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 ABSTRACT 

Purpose: Sarcoma encompasses a diverse group of cancers that 
are typically resistant to current therapies, including immune 
checkpoint blockade (ICB), and underlying mechanisms are 
poorly understood. The contexture of sarcomas limits generation 
of high-quality data using cutting-edge molecular profiling 
methods, such as single-cell RNA-sequencing, thus hampering 
progress in understanding these understudied cancers. 

Experimental Design: Here, we demonstrate feasibility of 
producing multimodal single-cell genomics and whole-genome 
sequencing data from frozen tissues, profiling 75,716 cell tran-
scriptomes of five undifferentiated pleomorphic sarcoma and 

three intimal sarcoma samples, including paired specimens from 
two patients treated with ICB. 

Results: We find that genomic diversity decreases in patients 
with response to ICB, and, in unbiased analyses, identify cancer 
cell programs associated with therapy resistance. Although in-
teractions of tumor-infiltrating T lymphocytes within the tumor 
ecosystem increase in ICB responders, clonal expansion of CD8+ 

T cells alone was insufficient to predict drug responses. 
Conclusions: This study provides a framework for studying rare 

tumors and identifies salient and treatment-associated cancer cell 
intrinsic and tumor microenvironmental features in sarcomas. 

Introduction 
Single-cell genomics, and specifically single-cell RNA-sequencing 

(scRNA-seq), has propelled characterization of the immune mi-
croenvironment in many solid tumors (1–3). However, it faces 
significant challenges in aggressive malignancy of mesenchymal 
origin with limited treatment options and poor clinical outcomes in 
the advanced and metastatic settings. Although immune checkpoint 
inhibitors (ICI) have transformed the therapeutic landscape for 
many cancers, different sarcoma subtypes have variable response 
rates to ICIs, and only few exhibit durable, clinically significant 
responses to anti-PD1 checkpoint blockade (4, 5). The development 

of novel immunotherapies is hindered by a relatively limited un-
derstanding of the underlying contribution of niche-specific im-
munity in different subtypes of sarcoma, particularly given the 
varied clinical and molecular features exhibited by each of the more 
than 100 subtypes. Single-cell genomics has the potential to provide 
valuable insights into the drivers of response and resistance to ICIs 
by identifying changes in rare cellular subpopulations or unique 
cellular states that are otherwise lost in bulk genomic and tran-
scriptomic analysis. Such methods may be the key to discovering 
novel immunotherapeutic targets in sarcoma. 

The successful implementation of scRNA-seq techniques in sar-
coma, however, is limited by specimen and technical requirements. In 
particular, scRNA-seq requires immediate processing of a relatively 
large amount of fresh tissue (milligrams to grams), which is not 
conducive to clinical workflow. Particularly with rare tumors, col-
laborative studies between multiple institutions designed to incor-
porate larger numbers of specimens become impractical. The 
processing of fresh tissue also demands tremendous infrastructure in 
the form of skilled technicians and specialized instruments, making 
this a high-cost endeavor with limited clinical utility. Additionally, 
sarcoma originates from muscle, adipose tissue, bone, and cartilage, 
making these tissues physically difficult to dissociate for single-cell 
analysis; aggressive disaggregation methods are required, which typ-
ically involve enzymes, varied temperatures, and flow cytometry (6). 
Studies have identified artifactual signals caused by harsh dissociation 
protocols needed for fresh tissue processing, and in one study of 
sarcoma dissociation protocols in patient-derived sarcoma xenograft 
models, biases in the transcriptome were identified in cellular stress- 
related inflammatory pathways (6, 7). Such artifactual cellular stress 
signals are particularly confounding in studies looking to elucidate 
changes in the sarcoma immune microenvironment. 

Due to these technical challenges, few studies have employed 
single-cell sequencing methods to investigate sarcomas (8–11). 
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In these studies, the fragility of tumor cells leaves the majority 
nonviable after undergoing the harsh dissociation process required 
for sarcoma scRNA-seq; the resulting analyses focused on immune 
cells, which provides only partial insights into the complex 
ecosystems of these tumors. Interpretation of these studies is also 
challenging given relatively small cohorts with heterogenous patient 
populations exposed to varying treatments. 

To address some of these challenges and improve clinical utility, 
we leveraged methods proven to be useful for the generation of 
single-cell genomics data from archival melanoma and lung cancer 
tissues (12–14). These methods can be applied to relatively small 
input material (nanograms to micrograms) that can be derived from 
clinical biopsy specimens and allow single-nucleus RNA-sequencing 
(snRNA-seq). The resulting single-cell transcriptome, matched 
T-cell receptor sequencing (TCR-seq), and population-matched low 
pass whole-genome sequencing (lp-WGS) are of high quality. We 
describe a pilot study utilizing these methods on archival tumor 
tissues of two sarcoma subtypes, including intimal sarcoma (INS; 
ref. 15) and undifferentiated pleomorphic sarcoma (UPS; refs. 4, 
16), including two matched pair samples from immune checkpoint 
blockade (ICB)–treated patients. 

Materials and Methods 
Patient tissue collections and ethical approval 

Fresh and frozen tissue specimens were collected under IRB ap-
proved protocols at New York Presbyterian Hospital/Columbia 
University Medical Center (AAAT5388). For the comparison of 
scRNA-seq and single-nucleus RNA-sequencing (snRNA-seq) pro-
tocols, surgical specimens were reviewed by qualified pathologists 
according to institutional guidelines and immediately placed in ice- 
cold RPMI 1640 (Thermo Fisher Scientific; #21875034) without 
supplements and transported to the laboratory space for immediate 
processing (scRNA-seq). Other samples were flash frozen for sub-
sequent snRNA-seq. 

Tissue processing 
Processing of frozen tissues was performed as previously de-

scribed. Briefly, tissue blocks embedded in optimal cutting tem-
perature (Tissue-Tek, Sankura; #4583) were sectioned on a Leica 
CM1950 cryostat (Leica) into 20-µm-thick curls (four to five for 
each samples) and placed in 5-mL tubes (Eppendorf), washed with 
ice-cold PBS (Thermo Fisher Scientific, #10010023), and spun at 
400 g for 2 minutes, and supernatants were discarded. The tissue 
was then resuspended in 1-mL Salt Tris (ST) buffer (146-mmol/L 
NaCl, 10-mmol/L Tris-HCL pH7.5, 1-mmol/L CaCl2, and 21- 
mmol/L MgCl2 in ultrapure water) with 0.03% Tween-20 Sigma 
Aldrich, #p7949 (¼TST buffer) with 0.1% BSA (New England 
Biolabs, B9000S) and supplemented with or without 40-U/mL 
RNAse inhibitor (RNAse OUT, Thermo Fisher Scientific). The 
suspension was thoroughly pipetted 15 � using a 1-mL pipette to 
mechanically dissociate the tissue and left to incubate for 5 minutes 

on ice. After 5 minutes, the pipetting step was repeated, and the 
reaction was quenched using 4-mL ST buffer with or without 40-U/ 
mL RNAse inhibitor (RNAse OUT, Thermo Fisher Scientific, 
#10777019; Supplementary Table S1). The sample was filtered 
through prewetted 70-µm nylon mesh filters (Thermo Fisher Sci-
entific) into a 50-mL conical tube and the filter was washed with 5- 
mL ST buffer. The tube was then centrifuged at 500 � g for 
5 minutes to collect the dissociated nuclei, and supernatants were 
discarded. Nuclei were resuspended in 100- to 400-µL ST buffer and 
filtered with a 40-µm mesh filter attached (Thermo Fisher Scientific) 
and counted in a Neubauer counting chambers (Bulldog Bio, Inc.) 
after staining of nuclear DNA with 50-µg/mL Hoechst 33342 
(Thermo Fisher Scientific, H3570). The exemplary fresh tissue 
specimen was processed as previously described. 

snRNA/scRNA and TCR library preparation 
A range of 0.9 to 1.5 � 103 nuclei were loaded in ST buffer 

without RNAse inhibitor using a Chromium controller and Chro-
mium reagents (10x Genomics) or 50V2 capture (#1000006 and 
#1000263). After reverse transcription and cleanup, cDNA libraries 
were generated according to manufacturer instructions with one 
additional cycle of cDNA amplification to account for the relatively 
lower amount of RNA in nuclei compared with whole cells. TCR 
libraries were prepared from amplified cDNA libraries according to 
manufacturer instructions using the following reagents (all 10x 
Genomics): Chromium Single Cell V(D)J Enrichment Kit for hu-
man T cells (#1000005) was used for cDNA generated with Chro-
mium Single Cell V(D)J reagents (#1000006), and final sequencing 
libraries were prepared using Chromium i7 multiplexing kit 
(#120262). Single Cell Human TCR Amplification Kit (#1000252) 
was used for cDNA generated with Chromium Next GEM Single 
Cell 50 V2 reagents (#1000263), and final sequencing libraries were 
prepared using library construction kit (#1000190) and Dual Index 
Kit TT set A (#1000215). 

