Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Nov 1;223(3):659–671. doi: 10.1042/bj2230659

Identification of the angiotensin II receptor in rat mesenteric artery.

J McQueen, G D Murray, P F Semple
PMCID: PMC1144349  PMID: 6095806

Abstract

Specific binding sites of high affinity and low capacity for 125I-angiotensin II have been identified in a membrane fraction derived from arterial arcades of the rat mesentery. Heterogeneity of binding sites and extensive tracer degradation necessitated the use of nonlinear regression methods for the analysis of radioligand binding data. Forward and reverse rate constants for the high affinity sites obtained by three experimental approaches were in good agreement and gave a dissociation equilibrium constant (Kd) of 19-74 pM (95% confidence interval). Affinities for a number of angiotensin-related peptides calculated from competitive binding curves were in the order 125I-angiotensin II = angiotensin II greater than angiotensin III greater than [Sar1,Ile8]angiotensin II greater than [Sar1,Gly8]angiotensin II. Angiotensin I and biochemically unrelated peptides had virtually no effect on binding of tracer angiotensin II. The divalent cations Mn2+, Mg2+ and Ca2+ stimulated 125I-angiotensin II binding at concentrations of 2-10 mM, as did Na+ at 50-100 mM. In the presence of Na+ or Li+, K+ had a biphasic effect. The chelating agents EDTA and EGTA were inhibitory, as were the thiol reagents dithiothreitol and cysteine. This study defined angiotensin II binding sites in a vascular target tissue of sufficiently high affinity to interact rapidly with plasma angiotensin II at physiological concentrations.

