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Pulmonary Cellular Toxicity
in Alpha-1 Antitrypsin
Deficiency

To the Editor:

Alpha-1 antitrypsin deficiency (AATD) is caused by
mutations in SERPINA1, the gene encoding alpha-1
antitrypsin (AAT). AAT, an antiprotease with
immunomodulatory functions, is an abundant serum
protein secreted mainly by hepatocytes. AAT is also
known to be produced by extrahepatic cells,1-4 including
by those that contribute to the pool present in the
alveolar epithelial lining fluid.5 Patients with AATD who
are homozygous for the Z mutation (ZZ-AATD) are
susceptible to lung and liver disease. Although AATD-
associated liver disease results from accumulation of
misfolded, polymerized Z-AAT within hepatocytes and
associated gain-of-function toxicity,6 AATD-associated
emphysema has been attributed primarily to loss of
antiprotease function, unopposed neutrophil elastase
activity, and resultant pulmonary parenchymal
destruction.
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Protease-antiprotease imbalance alone, however, does
not fully explain the pulmonary phenotype in AATD.
Multiple studies have identified proinflammatory
consequences of Z-AAT polymer deposition in the lung
interstitium, including activation and trafficking of
innate immune cells.7,8 In addition, antiprotease
replacement via AAT augmentation therapy alone is not
sufficient to fully arrest accelerated pulmonary function
decline in some individuals with ZZ-AATD.9,10 Prior
work has identified extrahepatic cells that produce AAT,
including myeloid cells1-3,11 and airway epithelial cells.4

More recently, single-cell RNA sequencing data sets of
adult human lung tissue have consistently demonstrated
SERPINA1 transcript expression in alveolar type 2 cells
(AT2s) and macrophages.12-16 AT2s are facultative
progenitors of the distal lung, the structure primarily
injured in emphysema observed in AATD. Whether the
human alveolar epithelium produces AAT protein in
either healthy or diseased lungs, however, has not been
established. Here, we report that AAT protein is
expressed by human adult lung AT2s and macrophages,
resulting in intrinsic cellular stress among resident lung
cells in ZZ-AATD.
Methods
Human Lung Donors

Seventeen human lung samples used for single-cell RNA sequencing
and immunofluorescence experiments in this study were obtained
through an established protocol (PROPEL, University of
Pennsylvania). Control donors formerly (0-2.5 pack-y) or never used
tobacco; all COPD ($ 30 pack-y) and AATD (< 30 pack-y) donors
formerly used tobacco. All wild-type patients with COPD and AATD
had severe obstructive disease (FEV1 17%-32% predicted). Human
lung tissue from an additional seven donors used for
immunofluorescence studies were obtained from the Washington
University School of Medicine in St. Louis. All samples were used
with consent from the patient, next of kin, or health care proxy.

Single-Cell RNA Sequencing

Distal lung parenchymal samples were dissociated and CD45-reduced as
previously described.13 An average of 12,000 cells per donor were profiled
by single-cell RNA sequencing. Donor SERPINA1 genotype was verified
by single-nucleotide polymorphism calling. Integration was performed
using Harmony.17 Processing and downstream analyses were performed
using Seurat V4.18 Top variable features were selected by vst,
dimensionality reduction was performed by principal component
analysis, and clustering was performed using the Louvain algorithm at
resolution 0.5. Differential gene expression was tested using MAST.19

Cell identities were assigned to Louvain clusters, using previously
published single-cell atlas expression signatures.13,14,20,21 Gene set
enrichment analysis (GSEA) was performed using fgsea22 for Hallmark
gene sets23 in gene lists ranked by Wilcoxon rank-sum test and area
under receiver operator curve using Presto.24 Normalized enrichment
scores for tests with Benjamini-Hochberg-adjusted P < .01 and false
discovery rate < 0.05 were visualized using ggplot.25 Regulon analysis
was performed using DoRothEA26 confidence level “A” interactions.

All raw data files as well as processed data are available for download
from Gene Expression Omnibus: GSE168191 (peripheral samples)
contains wild-type COPD and control sequencing data. GSE227210
contains AATD sequencing data as well as the Seurat object
containing processed data and metadata. Gene sets used for cell
identity assignment, code applied to generate figures, detailed
methods, and an interactive web application allowing interrogation
of sequencing data can be accessed via our website.27

Immunofluorescence Microscopy

Peripheral human lung samples from 16 donors (4 wild-type “MM”
COPD, 8 ZZ-AATD, 4 control participants without chronic lung
disease) underwent staining with the following antibodies overnight:
AAT (Santa Cruz sc-59438, 1:100), pro-surfactant protein C (pro-
SFTPC) (Seven Hills WRAB-9337, 1:500), CD68 (Abcam Ab172730,
1:100), and CC3 (Sigma C8487, 1:100) followed by secondary
antibody staining for 1 hour. Nuclei were stained with Hoechst.
Images were taken at 20� magnification (quantification images) on a
Nikon Ni-E fluorescent microscope or at 60� magnification
(representative images) on a Leica SP5 confocal microscope. Percent
co-localization was determined through manual counting of
randomly chosen fields-of-view using FIJI (ImageJ).
[ 1 6 6 # 3 CHES T S E P T EM B E R 2 0 2 4 ]

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chest.2024.02.013&domain=pdf


–10

–10

0

10

–5 0 5 10
UMAP_1

A

C

D E

BDonor Disease State

U
M

A
P

_
2

–10

–10

0

10

PNEC

A
G

E
R

C
A

V
1

S
FT

P
C

S
FT

PA
1

S
FT

PA
2

M
G

P
S

O
X

4
S

C
G

B
3A

2
S

C
G

B
1A

1
S

C
G

B
3A

1
LC

N
2

TS
PA

N
8

K
R

T5
K

R
T1

7
S

10
0A

2
FO

X
J1

TM
E

M
19

0
C

1o
rf

19
4

C
H

G
A

C
P

E
G

R
P

Ciliated

Basal

Secretory

RASC

AT2

AT1

B

FA
B

P
4

S
E

R
P

IN
G

1
A

P
O

C
1

C
D

52
LG

M
N

M
A

R
C

K
S

M
P

O
C

D
14

S
10

0A
8

S
10

0A
12

C
PA

3
TP

S
A

B
1

TP
S

B
2

M
S

4A
2

H
P

G
D

S
C

D
3E

C
D

7

C
D

79
4

JC
H

A
IN

M
Z

B
1

IG
K

C

C
C

L5
TR

B
C

1

C
D

3D
TR

A
C

T & NK

Mast

Monotype

Alveolar
Macrophage

–5 0

Alveolar
Macrophage

Monocyte

Ciliated

Basal

AT1

Secretory

RASC

AT2

T & NK

Lymphatic vessel

Fibroblasts
& Myofibroblasts

Endothelial

Smooth Muscle

Mast

PNEC

5 10
UMAP_1

Cell Identity

SERPINA1

U
M

A
P

_
2

–10

–10

0

10

–15 –5 0 5 10
UMAP_1

U
M

A
P

_
2

4
3
2
1
0

Average Expression

Percent Expressed

2

0
25
50
75
100

1
0
–1

Average Expression

1

0

Percent Expressed

0
25
50
75

Control COPD AATD

chestjournal.org 473

http://chestjournal.org


C
on

tr
ol

: N
o 

C
hr

on
ic

Lu
ng

 D
is

ea
se

10 ��m�

C
on

tr
ol

: N
o 

C
hr

on
ic

Lu
ng

 D
is

ea
se

W
ild

 T
yp

e
C

O
P

D

W
ild

 T
yp

e
C

O
P

D

A
AT

D

A
AT

D
pro-SFTPC pro-SFTPC AAT Hoechst CD68 AAT HoechstAAT AATCD68

F

G I

H
SERPINA1

E
x
p

re
s
s
io

n
 L

e
v
e

l

%
 p

ro
-S

F
T

P
C

 c
e

ll
s

c
o

-l
o

c
a

li
z
in

g
 w

it
h

 A
A

T

0

1

2

3

4

5

AT2

****
**** ****

0

*

**

5

10

15

Con
tro

l

COPD
AAT

DAlveolar
Macrophage

****
**** ****

Control COPD AATD

10 ��m�
Figure 1 – Continued
Figure 1 – SERPINA1 and alpha-1-antitrypsin (AAT) are expressed in human alveolar type 2 cells (AT2s). (A-F) Peripheral human lung samples from
11 donors (4 wild-type “MM” COPD, 2 patients with alpha-1 antitrypsin deficiency [AATD] homozygous for the Z mutation [ZZ-AATD], and 5
healthy controls without chronic lung disease) were dissociated, CD45-reduced, and profiled by single-cell RNA sequencing. (A) Uniform manifold
approximation and projection (UMAP) of peripheral human lung samples profiled by scRNA-Seq, labeled by donor disease state. (B) UMAP annotated
by cell identity. (C) Dot plot of pulmonary epithelial marker gene expression among pulmonary epithelial cell clusters. (D) Dot plot of immune cell
marker gene expression among immune cell clusters. (E) Feature plot of SERPINA1 expression and distribution in UMAP. (F) Violin plot of SERPINA1
expression in AT2s and alveolar macrophages and split by disease state of donor (****P < .0001, Wilcoxon rank-sum test). (G) Representative
immunofluorescence images of AAT (magenta) and pro-surfactant protein C (pro-SFTPC) (green) in distal human lung tissue from wild-type COPD,
ZZ-AATD, and control donors. (H) Quantification of percentage of AATþ/SFTPCþ cells relative to the total number of pro-SFTPCþ cells (*P < .05,
**P < .01, Kruskal-Wallis test). N ¼ 15 donors (4 wild-type COPD, 8 ZZ-AATD, 3 control). (I) Representative immunofluorescence images of AAT
(magenta) and CD68 (green) in distal human lung tissue from wild-type COPD, ZZ-AATD, and control donors. AT1 ¼ alveolar type 1 cell; PNEC ¼
pulmonary neuroendocrine cell; RASC ¼ respiratory airway secretory cell.
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Figure 2 – SERPINA1 expression correlates with cellular stress in alveolar type 2 cells (AT2s) and in alveolar macrophages in patients with alpha-1-
antitrypsin deficiency (AATD) homozygous for the Z mutation (ZZ-AATD). (A) Gene Set Enrichment Analysis (GSEA, using Hallmark gene sets,
adjusted P < .01, false discovery rate [FDR] < 0.05) of differentially upregulated transcripts in AT2s in AATD compared with all AT2s. Blue text
identifies gene sets discussed in the text. (B) Violin plot of module score for Hallmark 2020 gene set term “TNFa Signaling via NFkB” in AT2s split by
disease state of donor. (****P < .0001, Wilcoxon rank-sum test). (C) Violin plot of module score for Hallmark 2020 gene set term “Unfolded Protein
Response” in AT2s split by disease state of donor. (****P < .0001, Wilcoxon rank-sum test). (D) Heat map of differential regulon (curated set of
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transcription factor target transcripts) expression in AT2s. Regulon analysis was performed for differentially expressed transcripts in AT2s in AATD
compared with all AT2s using DoRothEA confidence level “A” interactions.24 The top 50 most variable regulons are plotted, ranked by difference
between AATD and Control. (E) GSEA (using Hallmark gene sets, adjusted P < .01, FDR < 0.05) of differentially upregulated transcripts in alveolar
macrophages in AATD compared with all alveolar macrophages. Blue text identifies gene sets discussed in the text. (F) Violin plot of module score for
Hallmark 2020 gene set term “TNFa Signaling via NFkB” in alveolar macrophages split by disease state of donor. (****P < .0001, Wilcoxon rank-sum
test). (G) Violin plot of module score for Hallmark 2020 gene set term “Unfolded Protein Response” in alveolar macrophages split by disease state of
donor. (****P < .0001, Wilcoxon rank-sum test). (H) Heat map of differential regulon (curated set of transcription factor target transcripts) expression
in alveolar macrophages (AM). Regulon analysis was performed for differentially expressed transcripts in AMs in AATD compared with all AMs using
DoRothEA confidence level “A” interactions.26 Top 50 most variable regulons are plotted, ranked by difference between AATD and control. (I)
Representative immunofluorescence images of cleaved caspase 3 (magenta) and pro-SFTPC (green) in distal human lung tissue from wild-type COPD,
ZZ-AATD, and control/no COPD donors. (J) Quantification of CC3þ/pro-SFTPCþ cells relative to the total number of pro-SFTPCþ cells (*P < 0.05,
one-way analysis of variance). N¼ 9 donors (3 wild-type COPD, 3 ZZ-AATD, 3 control/no COPD). NFkB ¼ nuclear factor kappaB; pro-SFTPC ¼ pro-
surfactant protein C; TGF ¼ transforming growth factor; TNF ¼ tumor necrosis factor.
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Figure 2 – Continued
Results
We profiled peripheral human lung samples from 11
donors (4 wild-type “MM” COPD, 2 ZZ-AATD, 5
“MM” control participants without chronic lung
disease) by single-cell RNA sequencing after CD45
reduction (Fig 1A). Cell identities (Fig 1B) were
assigned to Louvain clusters using previously
published single-cell atlas expression
signatures.13,14,20,21 Cells clustered by lineage rather
than disease state (Fig 1B) or individual donor. We
observed SERPINA1 expression in the distal human
lung in cells of myeloid lineage (macrophages and
monocytes) and in AT2s across disease states
(Fig 1E-F). To determine whether AT2s express AAT,
we analyzed peripheral human lung tissue from a
partially overlapping set of 15 donors by
immunostaining for AAT and pro-SFTPC. Although
AAT-producing cells rapidly secrete wild-type
M-AAT, the efficiency of this process is substantially
reduced for misfolded Z-AAT.28 Consistent with this
kinetic, we identified detectable AAT in 0.1% to
13.4% of pro-SFTPC-positive cells in ZZ-AATD lung
parenchyma, compared with extremely rare (wild-type
COPD) or absent (non-lung disease control
participants) AATþ/pro-SFTPCþ cells in non-AATD
tissue (Fig 1G-H). By contrast, immunostaining for
AAT and the macrophage marker CD68 identified
significant co-staining across disease states (Fig 1I).
chestjournal.org
Next, we asked whether expression of mutant SERPINA1
correlates with transcriptomic changes in ZZ-AATD.
We found that in patients with ZZ-AATD, AT2s and
alveolar macrophages differ transcriptomically from
those in wild-type COPD and control participants
without chronic lung disease. Differentially expressed
genes that were upregulated in AT2s and alveolar
macrophages in AATD were enriched for Hallmark gene
sets associated with inflammatory signaling (“tumor
necrosis factor a [TNFa] signaling via nuclear factor
kappaB [NFkB]”, “IL-2/STAT5 Signaling”, “IL-6/JAK/
STAT3 Signaling”) as well as the “Unfolded Protein
Response” (Fig 2A-C, E-G). In regulon analysis, EPAS1,
SMAD3, and SMAD4 regulons were highly upregulated
in alveolar macrophages in AATD (Fig 2H), whereas the
RELA, NFkB1, ATF6, and ATF4 regulons were
upregulated in AT2s in AATD (Fig 2D). These findings
in AT2s are consistent with the known activation of the
PERK/ATF4 pathway in ZZ-AATD circulating blood
monocytes3 and in other AT2 protein misfolding
diseases,29 in which it has been associated with the local
elaboration of inflammatory cytokines and a fibrotic
response to injury. Next, to identify cellular stress
potentially resulting from transcriptomic derangement
in AT2s, we examined expression of the apoptosis
mediator cleaved caspase 3. Analysis of peripheral lung
tissue by immunostaining for cleaved caspase 3 and pro-
SFTPC demonstrated increased frequency of cleaved
477
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caspase 3 expression in pro-SFTPC positive cells (17% �
5.5%, mean � SD) compared with non-AATD tissue
(3.1% � 3.2% in wild-type COPD and 3.9% � 3.3% in
healthy control participants with no COPD) (Fig 2I-J).
Discussion
Overall, we found that AAT is expressed in AT2s in
addition to alveolar macrophages in primary human
lung tissue. AT2s and alveolar macrophages in ZZ-
AATD exhibit a distinct transcriptomic signature,
including inflammatory pathway and unfolded protein
response gene set enrichment. AT2s in ZZ-AATD
additionally exhibit evidence of cell stress such as ATF4
regulon enrichment and expression of cleaved caspase 3.
Whether observed cellular toxicity results from
intracellular polymerization of misfolded Z-AAT
protein, as occurs in hepatocytes in AATD, remains to
be established. Limitations of this study include the
small number of samples from patients with AATD
available for sequencing and a lack of tissue
representative of earlier stages of disease for analysis.
Additional studies will be necessary to identify
underlying disease mechanisms responsible for
activation of specific pathways within AAT-expressing
cells as well as heterogeneity that could exist within the
ZZ-AATD population. These findings extend the
prevailing paradigm of emphysema pathogenesis in ZZ-
AATD. Based on the success of early-phase clinical trials
testing the application of small interfering RNA to
downregulate Z-AAT expression in hepatocytes,30 these
data likewise suggest AAT-expressing resident lung cells
as logical therapeutic targets for future study.
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