Sequencing of single nuclei libraries 
Final sequencing libraries were quantified using Tapestation 

D1000 and D5000 reagents (Agilent) and a 2200 TapeStation sys-
tem. Samples were then mixed and sequenced to target >20,000 
reads per cell for gene expression libraries and >5,000 reads per cell 
for TCR libraries using NovaSeq S4 or HiSeq 4000 (Illumina) with 
at least 2 � 100 bp read length. 

Whole-genome library construction and sequencing 
Excess nuclei (>1 � 105) from the sample preparations for sn- 

RNAseq were collected by centrifugation (500 � g, 5 minutes) and 
snap frozen after removing all but ∼10-µL ST buffer and stored until 
further processing at �20°C. If insufficient numbers of nuclei were 
available after loading, additional curls were processed using the 
same methods as described above for single nuclei extraction. To 
extract genomic DNA from nuclei, the nuclei were briefly thawed 
on wet ice and genomic DNA was extracted using DNeasy Blood 
and Tissue kit (Qiagen; #69504) according to manufacturer in-
structions and eluted in RNAse and DNAse free water at 37°C for 
5 minutes. The DNA concentration was then quantified using a 
Nanodrop. Indexed WGS libraries were mixed equimolarly and 
sequenced on an Illumina MiSeq instrument with 0.1 to 1� cov-
erage using the V2-300 cycle kit (Illumina). We used an R-based 
package ichorCNA v0.2.0 (17) for estimating tumor fractions in 
ultra-low pass whole-genome sequencing data, followed by predic-
tion of large-scale copy number variation (CNV). We first converted 

Translational Relevance 
Understanding genomic and transcriptional heterogeneity 

across and within sarcomas at baseline and during therapy may 
provide insights into development of future therapies. 
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the raw fastq data to sam using the bowtie2 v2.4.5 (18), followed by 
converting the.sam file to.bam using samtools v1.16.1 (19). We then 
generated the read count coverage data using the HMMcopy 
v1.38.0 R package (20). This creates a WIG file with 1-Mb bins 
across all chromosomes including reads with a mapping quality 
more than20. This is provided as an input for ichorCNA v0.2.0 (17), 
generating genome-wide plots representing the log2 ratio copy 
number for each bin in the genome. Finally, GISTIC 2.0 (21) was 
used to assign a copy number to each gene. 

Multiplex tissue imaging and spatial analysis 
Tissues were heated in the hybridization chamber to allow for 

adhesion onto the glass side prior to the dewax and staining done 
in the Leica Bond RX Fully Automounted Research Stainer. Slides 
were set to stain under the approved Leica 7-Color Double Dis-
pensing protocol in which they were treated with six primary 
antibodies and 10� Spectral 40,6-diamidino-2-phenylindole 
(Akoya, Cat #FP1490). Primary antibodies were detected by an 
horseradish peroxidase–conjugated secondary antibody (Akoya, 
ARH1001EA) before opals were applied. Antibodies were diluted 
with Akoya 1� Antibody Diluent Block (Akoya, Cat# 
ARD1001EA). The following antibody-opal order and pairings 
were used to image samples pre- and post-treatment: anti-CD19 
Antibody (Leica, Cat # CD19-163-L-CE, Clone BT51E, 1/50) and 
Opal 570 (Akoya, Cat # FP1488001KT), anti-CD8 Antibody 
(Leica, Cat #PA0183, Clone 4B11, 1/50) and Opal 650 (Akoya, Cat 
# FP1496001KT), anti-Ecadherin Antibody (Cell Signaling, Cat 
#3195, Clone 24E10, 1/200) and Opal 540 (Akoya, Cat # 
FP1494001KT), anti-CD163 Antibody (Abcam, Cat #ab74604, 
Clone 10D6, 1/200) and Opal 690 (Akoya, Cat # FP1497001KT), 
anti-Vimentin Antibody (Leica, Cat #PA0640, Clone V9, 1/2) and 
Opal 620 (Akoya, Cat # FP1495001KT), and anti-CD103 Antibody 
(Abcam, Cat #ab129202, Clone EPR4166(2), 1/1,000) and Opal 
780 (Akoya, Cat # FP1501001KT). 

The analysis was preformed utilizing inForm 3.0 following mul-
tispectral imaging of the slides on the Vectra Polaris PhenoImager at 
20� magnification. Multispectral fields underwent unmixing to 
differentiate overlapping signals, autofluorescence, and background. 
Tissue segmentation was preformed to outline areas exhibiting el-
evated anti-Vimentin and E-cadherin signal, as well as areas with no 
signals of interest. Individual cells were segmented with aid from 
4,6-diamidino-2-phenylindole to identify nuclei signal. Cellular 
phenotypes for each cell were also manually identified as belonging 
to one of the six aforementioned markers. Opals that were not 
entirely spectrally isolated from each other required further 
unmixing during cellular phenotyping. The data from each multi-
spectral image was merged to identify the quantity of each cellular 
phenotype per tissue segmented region. 

Computational methods 
Generating gene expression matrices 

The fresh and frozen sample fastq files provided from raw snRNA 
sequencing reads were aligned to the reference GRCh38 genome 
(provided by 10x Genomics Cell Ranger pipeline as “refdata-gex- 
GRCh38-2020-A”). Gene count quantification was computed using 
CellRanger v6.1.2 (22), with the expected cell count set to 10,000. 

Filtering background noise across gene expression matrices 
For the fresh and frozen samples, the remove-background func-

tion provided by CellBender v0.2.0 (23) was utilized, using the raw 

feature matrix (“raw_feature_bc_matrix.h5”) from CellRanger 
v6.1.2 (22). The expected cells were set to 5,000, and the “total- 
droplets-included” parameter was set to a value between 10,000 and 
20,000 based on the plateau observed in the barcode-rank plot. In 
doing so technical ambient RNA counts and empty droplets were 
removed from the downstream analysis. 

Quality control and filtering 
The expression matrices generated by CellRanger v6.1.2 (22) in 

which then processed individually in R v4.1.2 using Seurat v4.1.1 
(24). Each Seurat object for a corresponding sample was filtered to 
only keep cells with 300 to 7,500 genes, 600 to 40,000 Unique 
Molecular Identifiers (UMIs), and <10% of mitochondrial reads. 
Scrublet v0.2.1 (25) was applied as well to remove doublets, using an 
expected rate of 11% for each sample, set based on the loading rate. 
The filtered gene-barcode matrices for each sample was then nor-
malized and log-scaled as per the Seurat pipeline, using the “Nor-
malizeData,” followed by the “LogNormalize” function (24). Gene 
expression matrices were then scaled using “ScaleData” on a per- 
sample basis. Following this, principal component (PC) analysis 
and Uniform Manifold Approximation and Projection for Di-
mension Reduction (UMAP) dimension were performed using the 
top 30 computed PCs. The stress signature was computed across 
each cell in the provided samples (eight frozen one fresh) using the 
“AddModuleScore” function provided by Seurat. This data was 
compared with droplet-based sarcoma data accessed via Gene 
Expression Omnibus from Jerby-Arnon and colleagues (10) and 
Slyper and colleagues (13) after applying similar filters, keeping 
cells with 300 to 7,500 genes, and <10% of mitochondrial reads. 
When plotting stress signatures, expression thresholds between 15 
and �5 were applied for visualization purposes (Supplementary 
Fig. S1). 