Full text

PDF
663

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilera G., Catt K. Regulation of vascular angiotensin II receptors in the rat during altered sodium intake. Circ Res. 1981 Sep;49(3):751–758. doi: 10.1161/01.res.49.3.751. [DOI] [PubMed] [Google Scholar]
  2. Aguilera G., Hauger R. L., Catt K. J. Control of aldosterone secretion during sodium restriction: adrenal receptor regulation and increased adrenal sensitivity to angiotensin II. Proc Natl Acad Sci U S A. 1978 Feb;75(2):975–979. doi: 10.1073/pnas.75.2.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baxter J. D., Funder J. W. Hormone receptors. N Engl J Med. 1979 Nov 22;301(21):1149–1161. doi: 10.1056/NEJM197911223012104. [DOI] [PubMed] [Google Scholar]
  4. Bennett J. P., Jr, Snyder S. H. Regulation of receptor binding interactions of 125I-angiotensin II and 125I-[sarcosine1,leucine8]angiotensin II, an angiotensin antagonist, by sodium ion. Eur J Pharmacol. 1980 Oct 3;67(1):1–10. doi: 10.1016/0014-2999(80)90002-3. [DOI] [PubMed] [Google Scholar]
  5. Brown G. P., Douglas J. G. Angiotensin II binding sites on isolated rat renal brush border membranes. Endocrinology. 1982 Dec;111(6):1830–1836. doi: 10.1210/endo-111-6-1830. [DOI] [PubMed] [Google Scholar]
  6. Brunner H. R., Chang P., Wallach R., Sealey J. E., Laragh J. H. Angiotensin II vascular receptors: their avidity in relationship to sodium balance, the autonomic nervous system, and hypertension. J Clin Invest. 1972 Jan;51(1):58–67. doi: 10.1172/JCI106797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Capponi A. M., Catt K. J. Solubilization and characterization of adrenal and uterine angiotensin II receptors after photoaffinity labeling. J Biol Chem. 1980 Dec 25;255(24):12081–12086. [PubMed] [Google Scholar]
  8. Carey R. M., Vaughan E. D., Jr, Peach M. J., Ayers C. R. Activity of (des-Aspartyl1)-angiotensin II and angiotensin II in man. Differences in blood pressure and adrenocortical response during normal and low sodium intake. J Clin Invest. 1978 Jan;61(1):20–31. doi: 10.1172/JCI108919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Catt K. J., Harwood J. P., Aguilera G., Dufau M. L. Hormonal regulation of peptide receptors and target cell responses. Nature. 1979 Jul 12;280(5718):109–116. doi: 10.1038/280109a0. [DOI] [PubMed] [Google Scholar]
  10. Cowley A. W., Jr, Lohmeier T. E. The relationship between body fluid volume, sodium ion concentration, and sensitivity to pressor effect of angiotensin II in dogs. Circ Res. 1978 Apr;42(4):503–511. doi: 10.1161/01.res.42.4.503. [DOI] [PubMed] [Google Scholar]
  11. Davis J. O., Freeman R. H., Johnson J. A., Spielman W. S. Agents which block the action of the renin-angiotensin system. Circ Res. 1974 Mar;34(3):279–285. doi: 10.1161/01.res.34.3.279. [DOI] [PubMed] [Google Scholar]
  12. Dawson-Hughes B. F., Moore T. J., Dluhy R. G., Hollenberg N. K., Williams G. H. Plasma angiotensin II concentration regulates vascular but not adrenal responsiveness to restriction of sodium intake in normal man. Clin Sci (Lond) 1981 Nov;61(5):527–534. doi: 10.1042/cs0610527. [DOI] [PubMed] [Google Scholar]
  13. Devynck M. A., Meyer P. Angiotensin receptors in vascular tissue. Am J Med. 1976 Nov;61(5):758–767. doi: 10.1016/0002-9343(76)90157-1. [DOI] [PubMed] [Google Scholar]
  14. Devynck M. A., Rouzaire-Dubois B., Chevillotte E., Meyer P. Variations in the number of uterine angiotensin receptors following changes in plasma angiotensin levels. Eur J Pharmacol. 1976 Nov;40(1):27–37. doi: 10.1016/0014-2999(76)90350-2. [DOI] [PubMed] [Google Scholar]
  15. Douglas J., Aguilera G., Kondo T., Catt K. Angiotensin II receptors and aldosterone production in rat adrenal glomerulosa cells. Endocrinology. 1978 Mar;102(3):685–696. doi: 10.1210/endo-102-3-685. [DOI] [PubMed] [Google Scholar]
  16. Duggleby R. G. A nonlinear regression program for small computers. Anal Biochem. 1981 Jan 1;110(1):9–18. doi: 10.1016/0003-2697(81)90104-4. [DOI] [PubMed] [Google Scholar]
  17. Fleisch J. H., Krzan M. C., Titus E. Pharmacologic receptor activity of rabbit aorta. Effect of dithiothreitol and N-ethylmaleimide. Circ Res. 1973 Sep;33(3):284–290. doi: 10.1161/01.res.33.3.284. [DOI] [PubMed] [Google Scholar]
  18. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  19. Glossmann H., Baukal A. J., Catt K. J. Properties of angiotensin II receptors in the bovine and rat adrenal cortex. J Biol Chem. 1974 Feb 10;249(3):825–834. [PubMed] [Google Scholar]
  20. Gunther S., Gimbrone M. A., Jr, Alexander R. W. Identification and characterization of the high affinity vascular angiotensin II receptor in rat mesenteric artery. Circ Res. 1980 Aug;47(2):278–286. doi: 10.1161/01.res.47.2.278. [DOI] [PubMed] [Google Scholar]
  21. Hamon G., Worcel M. Electrophysiological study of the action of angiotensin II on the rat myometrium. Circ Res. 1979 Aug;45(2):234–243. doi: 10.1161/01.res.45.2.234. [DOI] [PubMed] [Google Scholar]
  22. KAPLAN N. M., SILAH J. G. THE EFFECT OF ANGIOTENSIN II ON THE BLOOD PRESSURE IN HUMANS WITH HYPERTENSIVE DISEASE. J Clin Invest. 1964 Apr;43:659–669. doi: 10.1172/JCI104951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ketelslegers J. M., Knott G. D., Catt K. J. Kinetics of gonadotropin binding by receptors of the rat testis. Analysis by a nonlinear curve-fitting method. Biochemistry. 1975 Jul 15;14(14):3075–3083. doi: 10.1021/bi00685a006. [DOI] [PubMed] [Google Scholar]
  24. Le Morvan P., Palaic D. Characterization of the angiotensin receptor in guinea-pig aorta. J Pharmacol Exp Ther. 1975 Oct;195(1):167–175. [PubMed] [Google Scholar]
  25. Oliver J. A., Cannon P. J. The effect of altered sodium balance upon renal vascular reactivity to angiotensin II and norepinephrine in the dog. Mechanism of variation in angiotensin responses. J Clin Invest. 1978 Mar;61(3):610–623. doi: 10.1172/JCI108972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Papadimitriou A., Worcel M. Dose-response curves for angiotensin II and synthetic analogues in three types of smooth muscle: existence of different forms of receptor sites for angiotensin II. Br J Pharmacol. 1974 Feb;50(2):291–297. doi: 10.1111/j.1476-5381.1974.tb08575.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pettinger W. A., Keeton K., Tanaka K. Radioimmunoassay and pharmacokinetics of saralasin in the rat and hypertensive patients. Clin Pharmacol Ther. 1975 Feb;17(2):146–158. doi: 10.1002/cpt1975172146. [DOI] [PubMed] [Google Scholar]
  28. Reid W. D., Laragh J. H. Sodium and potassium intake, blood pressure, and pressor response to angiotensin. Proc Soc Exp Biol Med. 1965 Oct;120(1):26–29. doi: 10.3181/00379727-120-30434. [DOI] [PubMed] [Google Scholar]
  29. Rouzaire-Dubois B., Devynck M. A., Chevillotte E., Meyer P. Angiotensin receptors in rat uterine membranes. FEBS Lett. 1975 Jul 15;55(1):168–172. doi: 10.1016/0014-5793(75)80985-9. [DOI] [PubMed] [Google Scholar]
  30. Thakur A. K., Munson P. J., Hunston D. L., Rodbard D. Characterization of ligand-binding systems by continuous affinity distributions of arbitrary shape. Anal Biochem. 1980 Apr;103(2):240–254. doi: 10.1016/0003-2697(80)90263-8. [DOI] [PubMed] [Google Scholar]
  31. Thurston H., Laragh J. H. Prior receptor occupancy as a determinant of the pressor activity of infused angiotensin II in the rat. Circ Res. 1975 Jan;36(1):113–117. doi: 10.1161/01.res.36.1.113. [DOI] [PubMed] [Google Scholar]
  32. Wei J. W., Janis R. A., Daniel E. E. Isolation and characterization of plasma membrane from rat mesenteric arteries. Blood Vessels. 1976;13(5):279–292. doi: 10.1159/000158098. [DOI] [PubMed] [Google Scholar]
  33. Wright G. B., Alexander R. W., Ekstein L. S., Gimbrone M. A., Jr Sodium, divalent cations, and guanine nucleotides regulate the affinity of the rat mesenteric artery angiotensin II receptor. Circ Res. 1982 Apr;50(4):462–469. doi: 10.1161/01.res.50.4.462. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES