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�
 ABSTRACT 

M2-like macrophages exhibit immunosuppressive activity and 
promote pancreatic cancer progression. Reactive oxygen species 
(ROS) affect macrophage polarization; however, the mechanism 
remains unclear. This study aimed to elucidate the underlying 
molecular basis and design a gene therapy to inhibit M2-like 
polarization. Microarray analysis and immunofluorescence 
staining were performed in M1-like and M2-like macrophages to 
ascertain the expression of CYBB, a major intracellular ROS 
source. Coculture assay and syngeneic orthotopic pancreatic 
cancer mice models were used to study the mechanism of M2-like 
skewing. Decoy oligodeoxynucleotides (ODNs) were designed to 
manipulate CYBB transcription to inhibit M2-like polarization 
and control tumor growth. Lipopolysaccharide treatment polar-
ized U937 cells to M1-like macrophages in which CYBB ex-
pression was increased. In contrast, coculture with PANC-1 cells 
induced M2-like polarization in U937 cells with CYBB 

downregulation. High CD204 M2-like expression in combination 
with low CYBB expression was associated with the worst prog-
nosis in patients with pancreatic cancer. STAT6 and HDAC2 in 
U937 cells were activated by cancer cell–derived IL4 after co-
culture and then bound to the CYBB promoter to repress CYBB 
expression, resulting in M2-like polarization. Diphenyleneiodo-
nium, 8λ³-iodatricyclo[7.4.0.02,⁷]trideca-1(13),2,4,6,9,11-hexaen- 
8-ylium chloride that inhibits ROS production could block this 
action. Knockdown of STAT6 and HDAC2 also inhibited M2-like 
polarization and maintained the M1-like phenotype of U937 cells 
after coculture. Decoy ODNs interrupting the binding of STAT6 
to the CYBB promoter counteracted M2-like polarization and 
tumor growth and triggered antitumor immunity in vivo. Gene 
therapy using STAT6-CYBB decoy ODNs can inhibit M2-like 
polarization, representing a potential therapeutic tool for pan-
creatic cancer. 

Introduction 
The tumor microenvironment (TME) is a dynamic and complex 

milieu surrounding the tumor, which plays a critical role in regu-
lating cancer progression and affecting therapeutic outcomes (1). 
The TME contains not only tumor cells but also diverse cell types, 
such as Th1, Th2, B lymphocytes, tumor-associated macrophages 
(TAMs), dendritic cells, natural killer (NK) cells, neutrophils, 

myeloid-derived suppressor cells, and fibroblasts (2). Among them, 
TAMs represent the prominent immune cell type, capable of sup-
pressing the innate and adaptive immunity, assisting tumor cells in 
evading immune attack, and supporting tumors inclined toward 
cold tumors (3, 4). In pancreatic cancer, TAMs are the most 
abundant immune cells infiltrating the TME, which orchestrate 
tumor-promoting inflammation, and have been associated with a 
poor prognosis (5, 6). 

Past studies have shown that macrophages are a diverse group of 
immune cells with different properties and functions that may 
originate from distinct cell differentiation pathways and environ-
ments (7). The macrophage plasticity in different states of macro-
phage activation has been proposed, like M1-like, M2a-alternative, 
M2b-type 2, M2c-deactivated, and M2d (8). Furthermore, it is well 
known that M1-like macrophages with antitumor activity produce 
inflammatory cytokines such as IFNγ, CCL2, IL1β, IL12p40, and 
reactive nitrogen and oxygen species (RNS and ROS) to promote 
Th1 responses and increase antimicrobial ability against various 
types of bacteria and viruses (9, 10). Macrophages with M2-like 
phenotype exhibit protumor activity and release TGFβ, VEGFA, 
CCL17, and CCL21 to exert anti-inflammatory effects (9, 10). 
Considerable evidence has indicated that M2-like TAMs exert im-
munosuppressive effects by secreting various chemokines, cyto-
kines, and enzymes to downregulate immune cells activation (11). 
For example, M2-like TAMs can secret IL10 to activate regulatory 
T cells that suppress the killing effect of T and NK cells (12). In 
addition to soluble inhibitory molecules, M2-like TAMs reportedly 
express well-known immune checkpoint proteins to negatively 
regulate immune responses, such as classical and nonclassical MHC 
class I molecules, cytotoxic T-lymphocyte antigen 4 ligands, and 
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programmed cell death protein ligand 1 (PD-L1; refs. 13, 14). 
Therefore, blocking of immune checkpoints is considered a prom-
ising approach for activating therapeutic antitumor immunity (15). 

Reactive oxygen species (ROS) are the most common oxygen 
radicals in the body, such as superoxide, hydroxide, and non- 
radicals (16). Much research has shown that ROS, specifically 
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Figure 1. 
CYBB affects macrophage polarization, patient outcomes, and IL4 stimulation in the TME. A, The heatmap of differentially expressed genes of NOX components 
and M1-like/M2-like macrophage markers expression in U937 cells treated with LPS or cocultured with PANC-1 cells for 72 hours. B, RT-qPCR showed that CYBB 
mRNA expression decreased significantly and M1-like/M2-like mRNA expression significantly changed after coculture with PANC-1 cells for 72 hours. The bar 
graphs depict relative mRNA expression. **, P < 0.01; ***, P < 0.001. Data represent the mean of three independent experiments. C, Correlation analysis between 
CYBB expression and M2-like/M1-like ratio (CD204/CD86) was performed using our RNAseq data (FPKM values) of 100 pancreatic tumors. Pearson correlation 
coefficient (r) and significance level (P value) are shown for correlation. D, CYBB level was examined in pancreatic cancer tissue and normal tissue (P ¼ 0.01) and 
in 36 matched pairs of pancreatic tumors and adjacent nontumor tissue (P < 0.0001). E and F, The Kaplan–Meier survival curves compared DFS and OS of 
patients stratified based on CD204+ M2-like TAMs infiltration and CYBB expression. P values were determined using the log-rank test. G, RT-qPCR analysis of IL4 
level was performed in U937 cells cocultured with different pancreatic cell lines. The bar graphs depict relative mRNA expression. ***, P < 0.001, significant 

(Continued on the following page.) differences between groups. Data represent the mean of three independent experiments. H and I, U937 cells were 
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produced by the NADPH oxidase complex (NOX, also called Cybb 
or gp91phox), are a critical factor impacting host defense and cell 
differentiation in multicellular organisms (17). NOX2 is the major 
isoform of NOX in phagocytes and dendritic cells. NOX2, p22phox, 
p67phox, p47phox, p40phox, and Rac can form active enzyme 
complexes to produce ROS. Among the six subunits, gp91phox and 
p22phox are membrane proteins mainly constituting the flavin cy-
tochrome b558 (cyt b558) and the catalytic core (17, 18). A recent 
report showed that an antioxidant drug, butylated hydroxyanisole, 
efficiently suppressed monocyte–macrophage differentiation, the 
occurrence, and tumorigenesis in a mouse cancer model, suggesting 
that ROS are essential for the formation (19). 

To date, targeting the signaling pathways such as CCL2-CCR2, 
CSF1-CSF1R, CD47-SIRPα, and CXCL12-CXCR4 has therapeutic 
potential to limit monocyte recruitment, reduce the activation of 
M2-like TAMs, and reverse the M2-like phenotype to the antitu-
mor M1-like phenotype (10, 20–22); however, the systemic ad-
verse effects of these treatments have been a challenging issue. For 
example, blocking CCL2-CCR2 signaling that drives the recruit-
ment of circulating inflammatory monocytes to inflammatory 
centers can reduce TAM population at primary and metastatic 
sites (21, 23, 24). However, a previous clinical trial for pancreatic 
cancer has shown that treatment with the small molecule CCR2 
inhibitor, PF-04136309 decreased CD14+CCR2+ inflammatory 
monocytes in the peripheral blood and TAMs formation in the 
TME, but this was accompanied by severe side effects such as 
pulmonary toxicity, dysesthesia, diarrhea, and hypokalemia (23, 
25). To solve this problem, using double-stranded “decoy” oligo-
nucleotides to target the action of transcription factors (TFs) is a 
promising alternative approach because of their good tolerance 

and low toxicity (26–28). Therefore, the objective of this study was 
to investigate the mechanism underlying M2 polarization and 
design decoy oligodeoxynucleotide (ODN)-based gene therapy to 
reduce M2-like formation and reactivate antitumor immunity for 
pancreatic cancer treatment. 

Materials and Methods 
Reagents 

Diphenyleneiodonium, 8λ³-iodatricyclo[7.4.0.02,⁷]trideca-1(13),2, 
4,6,9,11-hexaen-8-ylium chloride (DPI; Sigma-Aldrich; D2926; ref. 
29) was used to treat cells at a concentration of 5 μmol/L for 
24 hours. Lipopolysaccharide (LPS; Sigma-Aldrich; L2387; ref. 30) 
was used to treat cells at a concentration of 100 nmol/L for 24 hours. 
IL4-neutralizing antibodies (GeneTex; GTX15760; clone name: 
25D2; RRID: AB_3099661) were used at 1 mg/mL for 72 hours (31). 
IL4 recombinant protein (proteintech; Cat No: HZ-1004) was used 
at a concentration of 20 ng/mL at various time points (32). The 
following concentrations of drugs were used to pretreat cells for 
24 hours: Ruxolitinib, (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 
1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile (Rux; Cat No: S1378; 
ref. 33) at 10 μmol/L; Tofacitinib, 3-[(3R,4R)-4-methyl-3-[meth-
yl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxo-
propanenitrile (Tof; Cat No: S2789; ref. 34) at 50 μmol/L; AS1517499, 
4-(benzylamino)-2-[2-(3-chloro-4-hydroxyphenyl)ethylamino] 
pyrimidine-5-carboxamide (AS; Cat No: S8685; ref. 35) at 250 nmol/L; 
Trichostatin A, (2E,4E,6R)-7-[4-(dimethylamino)phenyl]-N-hydroxy- 
4,6-dimethyl-7-oxohepta-2,4-dienamide (TSA; Cat No: S1045; ref. 36) 
at 10 μmol/L; and LBH589, (E)-N-hydroxy-3-[4-[[2-(2-methyl-1H- 
indol-3-yl)ethylamino]methyl]phenyl]prop-2-enamide (LBH; Cat 
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Figure 1. 
(Continued.) cocultured with PANC-1 cells and simultaneously treated with IL4 neutralizing antibody. After 72 hours of incubation, U937 cells were collected for 
Western blotting to measure M1/M2 markers, CYBB, and GAPDH protein expression and RT-qPCR of M1-like (CD86) and M2-like (MSR1/CD204) markers mRNA 
level. J, RT-qPCR analysis of CYBB expression in U937 cells treated with IL4 (20 ng/mL) for 72 hours. The bar graphs depict relative mRNA expression. ***, P < 
0.001, compared with control. Data represent the mean of three independent experiments. 
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Figure 2. 
JAK/STAT6/HDAC2 is the downstream signaling of IL4 in regulating CYBB expression. A, Time-dependent effect of IL4 (20 ng/mL) on JAK1, JAK3, STAT6, and 
CYBB protein expression. The bar graphs depict relative protein expression. *, P < 0.05, compared with control. GAPDH was used as a loading control. The bar 
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No: S11030; ref. 37) at 50 μmol/L. All drugs were purchased from 
Selleckchem. 

Cell line and culture conditions 
The human pancreatic cancer cell lines AsPC-1 (Catalog No. 

CRL-1682; RRID: CVCL_0152), BxPC3 (Catalog No. CRL-1687; 
RRID: CVCL_0186), PANC-1 (Catalog No. CRL-1469; RRID: 
CVCL_0480), and MiaPaCa2 (Catalog No. CRL-1420; RRID: 
CVCL_0428), and the monocytic U937 (Catalog No. CRL-1593.2; 
RRID: CVCL_0007), and THP-1 (Catalog No. TIB-202; RRID: 
CVCL_0006) cell lines were obtained from the American Type 
Culture Collection (ATCC) and have been validated by the Center 
for Genomic Medicine, National Cheng Kung University (NCKU), 
using the ATCC short tandem repeat database. The mouse pan-
creatic cancer cell line KPC was established from Pdx1-Cre; 
KrasG12D/+; Trp53-/- mice kindly gifted by Dr. Kuang-Hung Cheng 
(Institute of Biomedical Sciences, National Sun Yat-sen University, 
Kaohsiung, Taiwan). KPC cells were transfected with the pGL4 
Luciferase Reporter plasmid to establish a stable luciferase- 
expressing clone, KPCLUC. All cells were cultured in RPMI 1640 
medium (Hyclone; SH30027.02) supplemented with 10% fetal bo-
vine serum (Hyclone; SH30071.03), 2 mmol/L L-glutamine (Simply; 
Cat. No CC515-0100), 100 units/mL Antibiotic-Antimycotic (Sim-
ply; Cat. No CC501-0100), and 1 mol/L HEPES (Simply; Cat. No 
CC519-0100) at 37°C in a humidified atmosphere of 5% CO2. All 
cell lines were routinely detected for the presence of mycoplasma 
using the Mycoplasma Detection Kit (BioSmart, BSMP-101) per-
formed every 6 months. 