Integration of individual samples 
All individual frozen samples were integrated using the Seurat 

v4.1.1 (24) canonical correlation analysis pipeline to remove batch 
effects from each individual sample. This was followed with using 
the “SelectIntegrationFeatures,” and the “FindIntegrationAnchors” 
function to select 2,000 anchors using the top 50 dimensions from 
the from canonical correlation analysis to specify the neighbor 
search space (24). “IntegrateData” was then called to integrate the 
eight frozen samples from the precomputed anchors. These data 
were then normalized and scaled using the “NormalizeData” and 
“ScaleData” function within Seurat. 

Identification of malignant cells and clones using copy number 
alterations 

To identify the chromosomal CNA for individual cells, Numbat 
v1.1.0 was utilized with default parameters (26). For each sample, im-
mune cells identified via SingleR v1.8.1 using the built in “Blue-
printEndcodeData” as a reference for inferring the CNAs in predicted 
nonimmune cell populations (27). Numbat infers the clonal history via 
maximum likelihood phylogeny of the profiled samples and was uti-
lized to assign malignant cells to specific clones. Tumor cells were 
identified with a cutoff of 0.5 using the joint output of posterior an-
euploidy probability. We found that across all samples, the malignant 
and nonmalignant assignments was discordant and aligned with spe-
cific clones outputted by numbat. Visualization of segments of inferred 
amplifications and deletions across each malignant clone aligned with 
large-scale CNV prediction done with ultralow-pass (ulp) WGS com-
puted with ichorCNA v0.2.0 (17). 
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DGE and gene set enrichment across malignant clones 
Seurat’s “FindAllMarkers” function was used to perform dif-

ferential gene expression (DGE) based on the normalized data for 
each numbat clone on a per-sample basis. Using EnrichR, gene set 
enrichment was performed across MSigDB Hallmarks v7.4.1 
(24, 28). 

Inferred CNA comparison between RNA and DNA 
Fraction of genome altered (FGA) measurements were utilized to 

correlate inferred CNA across individual cells within each snRNA- 
seq sample with the large-scale CNV prediction made using ulp- 
WGS. Numbat’s outputted consensus strand provided a probability 
of a genomic event occurring across specific segments using snRNA. 
This probability, multiplied by the number of SNPs in the given 
segments, estimated the FGA across each sample (26). This was 
correlated with the output from ichorCNA using ulp-WGS (17). 
Here, FGA measured the genome fraction with a segment 
mean >0.2 or less than �0.2. The Pearson correlation coefficient 
and P-values between these measures was reported, along with the 
regression fit line. Residuals between each point and the regression 
fit were computed, squared, and averaged to get the mean squared 
error (MSE); 1.96 times the square root of the MSE was used to 
obtain the 95% confidence interval plotted around the 
regression line. 

Computation of the tumor-diversity index 
Tumor diversity was defined using a diversity score index, fol-

lowing the methodology of Ma and colleagues (29). All malignant 
cells across the eight snRNA samples were merged into a single 
unintegrated object. The normalized count matrix was subsequently 
projected onto 50 PCs through PCA. For each sample, the centroid 
was identified as the arithmetic mean of all 50 PCs for the corre-
sponding malignant cells. The diversity index was defined as the 
average Euclidean distance between each associated malignant cell 
and the centroid for a specific sample. Similar as Ma and colleagues 
(29), outliers were excluded by filtering cells with any PCs 
beyond ±4 standard deviations for a given particular sample. These 
extreme cells were omitted from the diversity index calculation (29). 

Comparison of treatment-resistant and treatment-responsive 
malignant clones in patients X and Y 

The malignant cells pertaining to patient X (Sample S167 for Pre 
IO, Sample S410 for post-IO) were normalized and then using 
Seurat’s “FindIntegrationAnchors” to select 2,000 anchors between 
the two samples (24). This was repeated for patient Y. Following the 
two samples were then integrated using the “IntegratedData” and 
then scaled. The Seurat clustering pipeline was utilized with the 
Louvain algorithm and a resolution of 0.8 to identify 16 malignant 
cell clusters between the two samples in patient X. Inspection of 
these clusters results in malignant cell clusters that contained 
more than 30% of samples from the post-IO sample were labeled 
as treatment-resistant malignant cells, and the remainder as 
treatment-responsive malignant cells. 

DGE was done on patient X using Seurat’s “FindAllMarkers” 
function across the integrated malignant cell population, locating 
markers for treatment-resistant malignant cells and treatment- 
responsive malignant cells (2). Using EnrichR, gene set enrichment 
analysis (GSEA) was performed across Hallmarks of MSigDB v7.4.1 
(28) given the identified marker list. For patient Y, DGE was done 
across the integrated malignant cell population to identify markers 
that pertained to the pre-IO and the post-IO tumor cell population. 

GSEA was carried out in the same way. For patient X, the top 12 
returned pathways for the treatment-resistant and treatment- 
responsive malignant clusters were plotted (two of these pathways 
were shared, visualizing 20 total pathways). The returned combined 
score was rescaled between 0 and 1. This was repeated for patient Y, 
comparing pre- and post-treatment malignant cells and visualizing 
the top 20 shared pathways following gene set enrichment. 

Nonmalignant cell type annotation 
Nonmalignant cells across each sample were integrated using 

the Seurat integration pipeline with 2,000 identified integration 
anchors, following normalization and scaling of the nonmalignant 
cells for each individual sample to account for batch effects. 
Fourteen clusters were then identified within this integrated object 
using the Louvain algorithm with a resolution of 0.2. Broad cell 
type labeling was done with manual annotation based on the 
assigned markers for each cluster. This was refined using the ex-
pression level of known markers and signatures. Further refined 
myeloid and T-cell annotations were done following boarder re-
finements in the manner. The annotated T cells were selected, and 
the outputted Seurat object was rescaled and re-clustered with a 
resolution of 0.8. These clusters were then subject to another 
round of manual annotation using the cluster markers outputted 
by “FindAllMarkers” (24). This was repeated with the myeloid cell 
population. 

DC analysis 
Diffusion component (DC) analysis was performed as a nonlinear 

dimensionality reduction method to examine the primary compo-
nents across refined CD8+ T-cell and myeloid populations. Fifty 
DCs were computed using the Destiny v3.8.1 (30), and the resulting 
eigenvectors were merged to their respective Seurat objects (30). 
The top three DCs were then visualized across the refined CD8+ 

T-cell and myeloid populations. Nonclassical monocytes were re-
moved from myeloid population prior to DC calculation for visu-
alization purposes. Cells that were in the top 10 percentile of CD8+ 

T cells in the expression of TOX were assigned to be TOX+. The 
same method was used for the assignment of TC7+ CD8+ T cells. 

Integration of TCR data 
CellRanger v6.1.2 (22) was used to align TCR fastq files. We used 

scRepertoire v1.7.2 (31) to filter contig outputs, following the Cell 
Ranger pipeline. Clonotypes were assigned based on two TCR 
chains, enabling analysis of clonotype dynamics. We examined 
unique clonotypes and combined the TCR information with mRNA 
expression data using the Seurat pipeline. 

Analysis shared MPs using NMF 
Estimation of MPs using KINOMO: Nonnegative matrix factor-

ization (NMF) performs dimensionality reduction across nonnega-
tive data, such as seen with snRNA-seq. Kernel dIfferentiability 
correlation-based NMF algorithm using Kullback–Leibler diver-
gence loss Optimization (KINOMO), a semi-supervised NMF 
model was utilized here using the RNA assay as the input (bioRxiv 
2022.05.02.490362). Moreover, KINOMO consists of a factorization 
error analysis capable of handling outliers with regularization and 
structure perseveration. Metaprograms (MPs) are estimated using 
the sample-wise factors/programs returned and are co-correlated 
using a Spearmen’s correlation. Significant testing and/or correla-
tion across factors (threshold of 0.4–0.9) are computed iteratively to 
eventually obtain the observed MPs. 
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Normalized gene contribution per MP: For each MP, a list of 
unique genes was identified and ranked based on a weighted stouffer 
integrated expression value. For each of the “H” matrices generated 
sample wise (returned by KINOMO), we identify the cell barcodes 
associated with each program. An expectation maximization–Gaussian 
mixture model (EM-GMM) was run on the normalized single-cell data 
to identify the modality of gene distribution (bioRxiv 
2022.05.02.490362). Based on the modality (could be unimodal, bi-
modal, or multimodal), the peak was identified that we term as the 
“normalized gene contribution,” associated with each gene unique to a 
specific MP. 

GSEA across MPs: The selected representative genes with the 
highest observed gene contribution to a given MP were assigned for 
GSEA. Using these genes alongside EnrichR (28), GSEA was per-
formed across Hallmarks of MSigDB v7.4.1 (32), given the identified 
gene set for each MP (1). For comparing MP3 and MP6 to MP1, 
MP2, MP4, and MP5, the assigned gene sets for MP3 and MP6 were 
concatenated, and GSEA was performed. This was compared with 
the GSEA results performed on the concatenated gene sets assigned 
to MP1, MP2, MP4, and MP5. The returned combined score for 
both sets of GSEA was rescaled between 0 and 1 individually and the 
top 20 representative pathways were visualized (24, 28). 

Immune resistance signature measurement: The given cells 
assigned to each MP returned by KINOMO analysis were measured 
for their associated expression of immune resistance signature using 
the “AddModuleScore” function provided by Seurat. 

Ligand–receptor analysis 
ContactTracing was used to identify ligand–receptor interac-

tions within and patient Y that differ prior and following ICB 
treatment (33). ContactTracing provides a systems approach to 
predicting conditionally dependent cell interactions and their 
effects. ContactTracing exploits the variability within single-cell 
data without reliance on prior knowledge of downstream targets 
to provide an unbiased estimate of ligand–receptor interactions 
within the TME (33). ContactTracing was built to account for the 
fact that in a given TME, it is unlikely all ligand-producing cells 
and receptor-expressing cells are simultaneously involved in a 
specific cell-to-cell interaction (33). Thus, for each potential 
ligand–receptor pair a likelihood ratio test was conducted 
comparing receptor-expressing to receptor-null cells within a 
given cell cluster. To distinguish between co-expressing ligands 
and receptors, ContactTracing measured the variability in these 
results between pre- and post-treatment conditions in patients X 
and Y (33). Inputs for ligand–receptor interactions were pulled 
from curated protein–protein interactions curated by CellPho-
neDB v2.1.4 (34). A threshold fraction of minimum expression 
for receptors and ligands was set to 0.05 for a given cell type was 
used to filter ligand–receptor pairs. ContactTracing’s “make_-
circos_plot” function, alongside custom ligand minimum log 
fold-change filters ranging from 0.15 to 0.35 for visual appeal, 
was used to generate the visualized circus plot (33). 

Statistics and reproducibility 
Samples for contrasting scRNA-seq with snRNA-seq were chosen 

based on the tissue that was accessible and had enough substance for 
fresh and sequential frozen analysis as collected in the Izar laboratory. 
No prior statistical method was used to predetermine sample size. 

Experiments were conducted without randomization, and the investi-
gators were not blinded to allocation during experiments and 
assessment. 

Data availability 
Data can be accessed on Gene Expression Omnibus under ac-

cession number: GSE243381. Additional data requests should be 
directed to the corresponding author. Code is available via https:// 
github.com/IzarLab/sarcoma-sn. 

Results 
Multimodal single-cell profiling from archival sarcoma 
specimens 

Here, we performed snRNA/TCR-seq coupled with population- 
matched WGS of UPSs and INSs of the pulmonary artery (Fig. 1A). 
In total, we profiled eight specimens from six patients, encom-
passing five UPSs and three INSs, and paired specimens from two 
patients (one UPS and INS each) treated with ICB (Fig. 1B). These 
included four pretreatment specimens (with two patients who 
subsequently had a clinical response to ICB), three post/on-ICB and 
one recurrent lesion from a patient treated with doxorubin. Fol-
lowing stringent quality control and removal of ambient RNA, a 
total of 75,716 cell transcriptomes were included in subsequent 
analysis, including an average of 9,465 cell transcriptomes per 
specimen (Supplementary Table S1). To emphasize the technical 
quality achievable from performing profiling of frozen tissues, we 
also generated single-cell RNA-seq of another sarcoma specimen 
directly from fresh tissue (Supplementary Table S1). The median 
number of genes detected per cell, a commonly used metric for data 
quality, from snRNA-seq was 1,723 (range 1,006–2,720) compared 
with 648 in scRNA-seq (Fig. 1C). The frequency of mitochondrial 
reads in snRNA-seq versus scRNA-seq was 1.17% versus 4.78% 
(Supplementary Table S1). Furthermore, expression of a stress sig-
nature, artifactually introduced during tissue processing, was vir-
tually absent in snRNA-seq but was strongly expressed in scRNA- 
seq (Fig. 1D). We also validated this observation by analyzing 
previously published data of synovial sarcoma (10), Ewing sarcoma, 
and rhabdomyosarcoma (13) on which either fresh or frozen single- 
cell profiling was performed (Supplementary Fig. S1). Together, 
these results indicate that single-cell profiling from frozen sarcoma 
tissues yielded high quality, whereas avoiding potential artifactual 
signals introduced by processing of fresh tissues. Furthermore, the 
tissue input for snRNA-seq is substantially smaller compared with 
scRNA-seq, thus, overall favoring profiling from frozen material. 

Genomic and transcriptional cancer cell heterogeneity 
Defining malignant from nonmalignant cells in contexts in which 

cancer cells share a high degree of transcriptional similarity with 
stromal cells within the tumor ecosystem, such as in the case of 
sarcomas, can be challenging. To address this, we first performed 
inference of CNAs, which should be present in malignant and 
largely absent in nonmalignant cells in snRNA-seq (Fig. 2A). 
Concurrently, we performed lp-WGS on DNA isolated from the 
same cell pool on which we also performed snRNA-seq on (Sup-
plementary Table S1) and determined CNAs using ichorCNA (17). 
We find strong concordance among the inferred and measured 
CNAs on RNA and DNA, respectively, and concordant tumor pu-
rity (Fig. 2B) overall demonstrating that assignment of cancer cells 
was robust. Across all eight specimens, we identified 46,670 ma-
lignant and 29,046 nonmalignant cells (Fig. 2C). 
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We first explored cancer cell heterogeneity within individual 
specimens. Clustering of malignant cells from each specimen 
revealed variable degree of heterogeneity (measured by a diversity 
score, “Methods”; Fig. 2D). DGE among cancer cells within each 
patient revealed different drivers of variability. Using GSEA, we 
found transcriptional programs of clones within individual patients 
varied around few pathway axes, including epithelial-to-mesenchy-
mal-transition (EMT), UV response dn (down-signature), mitotic 
spindle, myogenesis, cell migration, and apical junction, suggesting 
conserved programs and interactions with immune-mediated effects 
(Fig. 2E; Supplementary Table S2). Furthermore, these data also 
indicated that variability underlying aneuploidy patterns across 
patients introduced an important bias in direct comparisons of 
patient specific gene expression patterns. 

Recurrent cancer cell programs associated with ICB resistance 
To overcome this bias and enable comparisons across the entire 

cohort of patients, we used an NMF approach (KINOMO; bioRxiv 
2022.05.02.490362). In this approach, we first determined gene ex-
pression programs (factors) of variability within each specimen and 
then determined the co-correlation of these programs across the entire 
cohort (MPs; Fig. 3A). This yielded 28 programs (average 3.5 per 
sample) and six recurrent MPs that were composed of programs from 
three or more patients each (Fig. 3B). Importantly, each specimen 
harbored cells with cell cycle programs indicating active proliferation, as 
expected. Most MPs harbored programs from a mixture of clinical 
contexts (pre-/post-therapy) and sarcoma types (UPS and INSR). 

Given the overlap and redundancy in several of these pathways, 
we next sought to identify unique gene signatures that specifically 
determine the function and the normalized gene contribution of 
each MP (“Methods”; ref. 35). This revealed unique biologic func-
tions of gene programs driving specific MPs (Fig. 3C). MP1 
enriched for allograft rejection, UV response dn, Interferon gamma 
response, UV response dn, interferon alpha, KRAS signaling, and 
interferon gamma responses, MP2 for interferon gamma response and 
mitotic spindle, MP3 for EMT, myogenensis, angiogenesis, coagula-
tion, and hypoxia and UV response dn, MP4 for TGBb and Notch 
signaling, MP5 for EMT, mitotic spindle, and UV response dn, MP6 
for MYC targets, cholesterol homeostasis, mTORC1 signaling, and 
EMT. Notably, MP3 and MP6 programs strongly enriched for ICB- 
resistance signature were previously described in melanoma 
(Fig. 3E) and compared with other MPs, more strongly enriched for 
EMT, angiogenesis, MYC targets, among others (Fig. 3D). Impor-
tantly, a patient (S408) with recurrence after doxorubicin therapy 
did not contribute to MP3 or MP6, suggesting that these programs 
did not simply represent resistance to any therapy but potentially 
specifically to ICB. Together, these data indicate that recurrent 
programs exist in cancer cells among multiple patients with resis-
tance to ICB. 

Cancer cell evolution among patients with paired samples 
We next interrogated the two patients for which we had paired 

specimens. Patient X was a patient with INS who had a pretreatment 
biopsy (S167), received pembrolizumab for approximately 12 
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months, achieved a complete response, discontinued therapy, and 
had a metastatic recurrence 21 months later (S410) that was resected 
and profiled. The patient went on to receive another course of 
pembrolizumab for 8 months, which was discontinued due to 
neutrophilic dermatitis but remained disease free for 12 months 
after treatment discontinuation. Patient Y was a patient with UPS 
who underwent a pretreatment biopsy (S914), underwent three 
cycles of treatment with ipilimumab and nivolumab, and underwent 
another biopsy (S322) at progression of disease (Fig. 1B). 

Inference of CNAs of patient X samples revealed that a dominant 
aneuploidy pattern in the pretreatment specimen (e.g., Chr 4 am-
plification, Chr 8 amplification, and Chr 16 deletion) and a minor 
clone (Clone 2) with a divergent pattern (e.g., 19 amplification; 
Fig. 4A). Notably, the overall diversity decreased in the relapse 
specimen (Fig. 4B) and clone 2 emerged as dominant clone in the 
recurrence specimen suggesting that these preexisting cells were 
resistant to pembrolizumab. Consistently, cancer cell transcriptomes 
from the post-IO therapy specimens clustered distinctly (Fig. 4C), 
and were characterized by DGE of EMT, angiogenesis, TNFα sig-
naling via NF-kB (Fig. 4D). 

In contrast, patient Y who had intrinsic resistance to ICB had 
diverse clones (Fig. 4E), but no change in diversity with treatment 
(Fig. 4F), showed a higher degree of mixing between both 

specimens in gene expression space (Fig. 4G) and a preserved 
population of cycling cells (Fig. 4H). Inference of CNAs of patient 
Y revealed at least three major cancer clones before therapy and 
minimal change at the time of IO resistance. Notably, clustering 
revealed highly similar global gene expression and both specimens 
contributed to MP3 and MP6, which is reflective of an ICB- 
resistant cell state (Fig. 3E), overall demonstrating that treatment 
did not alter genomic, transcriptomic, and programmatic features, 
indicating that these were intrinsically resistant to ICB. 

Tumor microenvironment, T-cell clonality, and myeloid 
polarization 

We next focused our analysis on the tumor microenvironment 
(TME). First, we used a multi-step process to determine cell types 
and major functional cell states (Fig. 5A; “Methods”) and granular 
annotation of T/NK and myeloid cells (Fig. 5B and C). Across the 
entire cohort, major cell types of the TME were T lymphocytes 
and NK cells (k ¼ 9,300), B lymphocytes (k ¼ 3,320), myeloid 
(k ¼ 11,185) and endothelial cells (k ¼ 1,213), and fibroblasts 
(k ¼ 3,907). We found compositional differences across these cell 
types that may associate with prior-treatment exposures and clinical 
outcomes (Fig. 5D). To validate this, we performed multiplex Im-
munoFluorescence (mIF) and stained for multiple cell markers 
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(CD8, CD19, CD163, E-cadherin, and Vimentin; Fig. 5E). We ob-
served a similar cellular composition distribution across all the 
samples (Fig. 5F). For example, the tumor of patient 559, who had a 
durable complete response to ICB, was densely infiltrated with T 
and B lymphocytes when assessed through snRNA-seq and mIF 
staining. To this extent, we observed a good correlation comparing 
the proportion of each cell type across each patient using the 
snRNA-seq and mIF approaches (Fig. 5G). 

The TCR-seq data consist of 1,925 raw clonotypes, which are mapped 
to 982 T-cell transcriptomes. Within this matched subset, there are 737 
distinct TCRs identified, out of which 325 clonotypes exhibited expan-
sion (Supplementary Table S3). DC analysis integrating gene expression 
and TCR data revealed a trajectory spanning progenitor-like CD8+ 

T cells, tissue-resident memory–like T cells and terminally differentiated 
(TD) T cells with enrichment of clonally expanded T cells in the TD 
compartment (Fig. 5H and I), which also corresponded to increased 
expression of TOX and reduced expression of TCF7 (Fig. 5J). Surpris-
ingly, T cells along the progenitor-like to TD spectrum arose from all 
patients, including those with response and resistance to ICB suggesting 
that clinical outcomes were not sufficiently explained by T-cell pheno-
types (Fig. 5K). This suggest that T-cell responses alone are insufficient to 
predict responses ICB, but additional features, such cancer cell genomic 
evolution, may contribute. Similarly, although some patients showed 
compositional enrichment of some myeloid subpopulations (Fig. 5L and 
M), most samples harbored a spectrum of diverse macrophages. 

Homotypic and heterotypic interactions within the tumor 
ecosystem are shaped by ICB 

Given the absence of clear compositional TME differences among 
ICB responding compared with resistant patients, we reasoned that 
functional changes in the form of cellular and ligand–receptor in-
teractions among cells within the tumor ecosystem may exist. We 

focused on these interactions analyses of the matched patient 
specimens using ContactTracing (33). This novel tool enables con-
ditional inferences of cellular interactions and exploits inherent 
biologic and technical variability of single-cell data among donor 
(expressing a ligand) and recipient cells (expressing the respective 
receptor). The interaction patterns between patient X and patient Y 
showed significant differences over their treatment course: In pa-
tient X, treatment-resistant malignant cells displayed a quantitative 
decrease in heterotypic interactions (e.g., T cells with malignant cells 
and endothelial cells with malignant cells), as compared with 
treatment-responsive malignant cells. Nonetheless, important 
T-cell/malignant cell interactions were sustained among treatment- 
resistant malignant cell populations, including CD226-NECTIN2, 
and CXCL9/CXCL10-DPP4, suggesting sustained effects of prior 
ICB exposure. Homotypic interactions among cancer cells were 
strongly enriched for growth factor–receptor interactions, including 
FGF1-FGFR, IGF1-IGFR, and WNT5A-ROR1, suggesting several 
paracrine/autocrine loops that maintain or promote cell survival 
and proliferation (Fig. 5N). In contrast, although overall cellular 
interactions significantly decreased on a quantitative level in patient 
Y, there were a sustained number of homotypic malignant cell in-
teractions including FGF2-FGFR1, JAG-NOTCH3, GAS6-AXL, and 
TGFB1-TGFBR3, following ICB exposure (Fig. 5O). Together, these 
results suggest that in intrinsic and acquired ICB resistance, a dense 
network of autocrine/paracrine signaling is present and highlight 
the need to fully investigate all portions of the tumor ecosystem to 
dissect clinical phenotypes in response to systemic therapies. 

