mm10, Ensembl release 97) using
bowtie2-2.3.5.1 and RSEM (v1.3.0)74,75. Pre-processed sequences were
mapped on each reference and quantified using bowtie and RSEM for
estimating the number of transcripts as an indication of gene expression76.
The number of transcripts was shown as Transcripts Per Kilobase
Million (TPM).

Western blotting
Total proteins were extracted from liver samples as described above (see
metabolomicmeasurement section). The lysate was boiled in sample buffer
(58.28mM Tirs-HCl, pH 6.8, 4.7% glycerol, 2.82% SDS, 6%
β-Mercaptoethanol, and 0.0094% bromophenol blue). Samples (10–40 µg
for phospho-proteins) were subsequently separated by SDS-PAGE and
transferred to nitrocellulose membrane followed by immunoblotting.
Antibodies for totalAkt (#9272), phospho-Akt (Ser473) (#9271), total Erk1/
2 (#9102), phospho-Erk1/2 (Thr202/Tyr204) (#9101), total cAMP
responsive element-binding protein (Creb) (#9197), phospho-Creb
(Ser133) (#9198), total Foxo1 (#9462), phosphor-Foxo1 (Ser256) (#9461),
phosphor-Irβ (Tyr1150/Tyr1151) (#3024), total Irs1 (#2382), total mTor
(#2972), phospho-mTor (Ser2448) (#2971), total S6 (#2217), phospho-S6
(Ser235/Ser236) (#2211), total S6k (#9202), phospho-S6k (Thr 389)
(#9205), total eukaryotic translation initiation factor 4e (eif4e) (#9742),
phospho-Eif4e (Ser209) (#9741), total Gsk3β (#9315), phospho-Gsk3β
(Ser9) (#9336), total Gs (#3886), phospho-Gs (Ser641) (#3891), and total
Acc (#3662) were purchased from Cell Signaling Technology. Antibodies
for phosphor-Irs1 (Tyr612) (09-432) and total-Irs2 (MABS15) were pur-
chased from Millipore, for total-Irβ was from Santa Cruz Biotechnology,
and for phospho-Acc (Ser79) (07-303) fromUpstate. A Peroxidase (HRP)-
conjugated anti-rabbit antibody (NA9340V), anti-mouse antibody
(NXA931), and anti-goat antibody (A5420) were purchased from GE
Healthcare (rabbit, mouse) and Sigma (goat). Immunodetection was per-
formed using Immobilon Western Chemiluminescent HRP Substrate
(Millipore) or SuperSignal West Pico PLUS Chemiluminescent Substrate
(ThermoFisher Scientific) and the signalsweremeasured by a luminoimage
analyzer (Fusion System Solo 7S; M&S Instruments Inc). Quantification,
brightness adjustment, and treatment were performedwith the Fiji software
(ImageJ; National Institutes of Health)77. For the images with high back-
ground, the subtract background function in the Fiji software was used. The
images were converted and the conversion to 8-bit imagewas carried out by
Photoshop CS6 (Adobe).

Glycogen content assay
Glycogen content in the liver was determined as previously described78.
Briefly, approximately 20mg of liver was digested by incubating for 1 h at
95 °C in 1ml of 30% (w/v) potassiumhydroxide solution. Lysate (50 µl) was
collected into another 1.5mL tube and neutralized in 15.3 μl of glacial acetic
acid. The total protein concentration of the liver digest was measured by
using BCA assay and the protein concentrationwas adjusted to 1 μg/µl. The
Bligh and Dyer method was performed to remove lipids and extract gly-
cogen. Samples (50 µl) was mixed with mixed with 120 μl of ice-cold
methanol, 50 μl of chloroform, 10 μl of 1% (w/v) linear polyacrylamide, and
70 μl of water, followed by centrifugation at 12,000 × g to remove the aqu-
eous layer after ice-incubation for 30min.Methanol (200 µl) was added and
centrifuged at 12,000 × g for 30min at 4 °C to precipitate glycogen. After
washing with ice-cold 80% (v/v) methanol, samples were dried up, and
glycogen pellets were resuspended in 20 μl of amyloglucosidase (0.1 mg/ml;

Sigma–Aldrich) in 50mM sodium acetate buffer. Then the samples were
incubated for 2 h at 55 °C to digest glycogen. The concentration of glucose
produced from the glycogen was measured by using the Amplex Red
Glucose/Glucose Oxidase Assay kit glucose assay (Thermo Fisher Scien-
tific), according to the manufacturer’s instructions.

Omics data preprocessing
As outliers from measurement error and high missing data ratio for a
molecule may affect the result of quantitative analysis of time course. We
preprocessed the measured omics data by excluding outliers andmolecules
with a high ratio ofmissing data before the analysis. In this study,wedefined
an outlier using the boxplot method79. We considered those out of the 1.5
interquartile range (IQR) from the median value of any time point at a
specific dose outlier data. In addition, molecules that have less than 3
measurable replicates (non-NAN for metabolites or proteins or TPM> 0.1
for genes) among 5 replicates at any time point of any dose were excluded
from further analysis.

Identification of dose-dependent glucose-responsivemolecules
We identified molecules that have a false discovery rate (FDR)–adjusted
P value (q value) using the Benjamini-Hochberg (BH) method less than
0.1 using the ANOVA test in any of its glucose administration doses as
temporally changed80. The phosphorylation level of an insulin signaling
molecule would be considered temporally responsive when either its
total protein or its phosphorylated protein changed temporally. Meta-
bolites, gene expressions, and phosphorylation levels of signaling
molecules that have a foldchange larger than 1.2 in their Area Of the
Curve (AOC) ratio of any glucose administration from 0min to 240 min
were regarded as water-independent changes. We calculated the AOC
ratio of a molecule which is the ratio of the area of the curve between its
responsive doses added/subtracted by the difference between glucose
and water doses by its responsive pattern. However, since some of the
phosphorylation levels of insulin signaling molecules and metabolites
responded rapidly, we also used both the 240 min curve AOC ratio and
120 min curve of AOC for calculating the AOC ratio. We considered a
molecule increased after a glucose dose administration if the AOC ratio
was larger than 1.2 and decreased if it was smaller than 0.83 (1/1.2). We
defined dose-dependent glucose-responsive molecules as those that
responded both temporally and to glucose in any dose after glucose
administration (Supplementary Fig. 1A). For a molecule in general, we
considered a dose-dependent glucose-responsive molecule increased
(decreased) if it increased (decreased) but not decreased (increased) in
any of its glucose administration doses. Those who had both increased
and decreased doses were considered as ambiguously responded.

Method for calculating glucose-responsive indicators of ED50

and T1/2

We calculated the ED50 and T1/2 from the simulated time course of mole-
cules with a time-dependent function (Supplementary Fig. 1B). Best-fitted
parameter sets in the function for eachmolecule are obtainedbyminimizing
the sum of squared residues between the output of the function and the
experiment results with the interior-point method. We defined ED50 as the
d0;m in the logistic function.Wedefined thevalueofT1/2 by interpolating the
fitted glucose effect and finding the time to half of the maximum glucose
effect. We obtained ED50 and T1/2 values from the best-fitting result among
10 iterations of simulation. As indicators of glucose responsiveness of a
molecule, larger ED50, and T1/2 value suggests lower glucose sensitivity and
slower response time of this molecule, respectively.

Method for the inferenceof regulatory allosteric regulations after
glucose administration
To infer allosteric regulations, we used a method similar to our previous
study25.Weobtained the entries for the responsiblemetabolic enzymes from
the BRaunschweig ENzymeDAtabase (BRENDA) database81 and extracted
their allosteric effector (activator and inhibitor) information and inhibitory
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half-saturation constants (Ki) values, as reported for Homo sapiens, Mus
musculus, and Rattus norvegicus. If a pair of allosteric effectors of metabo-
lites and the responsible metabolic enzyme has more than one Ki value
among three species, we calculated the geometric mean of the Ki values and
used it as theKi value for that paired regulation.WhenmultipleKi values for
the same enzyme and metabolite were present, we used their geometric
mean. To compare with the metabolomic data, we changed the unit of the
metabolomic data using theweight of protein per volume in themouse liver
(0.2 g/ml).