Gene expression microarray and analysis 
We collected U937 cells after 72 hours of LPS treatment or 

72 hours of coculture with PANC-1 cells for microarray analysis and 
submitted them to the Gene Expression Omnibus database 
(GSE269815). The gene microarray data were analyzed using the 
Agilent Human whole genome oligo 4*44k chip (array kit serial 
number: US00082833) and Agilent’s gene expression microarray 
software, including Feature Extraction and GeneSpring GX. Feature 
Extraction software extracts data from microarray images and 
provides workflows for analysis. GeneSpring GX offers statistical 
tools for data analysis and visualization (Welgene Biotech), and the 
genes of interest were drawn as a heatmap. 

In vitro coculture assay 
U937 cells were seeded into cell culture transwell inserts (3 � 105 

cells per insert) with pore size of 0.4 μm (Falcon) packed in a six- 

well plate (GeneDireX), where PANC-1 cells were grown (3 � 105 

cells per well). The cocultures were incubated at 37°C for 72 hours. 

The differentiation of macrophages from murine bone marrow 
cells 

Bone marrow cell suspensions were separated by flushing femurs 
and tibias of 8 to 12 weeks old wild-type mice with complete 
RPMI1640 media. Pipetting dislodged aggregates, and debris was 
removed using a 70 μm nylon web. Cells were washed using HBSS, 
adjusted to a 106 cells/mL suspension, and seeded on 10 cm low 
attachment surface dishes. Cells were treated with 20 ng/μL rmM- 
CSF (PeproTech, 315-03) and maintained in a humidified incubator 
at 37°C and 5% CO2. 

RNA sequencing 
RNA sequencing (RNA-seq) of 100 pancreatic tumors was con-

ducted and the data were analyzed by Allbio Life Co., Ltd. We 
evaluated the correlation between CYBB expression and the M2 
(CD204)/M1 (CD86) ratio using their FPKM values. 

Decoy ODN treatment in syngeneic orthotopic mouse models 
of pancreatic cancer 

The experimental protocols and procedures for the animal study 
were approved by the Institutional Animal Care and Use Committee 
of NCKU (IACUC No.: 103150 and 110331). Luciferase-expressing 
KPC cells (KPCLUC, 1 � 107 cells in 50 μL serum-free medium) were 
orthotopically injected into the pancreas of 8 to 12 weeks old male 
C57BL/6 mice. Two weeks after the cancer cell injection, the tumor- 
bearing mice were treated with decoy ODNs (1 μg/mL in normal 
saline, intravenously) once weekly for 3 weeks. 

Immunohistochemistry 
Paraffin-embedded sections were deparaffinized and antigens 

were unmasked by autoclaving at 121°C for 10 minutes in sodium 
citrate buffer (10 mmol/L; pH 6.0). Sections were incubated with 
primary antibodies at 4°C overnight, followed by incubation with 
secondary antibodies at room temperature for 30 minutes. Immu-
noreactivity was visualized using the DAB chromogen system 
(DAKO). Information regarding the antibodies and their dilution 
ratios used in this study is shown in Supplementary Table S1. 

Immunofluorescence staining 
After approval from the Institutional Review Board of NCKU 

Hospital, a pancreatic cancer tissue microarray (TMA) was con-
structed from paraffin-embedded blocks of 187 patients with pan-
creatic cancer resected at NCKU Hospital. TMA paraffin blocks 

(Continued.) the mean of three independent experiments. B, The time-dependent effect of DPI (5 μmol/L) and IL4 (20 ng/mL) treatment on JAK1, JAK3, STAT6, 
and CYBB protein expression. The bar graph depicts the ratio of CYBB/GAPDH. ns, not significant, compared to 0 hour. Data represent the mean of three 
independent experiments. C, U937 cells were pretreated with JAK1 (Rux, 10 μmol/L), JAK3 (Tof, 50 μmol/L), and STAT6 (AS1517499, 250 nmol/L) inhibitors for 
24 hours and then treated with IL4 (20 ng/mL) for 1 hour by Western blot analysis. The bar graph depicts the ratio of CYBB/GAPDH. ***, P < 0.001, compared 
with IL4 treatment without inhibitors control. Data represent the mean of three independent experiments. D, The time-dependent effect of H2O2 (100 nmol/L) 
treatment on JAK1, JAK3, STAT6, and CYBB protein expression. The bar graph depicts the ratio of CYBB/GAPDH. *, P < 0.05, compared to 0 hour. Data 
represents the mean of three independent experiments. E, Microarray analysis of HDACs gene expression in U937 cells after coculture with PANC-1 cells for 72 
hours. F, RT-qPCR analysis of HDAC2 gene expression in U937 cells cocultured with pancreatic cancer cells. The bar graphs depict relative mRNA expression. **, 
P < 0.01; compared with control. G, Time-dependent IL4 (20 ng/mL) effect in U937 cells on HDAC2 and CYBB protein expression. The bar graph depicts the ratio 
of CYBB/GAPDH. ***, P < 0.001, compared with IL4 treatment. Data represent the analysis of three independent experiments. H, The co-immunoprecipitation 
protein analysis of 20 ng/mL IL4 treatment and against HDAC2 antibody in U937 cells, then the interaction between STAT6 and HDAC2 protein expression. I, 
U937 cells were pretreated STAT6 (AS1517499, 250 nmol/L) and HDAC (TSA, 10 μmol/L; LBH589, 50 μmol/L) inhibitors for 24 hours followed by IL4 (20 ng/mL) 
for 1 hour. Cell lysates were subjected to Western blotting. The bar graph depicts the ratio of CYBB/GAPDH. **, P < 0.01, compared with IL4 treatment without 
inhibitors control. Data represent the mean of three independent experiments. J, shSTAT6 or shHDAC2 U937 cells were treated with IL4 (20 ng/mL) for 1 hour. 
Cell lysates were subjected to Western blotting. The bar graph depicts the ratio of CYBB/GAPDH. *, P < 0.05, compared with IL4 treatment. Data represent the 
mean of three independent experiments. 
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Figure 3. 
Both STAT6 and HDAC2 bind to the CYBB promoter. A, Schematic representation showing the PCR primer design for the CYBB promoter region used in this 
study. U937 cells were exposed to IL4 for 1 hour, and ChIP assay was performed using antibodies against STAT6 and HDAC2 and negative control IgG antibodies. 

(Continued on the following page.) The PCR products were amplified from the final DNA extraction using different pairs of primers on the CYBB promoter 
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were cut into 5 μm sections. TMA sections were stained with pri-
mary antibodies at 4°C overnight followed by incubation with 
fluorescent-conjugated secondary antibodies at room temperature 
for 1 hour. The nuclei were stained with 4,6-diamidino-2-phenyl-
indole (DAPI). Panoramic images of immunofluorescence (IF)- 
stained TMAs were acquired using the FACS-like Tissue Cytometry 
System (Tissue Gnostics, Vienna, Austria). The percentage of 
stained cells was quantified using the TissueQuest system software 
TissueFAX (Tissue Gnostics, Vienna, Austria). Information re-
garding the antibodies and their dilution ratios used in this study is 
shown in Supplementary Table S1. 

RNA isolation and quantitative PCR 
Total RNA was isolated from the cultured cells using TRIzol 

(Invitrogen). The purity and concentration of the RNA were de-
termined using a Nanodrop spectrophotometer (Thermo Fisher 
Scientific; ND-1000). Total RNA from each sample was reverse 
transcribed into 2 μg cDNA using Deoxyt HiSpec Reverse Tran-
scriptase (Yeastern Biotech). Quantitative assessment of mRNA 
levels was performed by qPCR using KAPA qPCR SYBR Green 
Master Mix (KAPA) on a StepOne Real-Time PCR System (Applied 
Biosystems). The reaction conditions were as follows: initial dena-
turation at 95°C for 5 minutes; 40 cycles of denaturation at 95°C for 
10 seconds; and annealing at 60°C for 10 seconds. mRNA expression 
was determined using the 2�ΔΔCt method (fold difference) and 
normalized to that of GAPDH. The sequences of the human and 
mouse primers used in this study are listed in Supplementary 
Table S2. 

Lentiviral-based stable cell line generation 
STAT6, HDAC2, and nontarget short hairpin RNA (shRNA) 

vectors were purchased from the National RNAi Core Facility, 
Academia Sinica, Taipei, Taiwan. Lentiviral transfection of U937 
cells with shRNAs was performed in the presence of 8 μg/mL pol-
ybrene (Sigma-Aldrich, AL-118). Puromycin (P9620; Sigma- 
Aldrich) was used to select permanent cell lines. 

Western blotting analysis 
The harvested cells were washed twice with PBS and lysed in ice- 

cold radioimmunoprecipitation assay (RIPA) lysis buffer (Millipore) 
for 30 minutes. Lysates were cleared by centrifugation at 14,000 rpm 
for 10 minutes at 4°C, and the protein concentration was measured 
using the Bradford assay (Bio-Rad Laboratories, 500-0006). For 
Western blot analysis, cell lysates were boiled for 5 minutes in 
sample buffer before being resolved on SDS-polyacrylamide gels. 
After separation, the proteins were transferred to the PVDF mem-
branes (Millipore, IPVH00010). The membrane was blocked with 
5% nonfat dried milk in TBST buffer (20 mmol/L Tris-HCL, pH 7.4, 
150 mmol/L NaCl, 0.1% Tween 20) for 1 hour and then incubated 
overnight at 4°C with specific primary antibodies. Subsequently, the 
membrane was washed with TBST and incubated with horseradish 
peroxidase–conjugated secondary antibodies (LEADGENE) for 
1 hour at room temperature. The blot signals were developed using 

an enhanced chemiluminescence kit (GeneTex, GTX14698) and 
captured using the iBright 1000 Series Image System (Thermo 
Fisher). Information regarding the antibodies and their dilution 
ratios used in this study is shown in Supplementary Table S1. 

Chromatin immunoprecipitation 
According to the manufacturer’s protocol, chromatin immuno-

precipitation (ChIP) was performed using the EZ-ChIP Chromatin 
Immunoprecipitation Kit (Millipore). Briefly, the cells were fixed 
with 1% formaldehyde for 15 minutes, and unreacted formaldehyde 
was quenched by adding 125 mmol/L glycine for 15 minutes. 
Chromatin was sonicated to an average length of 200 to 1,000 bp. 
Samples were reacted with anti-STAT6 (1:50, Cell Signaling Tech-
nology, #5397S) and anti-HDAC2 (1:50, Cell Signaling Technology, 
#57156S). The DNA sample precipitated with the target antibody 
was detected by PCR using the primers covering the �896/�719 
region of the CYBB promoter: forward 50- TGACACAATCTCGGC 
TCACTGCAA-30 and reverse 50-TCACGCCTGTAATCCCAGCAC 
TTT-30. 

Luciferase reporter assay 
The CYBB-WT– and CYBB-mutated reporter constructs were 

generated by standard gene synthesis and cloning of the promoter 
sequences in the luciferase reporter system (pGL4.17 vector, 
Promega). U937 cells were transfected with the above reporter 
plasmids using electroporation (NEPA21 electroporator). Cells (1 �
106) were suspended in OPTI-MEM (100 μL) and mixed with 10 μg 
plasmid DNA in an electrode chamber. Twenty-four hours after 
transfection, cells were stimulated with or without IL4 for 8 hours, 
and then were harvested and lysed for luciferase and Renilla mea-
surements using the Dual-Luciferase Assay System (Promega). To 
assess transfection efficiency, cotransfection with the pRL-TK vector 
as an internal control allowed normalization of transfection by 
Renilla luciferase activity. 

Synthesis of STAT6-CYBB decoy ODN 
The decoy ODNs were synthesized by Genomics (New Taipei 

City, Taiwan). STAT6-CYBB decoy ODNs, mutated decoy ODNs, 
and scrambled ODNs were synthesized using selected sequence 
targets (38, 39). The STAT6-CYBB decoy ODN is a double-stranded 
phosphonothioate 28mer DNA that acts as an antagonistic inhibitor 
of the TF STAT6 and binding site of consensus sequence is 
underlined. We designed the sequences to act as a signal-strand 
DNA as follows: STAT6-CYBB decoy ODN, 50-CTGACTCCC- 
AGGTTCAAGTGATTCTCCT-30 and 30 -GACTGAGGGTCCAAG- 
TTCACTAAGAGGA-50; mutated decoy ODN, 50-CTGACTCCC- 
GAGTTCAAGTGATTCCCCT-30 and 30-GACTGAGGGCTCAAG- 
TTCACTAAGGGGA-50; scrambled decoy ODN, 50-CGAAAATTC- 
GTTAAATCACTAGCTTACC-30 and 30-GCTTTTAAGCAATTT- 
AGTGATCGAATGG-50. Synthetic ODNs were dissolved in sterile 
annealing buffer (100 mmol/L Tris-HCl pH 7.5, 10 mmol/L EDTA 
pH 8.0, 1 mol/L NaCl, and ddH2O) and were annealed for 3 hours 

(Continued.) region. B and C, U937 cells and shSTAT6-U937 cells were treated with IL4 (20 ng/mL) for 1 hour followed by the ChIP assay. The PCR and RT-qPCR 
products from primer D were performed to confirm data. The bar graphs depict the relative expression of RT-qPCR products. ***, P < 0.001, significant 
differences between groups. Data represent the mean of three independent experiments. D, Schematic representation showing the CYBB-WT reporter with the 
CYBB promoter containing a wild-type STAT6 binding site and the CYBB-MT1 and MT2 reporters with the CYBB promoters in which the STAT6 binding site was 
mutated. E, U937 cells and shSTAT6 U937 cells were electroporated with the pRL-TK reporter in combination with the CYBB-WT reporter, the CYBB-MT1 reporter, 
the CYBB-MT2 reporter, or vector control (VC). After 24 hours of electroporation, cells were treated with IL4 (20 ng/mL) for 8 hours, and luciferase activity was 
detected by the dual luciferase assay. The bar graphs depict relative luciferase activity. ***, P < 0.001, significant differences between groups. Data represent the 
mean of three independent experiments. F, Schematic conclusion showing the detailed mechanism elucidating the role of CYBB in M2 polarization. 
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Figure 4. 
STAT6-CYBB ODNs trapping STAT6 repress CYBB transcription to prevent M2-like polarization. A, After 24 hours of transfection with the CYBB-WT and pRL-TK 
reporters, U937 cells were electroporated with the scrambled ODNs and STAT6-CYBB decoy ODNs (1 μg/mL) followed by treatment with IL4 (20 ng/mL) for 8 

(Continued on the following page.) hours and then measurement of luciferase activity. The bar graphs depict relative luciferase activity. ***, P < 0.001, 
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during which the temperature was reduced from 90°C to 25°C. After 
annealing, the reaction mixture was maintained at 4°C. 

Statistical analysis 
Each experiment was performed at least three times indepen-

dently under identical conditions, and the data are expressed as the 
mean ± standard error of the mean (SEM). Student t test and one- 
way ANOVA were used to analyze differences. Statistical analyses 
were performed using GraphPad Prism 9.0 (GraphPad Software 
Inc., La Jolla, CA, USA) and SigmaPlot 12.0 (Systat Software Inc.). 
Statistical probability (P) is expressed as ∗∗∗, P < 0.001; ∗∗, P < 0.01; 
∗, P < 0.05. 

Data availability 
The authors confirm that the data supporting the findings of this 

study are available in the article and the supplementary information. 
Raw data supporting the findings of this study are available for the 
corresponding author upon reasonable request. 

Results 
Downregulation of CYBB occurs in M2-like macrophages and 
confers poor prognosis 

Previous studies have shown that monocytic U937 cells can po-
larize to M2-like macrophages in response to tumor-derived factors 
(40, 41). Using gene expression microarray analysis, we have iden-
tified the potential genes that contribute to macrophage polariza-
tion. Compared to LPS treatment that induced M1-like polarization 
as a control, 72 hours of coculture with PANC-1 cells led to sig-
nificantly increased expression of M2-like macrophage markers but 
decreased expression of M1-like macrophage markers and ROS- 
associated CYBB in U937 cells (Fig. 1A). The microarray data were 
confirmed by qPCR (Fig. 1B). As CYBB expression was down-
regulated in M2-like macrophages, we sought to determine the 
clinical significance of CYBB. We assessed the correlation between 
CYBB expression and the M2-like/M1-like ratio from our RNA-seq 
data (FPKM values) of 100 pancreatic tumors. A significantly neg-
ative correlation between CYBB expression and the M2-like/M1-like 
ratio was observed (r ¼ �0.269, P ¼ 0.0068; Fig. 1C), and the 
clinicopathological characteristics of these patients are shown in 
Supplementary Table S3. Next, we performed IF staining for CYBB 
on 180 human pancreatic cancer TMAs. The clinicopathological 
characteristics of these patients are shown in Supplementary Table 
S4. After quantification of the area percentages of staining, we found 
that pancreatic tumor tissues had lower CYBB expression than 
unpaired or paired normal tissues (Fig. 1D). We further divided the 
patients into the CYBBLow group (staining percentage <50%) and 
the CYBBHigh group (staining percentage ≥50%, Supplementary Fig. 
S1A). The CYBBLow group showed significantly worse overall sur-
vival (OS; P ¼ 0.002, Supplementary Fig. S1B) and disease-free 
survival (DFS; P < 0.001, Supplementary Fig. S1C) than the 
CYBBHigh group, consistent with the data showing that patients with 

high CD204 M2-like expression also had shorter OS (P ¼ 0.057, 
Supplementary Fig. S1D) and DFS (P ¼ 0.217, Supplementary Fig. 
S1E). Furthermore, the combination of CYBBLow and CD204High 

M2-like conferred the worst OS (P < 0.001, Fig. 1E) and DFS (P ¼
0.018, Fig. 1F). Taken together, these results indicate that CYBB is a 
key regulator of M2-like macrophages polarization and is associated 
with worst patient survival. 

ROS produced by CYBB is essential for IL4/STAT6-mediated 
M2-like polarization 

IL4 can promote the proliferation and survival of cancer cells and 
is a key inducer of M2-like polarization (42). During the coculture 
with U937 cells, expression of IL4 mRNA was increased in various 
pancreatic cancer cell lines (Fig. 1G), and the expression of IL4 
protein was increased in U937 cells cocultured with PANC-1 cells at 
a time-dependent manner (Supplementary Fig. S2). However, at 
72 hours after coculture, blockade of IL4 signaling with neutralizing 
antibodies reversed the downregulation of CD86 and CYBB mRNA 
levels but suppressed CD204, MRC1 (CD206), and ARG1 mRNA 
expression in U937 cells (Fig. 1H; Supplementary Fig. S3). Similarly, 
CD86 protein expression was increased but CD204 protein ex-
pression was reduced by addition of IL4 neutralizing antibodies 
(Fig. 1I). These data indicated the importance of IL4 for M2-like 
polarization. Furthermore, we also found that CYBB mRNA ex-
pression was decreased by IL4 treatment in both U937 cells and 
mouse BMDMs (Fig. 1J), suggesting that CYBB expression can be 
regulated by IL4. As STAT6 is a key mediator of macrophage po-
larization and a major downstream effector of the IL4 pathway, we 
next investigated the involvement of STAT6 in IL4-mediated CYBB 
downregulation. After treatment with IL4, STAT6 and its upstream 
kinases JAK1 and JAK3 were phosphorylated, followed by a de-
crease in CYBB expression at 8 to 24 hours (Fig. 2A). As ROS have 
been reported to play an important role in TAMs differentiation, we 
also examined whether ROS contribute to the effect of IL4. Inter-
estingly, after pretreatment with DPI (43), a flavoenzyme inhibitor 
that inhibited CYBB activity, to attenuate ROS production, IL4- 
induced phosphorylation of JAK1, JAK3, and STAT6 in U937 cells 
was significantly suppressed (Fig. 2B), suggesting that ROS pro-
duced by CYBB are required for IL4-mediated M2 polarization. In 
addition, pharmacological inhibition of JAK1, JAK3, and STAT6 
restored IL4-mediated downregulation of CYBB, suggesting that IL4 
reduces CYBB expression to promote M2-like polarization through 
STAT6 activation (Fig. 2C). To study whether ROS alone are suf-
ficient to induce M2-like polarization, we added hydrogen peroxide 
(H2O2) to generate ROS in U937 cells. After treatment with H2O2, 
the phosphorylation of JAK1, JAK3, and STAT6 and expression of 
CYBB did not significantly change (Supplementary Fig. S4). How-
ever, cotreatment with IL4 and H2O2 could significantly induce 
CD204 expression and the phosphorylation of JAK1, JAK3, and 
STAT6 (Fig. 2D). Taken together, these results indicate that ROS 
plays an essential role in regulating the activation of the IL4/JAK/ 
STAT6 pathway. 

(Continued.) significant differences between groups. Next, U937 cells were electronically transfected with scrambled ODNs and STAT6-CYBB decoy ODNs 
followed by treatment with IL4 (20 ng/mL). B, RT-qPCR analysis of CYBB expression was performed. The bar graphs depict relative mRNA expression. **, P < 
0.01; ***, P < 0.001, compared with control. Data represent the mean of three independent experiments. C–E, After IL4 treatment (20 ng/mL) or cocultured with 
PANC-1 cells, RT-qPCR analysis for M1-like markers (IL12p40, IFNc, and CCL2), the M2-like markers (IL10, VEGFA, and TGFβ), the immune checkpoint proteins 
(PD-L1 and PD-L2) was performed in U937 cells. The bar graphs depict relative mRNA expression. *, P < 0.05; ***, P < 0.001, compared with control. Data 
represent the mean of three independent experiments. F, After scrambled ODN (SC-ODN) and STAT6-CYBB ODN treatment, macrophages were cocultured with 
PANC-1 cells for 72 hours. PANC-1 cells–polarized SC ODN macrophages or STAT6-CYBB ODN macrophages were then cocultured with Jurkat cells for 72 hours, 
and RT-qPCR analysis of IL2, Granzyme B, and Profilin 1 gene expression in Jurkat cells was performed. The bar graphs depict relative mRNA expression. **, P < 
0.05; **, P < 0.01; ***, P < 0.001. Data represent the mean of three independent experiments. 
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The IL4/STAT6 pathway upregulates HDAC2 to epigenetically 
reduce CYBB expression in M2-like TAMs 

The epigenetic regulator HDAC modulates inflammatory responses 
in the TME and affects the polarization of M1-like/M2-like macro-
phages (44–46). In our microarray data, we found that HDAC2 ex-
pression was increased in M2-like TAMs (Fig. 2E), suggesting that 
HDAC2 plays a role in M2-like polarization. Coculture with pancreatic 
cancer cells increased HDAC2 mRNA expression in U937 cells 
and mouse BMDMs (Fig. 2F). Treatment with IL4 to activate STAT6 
increased HDAC2 expression and decreased CYBB expression at 
the mRNA (Supplementary Fig. S5) and protein levels (Fig. 2G) in a 
time-dependent manner. Direct interactions between HDACs 
and STATs have been observed in previous research (47). By co- 
immunoprecipitation assay, there was a direct interaction between 
STAT6 and HDAC2 in U937 cells after IL4 treatment (Fig. 2H), 
suggesting that the two proteins cooperate to regulate CYBB tran-
scription. Inhibiting STAT6 with AS1517499 and inhibiting HDAC2 
with TSA or LBH589 reduced IL4-induced HDAC2 expression and 
restored IL4-mediated downregulation of CYBB at the mRNA (Sup-
plementary Fig. S6) and protein levels (Fig. 2I). Similar results were 
also observed in the coculture experiments in which treatment with 
STAT6 and HDAC2 inhibitors restored the coculture-induced CYBB 
downregulation in U937 cells (Supplementary Fig. S7). Furthermore, 
RNAi targeting STAT6 and HDAC2 in U937 cells reduced M2-like 
polarization (IL10Hgh) and restored mRNA and protein expression of 
CYBB but did not affect M1-like polarization (IL12p40High; Supple-
mentary Fig. S8A–C; Fig. 2J). Similar results were also observed in the 
coculture experiments in which RNAi targeting STAT6 and HDAC2 
reduced the coculture-induced M2-like polarization but did not affect 
M1-like polarization and restored the coculture-induced CYBB ex-
pression in U937 cells (Supplementary Fig. S9). The IL4/STAT6 sig-
naling pathway was similar like in acute monocytic leukemia cell 
(THP-1; Supplementary Fig. S10). Collectively, these data indicate that 