Discussion 
Single-cell genomics have informed our understanding of the biol-

ogy, heterogeneity, and mechanisms of response and resistance to 
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Figure 3. 
A, Spearman correlation of programs, merged into six MPs. Boxes to the right of the correlation plot were used to indicate, from left to right, the assigned MP of 
an individual MP, if the individual program belongs to a patient with intimal or UPS sarcoma, and if the individual program belongs to a patient, extracted pre-/ 
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normalized gene contribution highest in either MP3 or MP6, to genes with a normalized gene contribution highest in either MP1, MP2, MP4, or MP5. Combined 
scores are rescaled to be between 0 and 1. Top of 20 gene sets are visualized. E, Violin plots and boxplots displaying the immune resistance signature expression 
per cell associated with each MP. 
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modern cancer therapies in a variety of common tumor types, such as 
carcinomas of the lung, breast, and colon and melanoma. To date, the 
application of these methods to rare tumors, such as sarcomas, has been 
limited by several practical and preanalytic challenges (10, 12), such as 
difficulties of collecting fresh tissues specimens and artifacts associated 
with fresh tissue disaggregation to a single-cell suspension of these 
highly rigid tumors. 

Here, we show that multimodal single-cell genomics is feasible 
from small, clinical, frozen specimens of two types of soft tissue 
sarcomas, including undifferentiated polymorphic sarcoma and 
INS, in total comprising an important resource. Moreover, this 
work provides a framework that can be adapted for in-depth ana-
lyses of other rare cancers that are understudied. 

Overall, our analysis reveals transcriptional and genomic diversity and 
tumor microenvironmental and T-cell clonal features of these diseases 
across real-life clinical contexts. A key insight from this work is that 
understanding the salient complexity of these rare tumors and molecular 
underpinnings of response to ICB requires examination of the entire 
ecosystem rather than interrogation of individual parts. We find, for 
example, that despite adequate T-cell responses (e.g., activation, differ-
entiation, and clonal expansion), some patients had intrinsic or acquired 
resistance to ICB, indicating that T-cell responses alone are insufficient to 
predict clinical outcomes. Analysis of cancer cells, using a novel approach 
that mitigates inter-patient transcriptional variability, identified a 

program of ICB resistance found in all patients with either intrinsic or 
acquired resistance to ICB. We previously described this program in 
single-cell RNA-sequencing analyses of patients with ICB-resistant mel-
anoma and demonstrated its prognostic role in a pan-cancer analysis of 
The Cancer Genome Atlas (ref. 1). These results suggest that recurring 
cell programs of ICB resistance may exist across different cancer lineages. 

Analysis of paired biopsies from the same patient afforded addi-
tional insights. First, in a patient with initial complete response to ICB 
and subsequent isolated recurrence, we found that resistance was 
conferred by a major genomic clone that preexisted and emerged 
during therapy and that strongly expressed the ICB-resistance tran-
scriptional program. Consistently, we observed significant reduction of 
cancer cell diversity from the pretreatment to the subsequent biopsy, 
indicating immune pruning of ICB-sensitive clones. In contrast, in 
another patient with paired biopsies who was intrinsically resistant to 
ICB, there was no change in cancer cell diversity, genomic or tran-
scriptomic features. These observations are consistent with a recent 
study of sequential biopsies of melanoma, in which resistance occurred 
despite adequate T-cell responses and was driven by emergence of a 
preexisting cancer cell clone that was defined by a distinct aneuploidy 
pattern (12). This suggests that in some cases, resistance to ICB may be 
explained by large genomic changes rather than point mutations (e.g., 
JAK1 and IFNGR) or loss of specific genes (e.g., B2M) required for 
proper antigen presentation and interferon gamma responses. 

A

E

AMP BAMP DEL CNLoH

CNV state
BDEL

clone 1
clone 2
clone 3

clone 1
clone 2
clone 3

clone 4
clone 5

D
iv

er
si

ty
 In

de
x

Sample

B C D

D
iv

er
si

ty
 in

de
x

F G H

Responsive clusters
enriched

Resistant clusters
enriched

1.001.00 0.50 0.00 0.50
Scaled Q-score

Adjusted
P-value

0.0

1.0

P
re

-I
O

 [S
16

7]

P
os

t-
IO

 [S
41

0]

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

UMAP 1

Pre-IO 

Post-IO

Pre-IO 

Post-IO

Post-IO
enriched

Pre-IO
enriched

Clone

S
ingle cells

clone 1
clone 2
clone 3
clone 4
clone 5
clone 6

S
ingle cells

clone 1
clone 2
clone 3
clone 4
clone 5
clone 6
clone 7

S
ingle cells

S
ingle cells

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 X 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 X

C
op

y 
nu

m
be

r
(lo

g 2 
ra

tio
) 1

0

–1

1 2 3 4 5

Genomic region

6 7 8 9 10 11 12 13 15 17 20 X 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 X

1 2 3 4 5 6 10 11 12 13 14 15 16 1817 207 8 9
Clone Genomic region

1 2 3 4 5 6 10 11 12 13 14 15 16 1817 207 8 9

S167 Tumor Fraction: 0.3988, Ploidy: 2.58
Subclone Fraction: 0.481, Frac. Genome Subclonal: 0.23, Frac. CNA Subclonal: 0.31

C
op

y 
nu

m
be

r
(lo

g 2 
ra

tio
) 1

0

–1

S914 Tumor Fraction: 0.3553, Ploidy: 2
Subclone Fraction: 0.507, Frac. Genome Subclonal: 0.26, Frac. CNA Subclonal: 0.513

Clone

C
op

y 
nu

m
be

r
(lo

g 2 
ra

tio
) 1

0

–1

Genomic region
1 2 3 4 5 6 10 11 12 13 14 15 16 1817 207 8 9

Clone

C
op

y 
nu

m
be

r
(lo

g 2 
ra

tio
) 1

0

–1

Genomic region
1 2 3 4 5 6 10 11 12 13 14 15 16 1817 207 8 9

S914 Tumor Fraction: 0.5131, Ploidy: 2.21
Subclone Fraction: 0.607, Frac. Genome Subclonal: 0.16, Frac. CNA Subclonal: 0.24

S322 Tumor Fraction: 0.5241, Ploidy: 2.05
Subclone Fraction: 0.588, Frac. Genome Subclonal: 0.08, Frac. CNA Subclonal: 0.13

20

15

10

5

0

20

15

10

5

0

Sample

P
re

-I
O

 [S
91

4]

P
os

t-
IO

 [S
32

2]

–5

–4

0

4

0 5

1.001.00 0.50 0.00 0.50
Scaled Q-score

Adjusted
P-value

0.0

1.0

TNF-alpha Signaling via NF-kB

PI3K/AKT/mTOR Signaling

Myogenesis

mTORC1 Signaling
IL-2/STAT5 Signaling

p53 Pathway

KRAS Signaling Dn

KRAS Signaling Up

Hypoxia

Coagulation

Apoptosis

Apical Junction

Angiogenesis

UV Response Dn

Cholesterol Homeostasis

Interferon Alpha Response

Interferon Gamma Response

Complement

Estrogen Response Late
Inflammatory Response

E2F Targets

Mitotic Spindle
Estrogen Response Early

G2-M Checkpoint
Epithelial Mesenchymal Transition

IL-6/JAK/STAT3 Signaling

TNF-alpha Signaling via NF-kB

PI3K/AKT/mTOR Signaling

KRAS Signaling Up

Hypoxia

Apoptosis

Apical Junction

UV Response Up

DNA Repair
Spermatogenesis

Interferon Gamma Response
E2F Targets

G2-M Checkpoint

Epithelial Mesenchymal Transition
IL-6/JAK/STAT3 Signaling

M
S

ig
D

B
 h

al
lm

ar
k 

pa
th

w
ay

s
M

S
ig

D
B

 h
al

lm
ar

k 
pa

th
w

ay
s

–4–8
–8

–4

0

4

0 4

Figure 4. 
A, For patient X, for sample S167, taken prior to treatment (left), ichorCNA analysis across ulp-WGS displaying CNA (bottom). The x-axis indicates chromosome 
number, and the y-axis indicates copy number. Inference of CNAs using snRNA-seq provided by Numbat is plotted across single cells, with the x-axis indicating 
chromosome number (top). The ichorCNA analysis and the inferred CNA are visualized for sample S410, taken following treatment (right). B, Bar graph 
displaying the change in tumor-diversity index in sample S167 (prior to treatment) and sample S410 (following treatment). C, UMAP of all integrated malignant 
cells from samples S167 and S410, affiliated with patient X, colored by sample origin. Circled is a cluster of treatment-resistant malignant cells primarily found in 
the posttreatment sample. D, Side-by-side comparison of GSEA of the representative gene markers for the annotated treatment-responsive malignant clusters 
and the treatment-resistant malignant clusters found in patient X. Combined scores are rescaled to be between 0 and 1. Top of 20 gene sets are visualized. E, For 
patient Y, for sample S914, taken prior to treatment (left), ichorCNA analysis across ulp-WGS displaying CNA (bottom). The x-axis indicates chromosome 
number, and the y-axis indicates copy number. Inference of CNAs using snRNA-seq provided by Numbat is plotted across single cells, with the x-axis indicating 
chromosome number (top). The ichorCNA analysis and the inferred CNA are visualized for sample S322, taken following treatment (right). F, Bar graph 
displaying the change in tumor-diversity index in sample S914 (prior to treatment) and sample S322 (following treatment). G, UMAP of all integrated malignant 
cells from samples S322 and S914, affiliated with patient Y, colored by sample origin. H, Side-by-side comparison of GSEA of the representative gene markers for 
the malignant cells that originated in the pretreatment sample compared with the malignant cells originating from the posttreatment sample. Combined scores 
are rescaled to be between 0 and 1. Top of 20 gene sets are visualized. 
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Lastly, through inference of cellular interactions from single-cell 
data, we find that ICB-resistant cancer clones exhibit a dense net-
work of redundant and nonredundant paracrine/autocrine growth 

signals that may override productive T-cell responses. One example 
is the paracrine/autocrine activity of GAS6 and its receptor AXL. 
AXL expression has previously been associated with resistance to 
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Figure 5. 
A, Merged, integrated, UMAP embed-
ding displaying the annotated assign-
ment nonmalignant cell types across all 
eight snRNA-seq samples. B and C, 
UMAP embedding of the integrated 
T cells (B) and myeloid cells (C) across 
all eight snRNA-seq samples, colored by 
cell type assignment. D, Stacked bar 
plots denoting the percentage break-
down of each observed cell type across 
each of the snRNA-seq samples. E, 
Representative multiplexed mIF image 
showing all the markers. F, Stacked bar 
plots denoting the percentage break-
down of each observed cell type across 
each of the patients using mIF. G, Cor-
relation plot between different cellular 
proportion in snRNA-seq and mIF 
across all the patients. H–K, CD8+ T cells 
projected onto the DC space, colored by 
(H) clonotypes, (I) manual cell type 
assignment, (J) TCF+/TOX+ assignment, 
and (K) derived sample. L and M, Se-
lected myeloid cells projected onto the 
DC space, colored by (L) manual cell 
type assignment and (M) derived sam-
ple. N and O, ContactTracing circus 
plot highlighting all pre-IO and post-IO 
significant ligand–receptor interactions 
across multiple cell types for patient X 
(N) and for patient Y (O). Each outer 
segment represents a specific cell type 
and across which ligands and receptors 
are represented. These are ordered 
based on the first DC (DC1) computed 
through ContactTracing. DC1 is visual-
ized in the next ring. The histogram in 
the inner circle shows the magnitude of 
pretreatment ligand effects with an FDR 
q-value <0.05 computed by Con-
tactTracing. Each interacting ribbon 
links a ligand to a receptor across mul-
tiple cell types, with ribbon thickness 
proportional to the number of genes 
expressing a pretreatment (red) or 
posttreatment (blue) dependent inter-
action effect. Ligands (black) and re-
ceptors (gray) are labeled at ribbon 
endpoints. Ribbon opacity is deter-
mined by the log fold-change difference 
of the complementary ligand across the 
pretreatment and posttreatment sam-
ples. Ribbons are filtered to involve a 
minimum of 12 pre- and posttreatment 
dependent interaction effects in the 
target cell type. 
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oncogene-directed and immune-based therapies in melanoma and 
nonsmall cell lung cancer, among others (3, 36). Inhibition of this 
other interactions may improve the activity of ICB, as shown in 
melanoma; however, the redundant homotypic interactions may 
require compounds with broader activity (37). 

This study has two limitations: First, the sample size is small, which is 
largely due to the rarity of the studied diseases and accessible archival 
tissue. Second, the profiled specimens are from a spectrum of clinical 
contexts that impact resulting gene expression profiles. Despite these 
limitations, this study contributes significant conceptual advances, in-
cluding emerging observations, such as the association of large genomic 
features in resistance to ICB, and the necessity to analyze the tumor as 
the complex ecosystem to fully illuminate molecular underpinnings of 
clinical phenotypes. Lastly, we present a technical and analytic framework 
that is broadly applicable to studying archival human tumor tissues and is 
particularly relevant for studying rare cancers such as sarcoma which to 
date have remained underrepresented in (single-cell) genomics studies. 

Authors’ Disclosures 
A.D. Amin reports personal fees from Adaptimmune outside the submitted 

work. M. Ingham reports grants from Apexigen, Mirati Therapeutics, PTC 
Therapeutics, Bioatla, and Intensity outside the submitted work as well as em-
ployment with and stock ownership in Regeneron. B. Izar reports consultantship 
for or honoraria from Volastra Therapeutics, Johnson & Johnson/Janssen, 
Novartis, Eisai, AstraZeneca, and Merck and research funding to Columbia Uni-
versity from Agenus, Alkermes, Arcus Biosciences, Checkmate Pharmaceuticals, 
Compugen, Immunocore, Regeneron, and Synthekine. No potential conflicts of 
interest were disclosed by the other authors. 

Authors’ Contributions 
K. Luthria: Data curation, formal analysis, investigation, visualization, meth-

odology, writing–original draft. P. Shah: Resources, investigation. B. Caldwell: 
Formal analysis, visualization. J.C. Melms: Investigation. S. Abuzaid: Investiga-
tion, methodology. V. Jakubikova: Investigation, methodology. D.Z. Brodtman: 
Formal analysis, methodology. S. Bose: Investigation, methodology, writing– 
original draft. A.D. Amin: Validation. P. Ho: Investigation. J. Biermann: Formal 
analysis. S. Tagore: Formal analysis. M. Ingham: Conceptualization, resources, 
funding acquisition. G.K. Schwartz: Conceptualization, resources, funding ac-
quisition. B. Izar: Conceptualization, resources, data curation, formal analysis, 
supervision, funding acquisition, investigation, visualization, methodology, 
writing–original draft. 

Acknowledgments 
S. Bose is supported by NCI T32 and the Hearst Foundation. K. Luthria and 

P. Ho are supported by Training Grant T32GM145440. This work was supported by 
the Jed Ian Taxel Foundation for Rare Cancer Research. B. Izar is supported by 
National Institute of Health grants R37CA258829, R01CA280414, and 
R01CA266446, as well as the Pershing Square Sohn Cancer Research Alliance Award, 
the Burroughs Wellcome Fund Career Award for Medical Scientists, a Tara Miller 
Melanoma Research Alliance Young Investigator Award, the Louis V. Gerstner Jr 
Scholars Program, and the V Foundation Scholars Award. 

Note 
Supplementary data for this article are available at Clinical Cancer Research Online 
(http://clincancerres.aacrjournals.org/). 

Received September 28, 2023; revised May 25, 2024; accepted July 29, 2024; 
published first July 31, 2024. 

References 
1. Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su MJ, Melms JC, et al. A 

cancer cell program promotes T cell exclusion and resistance to checkpoint 
blockade. Cell 2018;175:984–97.e24. 

2. Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, et al. Clonal 
replacement of tumor-specific T cells following PD-1 blockade. Nat Med 2019; 
25:1251–9. 

3. Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, 
et al. Dissecting the multicellular ecosystem of metastatic melanoma by single- 
cell RNA-seq. Sci Apr 2016;352:189–96. 

4. Tawbi HA, Burgess M, Bolejack V, Van Tine BA, Schuetze SM, Hu J, et al. 
Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma 
(SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. 
Lancet Oncol 2017;18:1493–501. 

5. Chen JL, Mahoney MR, George S, Antonescu CR, D’Angelo SP, Van Tine BA, 
et al. A multicenter phase II study of nivolumab +/� ipilimumab for patients 
with metastatic sarcoma (Alliance A091401): results of expansion cohorts. J 
Clin Oncol 2020;38:11511. 

6. Denisenko E, Guo BB, Jones M, Hou R, de Kock L, Lassmann T, et al. Sys-
tematic assessment of tissue dissociation and storage biases in single-cell and 
single-nucleus RNA-seq workflows. Genome Biol 2020;21:130. 

7. Truong DD, Lamhamedi-Cherradi S-E, Porter RW. Dissociation Protocols 
used for Sarcoma Tissues Bias the Transcriptome observed in Single-cell and 
Single-nucleus RNA sequencing. BMC Cancer 2023;23:488. 

8. Hong B, Li Y, Yang R, Dai S, Zhan Y, Zhang WB, et al. Single-cell tran-
scriptional profiling reveals heterogeneity and developmental trajectories of 
Ewing sarcoma. J Cancer Res Clin Oncol 2022;148:3267–80. 

9. Wisdom AJ, Mowery YM, Hong CS. Single cell analysis reveals distinct im-
mune landscapes in transplant and primary sarcomas that determine response 
or resistance to immunotherapy. Nat Commun 2020;12:6410. 

10. Jerby-Arnon L, Neftel C, Shore ME, Weisman HR, Mathewson ND, McBride 
MJ, et al. Opposing immune and genetic mechanisms shape oncogenic pro-
grams in synovial sarcoma. Nat Med 2021;27:289–300. 

11. Zhou Y, Yang D, Yang Q, Lv X, Huang W, Zhou Z, et al. Author Correction: 
single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive 
microenvironment in advanced osteosarcoma. Nat Commun 2021;12:2567. 

12. Wang Y, Fan JL, Melms JC, Amin AD, Georgis Y, Barrera I, et al. Multimodal 
single-cell and whole-genome sequencing of small, frozen clinical specimens. 
Nat Genet 2023;55:19–25. 

13. Slyper M, Porter CBM, Ashenberg O, Waldman J, Drokhlyansky E, Wakiro I, 
et al. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen 
human tumors. Nat Med 2020;26:792–802. 

14. Melms JC, Biermann J, Huang H, Wang Y, Nair A, Tagore S, et al. A molecular 
single-cell lung atlas of lethal COVID-19. Nature 2021;595:114–9. 

15. Henick BS, Ingham M, Shirazi M, Marboe C, Turk A, Hsiao S, et al. Assay 
complementarity to overcome false-negative testing for microsatellite insta-
bility/mismatch repair deficiency: a pembrolizumab-sensitive intimal sarcoma. 
JCO Precis Oncol 2020;4:570–4. 

16. D’Angelo SP, Mahoney MR, Van Tine BA, Atkins J, Milhem MM, Jahagirdar 
BN, et al. Nivolumab with or without ipilimumab treatment for metastatic 
sarcoma (Alliance A091401): two open-label, non-comparative, randomised, 
phase 2 trials. Lancet Oncol 2018;19:416–26. 

17. Adalsteinsson VA, Ha G, Freeman SS, Choudhury AD, Stover DG, Parsons 
HA, et al. Scalable whole-exome sequencing of cell-free DNA reveals high 
concordance with metastatic tumors. Nat Commun 2017;8:1324. 

18. Langmead B, Wilks C, Antonescu V, Charles R. Scaling read aligners to hundreds 
of threads on general-purpose processors. Bioinformatics 2019;35:421–32. 

19. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. 
Twelve years of SAMtools and BCFtools. GigaScience 2021;10:giab008. 

20. Lai D, Ha G, Shah S. HMMcopy: copy number prediction with correction for 
GC and mappability bias for HTS data. Bioconductor version: Release (3.17); 
2023. Available from: https://doi.org/10.18129/B9.bioc.HMMcopy. 

21. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. 
GISTIC2.0 facilitates sensitive and confident localization of the targets of focal 
somatic copy-number alteration in human cancers. Genome Biol 2011;12:R41. 

22. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. 
Massively parallel digital transcriptional profiling of single cells. Nat Commun 
2017;8:14049. 

23. Fleming SJ, Chaffin MD, Arduini A, Akkad AD, Banks E, Marioni JC, et al. 
Unsupervised removal of systematic background noise from droplet-based 
single-cell experiments using CellBender. Nat Methods 2023;20:1323–35. 

4540 Clin Cancer Res; 30(19) October 1, 2024 CLINICAL CANCER RESEARCH 

Luthria et al. 

http://clincancerres.aacrjournals.org/
https://doi.org/10.18129/B9.bioc.HMMcopy


24. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, 
et al. Comprehensive integration of single-cell data. Cell 2019;177:1888–902. 
e21. 

25. Wolock SL, Lopez R, Klein AMS. Scrublet: computational identification of cell 
doublets in single-cell transcriptomic data. Cell Syst 2019;8:281–91.e9. 

26. Gao T, Soldatov R, Sarkar H, Kurkiewicz A, Biederstedt E, Loh PR, et al. 
Haplotype-aware analysis of somatic copy number variations from single-cell 
transcriptomes. Nat Biotechnol 2023;41:417–26. 

27. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based 
analysis of lung single-cell sequencing reveals a transitional profibrotic mac-
rophage. Nat Immunol 2019;20:163–72. 

28. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: 
interactive and collaborative HTML5 gene list enrichment analysis tool. BMC 
Bioinformatics 2013;14:128. 

29. Ma L, Hernandez MO, Zhao Y, Mehta M, Tran B, Kelly M, et al. Tumor cell 
biodiversity drives microenvironmental reprogramming in liver cancer. Can-
cer Cell 2019;36:418–30.e6. 

30. Angerer P, Haghverdi L, Büttner M, Theis FJ, Marr C, Buettner F. destiny: 
diffusion maps for large-scale single-cell data in R. Bioinformatics 2016;32: 
1241–3. 

31. Borcherding N, Bormann NL. scRepertoire: an R-based toolkit for single-cell 
immune receptor analysis. F1000Res 2020;9:47. 
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