Here, we quantified the log foldchange effect of allosteric inhibition to
metabolic flux Δv as �ε×Δln cj j.�ε is the elasticity of the allosteric inhibition
and reflects howfluctuations in the concentration of ametabolite c affect the
rate of the reaction v. Δ log c is the log foldchange between the maximum
concentration and 0min concentration of allosteric regulators. The elasti-
city �ε of non-cooperative, non-competitive inhibitors is described as
��c = Ki þ �c

� �
82. We tested whether the concentration between maximum

response and 0min of an allosteric effector for each metabolic reaction by
identifying statistical differences using the two-tailedWelch’s t-test with a q
value less than 0.1. The q values were calculated by the Storey procedure83.
We determined an allosteric regulation if the reaction has a Δv larger than
ln1:2 and showed a statistical difference in their concentrations between its
maximum response time point and 0min. An increased responsive pattern
of the concentration of allosteric effector metabolite was regarded as inhi-
biting allosteric regulation and decreased responsive pattern as activating
allosteric regulation.

However, Ki values of some important allosteric regulations are not
available in the BRENDA database81. We thus added those regulations that
were previously reported critical for glucose metabolism in mice to our
result manually. Those regulations were the allosteric regulations of
6-phosphofructokinase from succinate, malate, and F2,6P, Glycogen syn-
thase, and Glycogen phosphorylase from G6P. As a result, we predicted 21
regulatory allosteric regulations including 7 inhibiting and 14 activating
regulations between 12 enzymes and 10 metabolites.

Method for the prediction of TF regulations after glucose
administration
To infer TF regulations, we used a literature-curated method described in
LuzGarcia-Alonso et al.39 The literature-curated collectionswere from three
publicly available databases namely Kyoto Encyclopedia of Genes and
Genomes (KEGG)84, TFactS85 andTranscriptionalRegulatoryRelationships
Unraveled by Sentence-based Text mining (TRRUST)86. We directly
retrieved all the TF–target interactions as indicated in the corresponding
databases and recognized TF regulations as those whose regulatory genes
were dose-dependent glucose-responsive in more than one database. As a
result, we predicted 27 TF regulations between 18 TFs and 10 genes.

Identification of synthesis and degradation reactions of amino
acid and lipid metabolism
We identified synthesis and degradation reactions of amino acid and lipid
metabolism according to the KEGG pathway database84. We consider a
reaction degradation or synthesis if it is included in a degradation or
synthesis pathway of amino acid and lipid metabolism. The detailed clas-
sification of pathways and reactions is shown in Supplementary Data 9.
Using this method, we obtained the number and percentage of each class of
glucose responsiveness in degradation or synthesis pathways of amino acid
and lipid metabolism. (Supplementary Fig. 7).

In silico simulation of metabolic fluxes
The metabolic network in the reconstructed model is shown in Supple-
mentary Fig. 8A. The network includes simplified glycolysis, glycogen
pathway, a part of theTCAcycle, and lactate and alaninemetabolism.These
simplified reactions include R7 (the mutual conversion between F16P and
Glycerophosphate),R8,R9,R10 (the conversionof 3PG throughpyruvate to
citrate, lactate, and alanine), R11, R12 (the conversion of lactate and alanine
through pyruvate and oxaloacetate to 3PG), R13 andR14 (the conversion of

aspartate and malate through oxaloacetate to 3PG). Those reactions esti-
mated dynamic fluxes of glycolysis, gluconeogenesis, glycogenolysis, and
glycogenesis. The model consists of 16 metabolites, 4 enzyme gene
expressions, and 1 phosphorylation of insulin signaling molecules. The
dose-dependent glucose-responsive time-course data of 6 metabolites
namelyG6P,G1P, F1,6P,3PG,UDP-glucose, andglycogenwerefittedwhile
the measured time-course of other molecules were used as the input of the
model. We used the mass balance equations to estimate changes of a
molecule

X
Vin þ

X
Vout ¼ dY

dt
; ð1Þ

where y denoted the estimated amount of a metabolite and V denoted the
inflow and outflow fluxes to metabolites. We also used the formalism of
Modular Rate Law and particularly the common modular with complete
activation/inhibition22,87

V ¼ k1 × f S ×
Y

f I ×
Y

f A; ð2Þ

so that it could consider the contribution of activators, inhibitors, and
substrate and product effects to the reaction rate. In themodular rate law, V
denotes the reaction rate, which is the flux of ametabolic reaction. k1, f S, f I ,
and f A denote the maximum reaction rate, the function of substrate and
products, the function of inhibitory regulation, and the function of activa-
tory regulations, respectively. For the function of substrate and products, we
used different formations to simulate irreversible and reversible reactions:

; f S ¼
Yn
S

KsþYn
S

� �
if the reaction is irreversible

Π Yn
S=KSð Þ�k2Π Yn

P=KPð Þ
Π Yn

S=KSþ1ð ÞþΠ Yn
P=KPþ1ð Þ�1

� �
if the reaction is reversible

8><
>: ;

ð3Þ

where YS, YP and n denote the concentrations of substrates, productions,
and the stoichiometric coefficient. In the function of substrate and products,
k2 denoted the thermodynamic constant representing the ratio between the
concentrations of the products and the substrates at equilibrium while KS

andKPdenoted theMichaelis constants for the substrate and theproduction
for the underlying reaction, respectively. For the function of inhibitory
regulation f I , the formation is expressed as

Q
j

KI j

KI jþYIj

� �
, where YIj denotes

the concentration of inhibitor j and KI denotes the inhibitory constant.
Similarly, the function of activating regulation f A is expressed asQ

i
YAj

KAiþYAi

� �
, where YAi, denotes concentration of the activator i and kA

denotes the activatory constant. The contribution of phosphorylation to the
reaction rate is considered either an activator or an inhibitor according to
our dose-dependent glucose-responsive transomic network constructed in
this study. Consequently, the kinetic model comprises the rate equations in
Supplementary Data 10.

The estimates for the kinetic rate constants were calculated using the
flux distribution predicted by a kinetic simulation model. We determined
the initial values of the flux estimate as follows.We first generated a random
set of parameters within the predetermined ranges.We set the upper bound
for parameter k1 as104 and the lower bound as 10�2. We set the upper
bound for parameter k2, kS, kP , kA and kI as 100 times of the digit of the
maximum level. Similarly, we set the lower bound for parameter k2, kS, kP ,
kA and kI as 1%of the digit of theminimum level of its underlyingmolecule.
When a random set of parameters is generated, we then examined the
generated set of initial parameters andwhether they are confined to a steady
state of metabolic flux for 24 hours before the glucose administration using
the experimentally measured molecule concentrations as the initial values.
We determined a steady state for a particular set of parameters was reached
when the concentration changes of all simulatedmetabolites were less than
1% of their steady-state fluxes at 0min within the last 10min of the steady-
state simulation.
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The simulation of dynamic fluxes after glucose administration is
conducted following the steady-state simulation. We used the final con-
centration of fitted metabolites in the steady-state estimation as the initial
value of the dynamic fluxes. The same set of parameters for the kinetic
simulation model was used for both the steady-state estimation and
dynamic flux simulation. In order to reflect the positive glycolysis after
glucose administration, we set a positive constraint offlux inR3 at 60min to
simulate the flux of glycolysis after glucose intake doses (0.25, 0.5, 1, 2, 4 g/
kg-weight).