HDAC2 functions as a key downstream regulator of IL4/STAT6 sig-
naling to modulate M2-like polarization. 

IL4-derived STAT6 interacted with the corepressor HDAC2 to 
bind to the CYBB promoter 

To study how STAT6 and the corepressor HDAC2 regulate ex-
pression of CYBB, we performed ChIP assay to determine whether 
STAT6 and HDAC2 binds to the CYBB promoter. Several ChIP 
PCR primers were designed for the CYBB promoter, as shown in 
Fig. 3A. PCR products covering the D primer (�896/�719) region 
of the CYBB promoter were detected using ChIP-PCR and ChIP- 
QPCR after IL4 stimulation (Fig. 3B and C), suggesting a potential 
binding site for STAT6 and HDAC2 within the �896/�719 region. 
IL4 treatment triggered the binding of STAT6 to the promoter re-
gion, but this effect was inhibited by STAT6 knockdown (Fig. 3B 
and C). Taken together, these results indicate that IL4 stimulated the 
binding of STAT6 and HDAC2 to the CYBB promoter. 

Next, we constructed the luciferase reporter plasmids with the 
WT CYBB promoter and mutated CYBB promoters in which the 
STAT6-binding sequence was changed (Fig. 3D). The reporter assay 
showed that IL4 decreased the luciferase activity of the WT CYBB 
promoter reporter but not that of the mutated CYBB promoter 
reporter (Fig. 3E). Silencing STAT6 effectively blocked the effect of 
IL4 (Fig. 3E). Taken together, these data suggest that IL4 from 
pancreatic cancer cells and ROS in macrophages can cooperate to 
activate STAT6 and HDAC2, and thus M2-like polarization, which 
contributes to the development of cold TME (noninflamed, im-
munologically ignorant) of pancreatic cancer (Fig. 3F). 

STAT6-CYBB decoy ODNs impede the polarization of M2-like 
macrophages 

TF decoy ODNs have been applied to interfere with the inter-
action between TFs and their corresponding genomic binding sites 
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through competitive suppression, selectively regulating gene ex-
pression in cells as a therapeutic agent with great potential (28, 48). 
Therefore, we investigated whether decoy ODNs can inhibit the 
binding of STAT6 to the CYBB promoter and thus reduce M2-like 
polarization. A 28mer double-strand ODN was designed to inhibit 
STAT6 binding to the CYBB promoter. The reporter assay showed 
that IL4 treatment could repress CYBB expression by reducing its 
promoter activity; however, treatment with the STAT6-CYBB decoy 
ODN reversed the reduction of WT CYBB promoter-driven lucif-
erase activity by IL4. (Fig. 4A). Furthermore, in U937 cells, the 
STAT6-CYBB decoy ODN also increased the expression of CYBB 
mRNA (Fig. 4B) and the expression of M1-like cytokines including 
IL12p40, IFNγ, and CCL2, but decreased the expression of M2-like 
cytokines including IL10, VEGFA, and TGFβ1 after IL4 treatment 
(Fig. 4C and D) or coculture with PANC-1 cells (Fig 4C and D). 
Treatment with the STAT6-CYBB decoy ODN also decreased the 
mRNA expression of PD-L1 and PD-L2 in U937 cells in the pres-
ence of IL4 or when cocultured with PANC-1 cells (Fig. 4E). U937 
cells treatment with the STAT6-CYBB decoy ODN after coculturing 
with PANC-1 cells also increased the mRNA expression of IL2, 
Granzyme B, and Profilin 1 in the Jurkat T cells (Fig. 4F), thereby 
increasing the proliferation of Jurkat T cells and αCD3+ PBMC cells 
in the CFSE assay (Supplementary Fig. S11). These results suggest 
that STAT6-CYBB decoy ODNs can significantly prevent the for-
mation of M2-like TAMs, increase T-cell proliferation, and have the 
potential as an effective therapeutic approach for pancreatic cancer. 

STAT6-CYBB decoy ODNs slow tumor growth and counteracts 
immunosuppression 

Because STAT6-CYBB decoy ODNs effectively impeded the for-
mation of M2-like macrophages in vitro, we evaluated the thera-
peutic effects of STAT6-CYBB decoy ODNs on pancreatic cancer in 
vivo. Twenty days after the inoculation of KPCLUC cells into the 
pancreas, mice were intravenously injected with scrambled ODNs, 
STAT6-CYBB decoy ODNs, and mutated STAT6-CYBB decoy 
ODNs. Three weeks after treatment with decoy ODNs, the mice 
were sacrificed to collect tumors. Mice treated with STAT6-CYBB 
decoy ODNs had the lowest tumor volume and tumor weight (P ¼
0.0003; Fig. 5A). In addition, compared with scrambled ODNs and 
mutated STAT6-CYBB decoy ODNs, STAT6-CYBB decoy ODNs 
significantly extended the survival of pancreatic tumor-bearing mice 
(P < 0.0001; Fig. 5B). Immunohistochemistry (IHC) staining 
showed that STAT6-CYBB decoy ODNs significantly increased the 
expression of iNOS and CYBB but reduced the expression of CD206 
and YM-1 (Fig. 5C; Supplementary Fig. 12). Compared to the tu-
mors receiving scrambled or mutated decoy ODNs, the STAT6- 
CYBB decoy ODNs group exhibited increased expression of caspase 
3, cleaved caspase 3, and PARP, and decreased expression of the 
antiapoptotic marker BCL-XL and the cell proliferation marker ki67 
(Fig. 5D), suggesting that STAT6-CYBB decoy ODNs reduced 
pancreatic tumor growth by promoting cell apoptosis and sup-
pressing cell proliferation. Therefore, treatment with STAT6-CYBB 
ODN also suppresses stromal or epithelial-type cell activation 
(Supplementary Fig. S13). Serum levels of glutamic oxaloacetic 
transaminase (GOT), glutamic pyruvic transaminase (GPT), 

albumin (ALB), and total protein (TP) for liver function monitoring 
(Fig. 5E) and the serum levels of blood urea nitrogen (BUN), uric 
acid (UA), creatinine (CRE), and lactate dehydrogenase (LDH) for 
renal function monitoring (Fig. 5F) in mice were not affected by 
decoy ODNs compared with sham treatment. 

Compared with scrambled and mutated decoy ODNs, STAT6- 
CYBB decoy ODNs also decreased neutrophil levels but increased 
lymphocyte and monocyte percentages in the blood circulation 
(Fig. 6A). In tumors, STAT6-CYBB decoy ODNs downregulated the 
neutrophil marker Ly6G and the regulatory T-cell marker Foxp3 but 
upregulated the total lymphocyte marker CD3, the cytotoxic T 
marker CD8, the NK-cell marker CD56, and the B-cell marker 
CD19 (Fig. 6B). Moreover, we also confirmed that the cytotoxic 
marker Granzyme B was upregulated in tumors treated with 
STAT6-CYBB ODN (Supplementary Fig. S14). These results indi-
cate that STAT6-CYBB decoy ODNs without toxicity have great 
potential to inhibit M2-like polarization and thus reduce immu-
nosuppression and pancreatic cancer growth (Fig. 6C). 

Discussion 
A high density of M2-like macrophages in the pancreatic TME 

confers poor prognosis. Interrupting the polarization of M2-like 
TAMs is a potential strategy for pancreatic cancer therapy. Here, we 
showed that cancer cell-derived IL4 in combination with ROS to 
activate STAT6/HDAC2 in macrophages could repress CYBB 
transcription and skew M2-like in the TME of pancreatic cancer. 
STAT6-CYBB decoy ODNs blocked STAT6/HDAC2 binding to the 
CYBB promoted and prevented M2-like polarization. This action 
can maintain the transcription of CYBB to produce ROS, thus 
maintaining the M1-like phenotype in macrophages and reactivat-
ing antitumor immunity to attack cancer cells. Our preclinical an-
imal study provided strong evidence that gene therapy of STAT6- 
CYBB decoy ODNs could effectively turn “cold” tumors into “hot” 
ones by inhibiting the formation of M2-like TAMs and upregulating 
antitumor immune responses in pancreatic TME. 

As a multifunctional cytokine in the TME, IL4 not only partici-
pates in alternative macrophage priming but also accelerates pan-
creatic cancer progression (49). By binding to IL4R or IL13R, IL4 
activates STAT6 signaling to polarize macrophages to the M2-like 
phenotype; however, the detailed mechanism has not been fully 
elucidated (50). It has been reported that IL4 stimulates STAT6 
activation and the upregulation of immunoglobulin heavy chain via 
histone modification in B-cell differentiation, suggesting the in-
volvement of epigenetic regulation in IL4 signaling–associated cell 
differentiation (51). Consistently, our results showed that IL4 pro-
moted M2-like polarization by upregulating HDAC2 to diminish 
CYBB gene expression. 

Previously, HDAC inhibitors have been reported to inhibit in-
flammation and promote M2-like macrophage formation (45); 
however, the underlying mechanism is unclear. Our microarray 
analysis showed that the expression of HDAC2 was increased in 
U937 cells after coculture with PANC-1 cells. Furthermore, we 
demonstrated that the cooperation of IL4 with CYBB-derived ROS 
strongly activated the STAT6/HDAC2 pathway to inhibit CYBB 

(Continued.) NK-cell marker CD56, and the B cell marker CD19 was performed in KPC tumors from the scrambled ODN, mutated ODN, and STAT6-CYBB ODN– 
treated mice. The bar graphs depict the numbers of stained cells/fields. Differences in the positively stained cell numbers between the three groups were 
compared. *, P < 0.05; ***, P < 0.001. Five random fields of three random sections from each mouse were used to quantify the positive cells. C, Schematic 
conclusion showing the gene therapy of STAT6-CYBB decoy ODNs is a promising therapeutic strategy to convert immunologically cold tumors into hot tumors 
by preventing M2-like polarization. 
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gene transcription, thus promoting the formation of M2-like. 
During the conversion of the M1-like phenotype to the M2-like 
phenotype, CYBB is critical at the beginning because of its function 
in ROS production; however, after M2-like formation, CYBB 
function is suppressed, suggesting that CYBB-derived ROS are not 
necessary for M2-like function and their maintenance. 

Previous studies have shown that decoy ODNs focusing on myc- 
associated zinc finger and high mobility group AT-hook 1 (HMGA-1) 
inhibit the activation of KRAS transcription and HMGA-1-associated 
gemcitabine resistance in pancreatic cancer, respectively (52, 53). 
Additionally, a recent clinical trial has investigated the treatment ef-
fectiveness of STAT3 decoy ODNs in head and neck cancer (27). The 
decoy of TFs provides a novel strategy for interrupting gene expres-
sion and has several substantive advantages over knockout animal 
studies. In other words, decoy ODN have been recognized as an 
important tool in gene therapy for accurately targeting human dis-
eases. Our study showed that the use of STAT6-CYBB decoy ODNs 
could markedly suppress M2-like polarization and reduce pancreatic 
tumor growth. Furthermore, no obvious hepatotoxicity or nephro-
toxicity was observed in treated mice. 

In conclusion, we clearly demonstrated that, in the TME of 
pancreatic cancer, cancer cells secrete IL4 to skew M2-like polari-
zation via activation of CYBB-ROS/STAT6/HDAC2 signaling in 
macrophages. Treatment with STAT6-CYBB decoy ODNs can block 
M2-like formation to enhance antitumor immune responses in the 
TME and reduce tumor growth, suggesting a novel gene therapy 
tool for the treatment of pancreatic cancer. 
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