We evaluated thefittingusing the residual sumof squares (RSS) of both
the experimentally measured metabolite concentration and steady-state
flux:

RSS ¼
P

M;T;D
yM;T;D�YM;T;D

yM;T;D

� �2

NM;T;D
þ
P

R
yR�YR
yR

� �2

NR
; ð4Þ

where the functionYM;T;D orYR is the value of estimated steady-stateflux for
reactions (R)or concentrationsofmetabolites (M).M includes sixmetabolites
of G6P, G1P, F1,6P, 3PG, UDP-glucose, and glycogen, T includes the time
points of 0, 20, 60, 120, and 240min and D includes the 0, 0.5, 1, 2, 4 g/kg-
weight glucose dose which were the time points and doses measured by
experiments. R includes combinations of the steady-state fluxes of reactions
namely the sumof reactions R15 andR7, the sumof reactions R11, R12, R13,
and R14, the sum of reactions R8, R9, and R10, and the subtraction of
reactionsR9 fromR12whichare the equivalentfluxes to those experimentally
measured in a previous study42. yM is the experimentally measured
concentrations of metabolites in this study and yR is the experimentally
measured fluxes in the liver of fasting mice in the previous study. N is the
number of data. The residues were normalized by the experimentally
measured concentrations or flux as well as the number of data.

The parameters of the kinetic model were estimated by minimizing
RSS using a covariancematrix adaptation evolution strategy (CMA-ES)88 to
approach the neighborhood of the local minimum followed by the interior-
point algorithm for constrained nonlinear multivariable function89 to reach
the local minimum.

After 50 independent estimations of the model, we selected the para-
meter values that resulted in the minimum RSS. The parameters and
equations used in this study are shown in Supplementary Data 10. We
confirmed that the best-fittedmodel had similar time courses ofmetabolites
and steady-state fluxes to the experimentally measured data in this or
previous studies. We performed the simulations and the parameter esti-
mations using MATLAB software (version R2021a; MathWorks) and on
the supercomputer system from the National Institute of Genetics in Japan.
Using the best estimation result. Time courses of fluxes were presented in
Supplementary Fig. 7. Pearson correlation coefficients between time courses
of fluxes and molecules were also calculated (Supplementary Fig. 9).

Calculation of flux AOCs
We calculated the time course Area Of the Curve (AOC tð ÞÞ for estimated
fluxes as follows:

AOC tð Þ ¼
Z

V tð Þ � dt; ð5Þ

whereV tð Þ is the simulatedflux value and t is time. The time courses of flux
AOCs were shown in Supplementary Fig. 7.

Parameter sensitivity analysis for the ED50s and T1/2s of
estimated fluxes
We defined the individual model parameter sensitivity (S) as follows:

S f xð Þ; x� � ¼ ∂ log f xð Þ
∂ log x

¼ x
f xð Þ �

∂f xð Þ
∂x

; ð6Þ

wherex is theparameter value and f(x) is theED50 orT1/2 for estimatedfluxes.
The differentiation is numerically approximated by the central difference

∂f xð Þ
∂x

� f x þ Δxð Þ � f x � Δxð Þ
2Δx

; ð7Þ

and Δx is set to 1% of x. We examined the parameter sensitivity for 53
parameters of maximum reaction rate k1

� �
, substrate constants ks

� �
, pro-

duct constants kP
� �

, thermodynamic constant k2
� �

, inhibitory constants
kI
� �

andactivatory constants kA
� �

related todosesof administratedglucose.
The higher the absolute value of parameter sensitivity, the larger the effect of
the parameter on the ED50 or T1/2. The results of the sensitivity analysis are
presented in Supplementary Fig. 9.

Implementation
Statistical tests, transomic network analysis, fluxes simulation, and analysis
were performed using MATLAB 2021a (The Mathworks Inc.). The statis-
tical identification of glucose-responsive genes was conducted using R
(v1.1.456) and EdgR (3.30.3) package90. Visualization of transomic network
in GraphModeling Language (GML) formats was performed using Python
3.7 and VANTED (2.8.2)91.

Data availability
Additional data are made available in supplementary tables of this manu-
script. Accession codes of fastq data will be available before publication.

Code availability
All software used for data analysis is available in the main text or the
supplementary materials. Custom codes are available on request from the
authors.
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