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The triglyceride‑glucose index 
dynamic trajectory reveals the association 
between the clinical subphenotype of insulin 
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Abstract 

Background  The relationship between the dynamic changes in insulin resistance (IR) and the prognosis of septic 
patients remains unclear. This study aims to investigate the correlation between the clinical subphenotype of IR repre-
sented by the triglyceride-glucose (TyG) index trajectory and the mortality rate among patients with sepsis.

Methods  In this retrospective cohort study, we utilized data from septic patients within the Medical Information Mart 
for Intensive Care (MIMIC)-IV database version 2.0 to construct trajectories of the TyG index over 72 h. Subsequently, we 
computed the similarity among various TyG index trajectories with the dynamic time warping (DTW) algorithm and utilized 
the hierarchical clustering (HC) algorithm to demarcate distinct cluster and identified subphenotypes according to the tra-
jectory trend. Subsequently, we assessed the mortality risk between different subphenotypes using analyses such as sur-
vival analysis and validated the robustness of the results through propensity score matching (PSM) and various models.

Results  A total of 2350 patients were included in the study. Two trajectory trends: TyG index decreasing (n = 926) 
and TyG index increasing (n = 1424) were identified, which indicated corresponding to the clinical subphenotype 
of increased and alleviative IR respectively. The 28-day and in-hospital mortality for the increased IR group was 28.51% 
and 25.49% respectively. In comparison, patients in the alleviative IR group with a 28-day mortality of 23.54% 
and an in-hospital mortality of 21.60%. These subphenotypes exhibited distinct prognosis, time dependent Cox 
model showed the increased IR group with a higher 28-day mortality [hazard ratio (HR): 1.07, 95% confidence interval 
(CI): 1.02–1.12, P = 0.01] and in-hospital mortality [HR: 1.05, 95% CI: 1.00–1.11, P = 0.045] compared to the alleviative IR 
group. Sensitivity analyses with various models further validated the robustness of our findings.

Conclusion  Dynamic increase in the TyG index trajectory is associated with elevated mortality risk among patients 
with sepsis, which suggests that dynamic increased IR exacerbates the risk of poor outcomes in patients.
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Background
Sepsis continues to inflict a high mortality and disabil-
ity rate within global intensive care units (ICU) [1]. It is 
defined as a life-threatening organ dysfunction caused 
by the host’s dysregulated response to infection [2]. This 
dysregulation encompasses not only immune and inflam-
matory responses and disruptions in metabolic reactions 
[3]. Notably, insulin resistance (IR) plays a pivotal role in 
the metabolic derangements observed in septic patients 
[4].

IR refers to the failure of a normal insulin response 
during synthetic metabolic processes. This aberrant pro-
cess stands as a prominent manifestation of metabolic 
irregularities in septic patients [5]. The mechanisms 
behind this anomaly may involve mitochondrial damage 
secondary to sepsis, the translocation of glucose trans-
porter type 4(GLUT4) [6], excessive sympathetic nervous 
system activation [7, 8], or the upregulation of counter-
regulatory hormones [3]. Such metabolic aberrations in 
response may contribute to an escalated inflammatory 
response in septic patients, thereby increasing mortal-
ity rates [9]. Research has indeed confirmed a significant 
increase in IR among septic patients who succumbed to 
the condition [10]. However, the precise impact of the 
trajectory of IR on sepsis outcomes remains unclear.

The triglyceride-glucose (TyG) index has been vali-
dated as a reliable surrogate marker reflecting IR [11]. 
Consistency assessments have shown that TyG index 
possesses a similar efficacy in assessing IR compared to 
homeostasis model assessment-estimated insulin resist-
ance (HOMA-IR) index [12]. Elevated TyG index levels 
have been linked to increased mortality rates in condi-
tions such as coronary artery disease [13], stroke [14], 
myocardial infarction [15], and heart failure [16]. More-
over, the trajectory of TyG index is significantly corre-
lated with the extent of atherosclerosis [17], stroke risk in 
hypertensive patients [18]. Furthermore, the TyG index 
has also been closely associated with the risk of mortality 
in critically ill patients [19]. Prior studies have addressed 
the correlation between the TyG index and sepsis mortal-
ity [20]. However, these studies have been confined solely 
to the measurement of a single instance of the TyG index, 
neglecting to consider the influence of dynamic TyG 
index trajectories representing changes in IR on the mor-
tality of patients with sepsis. The relationship between 
the dynamic trajectory of TyG index and the mortality of 
patients with sepsis remains unclear.

Our study aimed to identified the clinical subpheno-
type in IR by the dynamic trajectory of TyG index, and 
investigate the relationship between the trajectory of TyG 
index and mortality rates in patients with sepsis within 
the first 72 h after ICU admission.

Methods
Study design and population
We conducted a retrospective observational study 
accordance with the REporting of studies Conducted 
using Observational Routinely-collected health Data 
(RECORD) statement with the Medical Information 
Mart for Intensive Care IV (MIMIC-IV) database ver-
sion 2.0, which contains dynamic, granular data of indi-
viduals admitted to the ICU at Beth Israel Deaconess 
Medical Center between 2008 and 2019. Our team has 
obtained approved access to the MIMIC-IV database (ID 
40974208). As the patient were deidentified, the Insti-
tutional Review Board at Beth Israel Deaconess Medi-
cal Center granted a waiver of informed consent (IRB 
#2001P001699).

Patients with sepsis were identified with the sepsis 
3.0 criteria. We excluded patients who were discharged 
from ICU within 72  h and the non-adult patients. To 
ensure that we could imputate the dynamic blood glu-
cose (BG) records into 1-h resolution time series data 
with the Stineman interpolation algorithm, we excluded 
patients whose total BG records were less than 3 times 
within 72 h. In addition, patients whose triglyceride data 
was not available were also excluded to ensure that the 
TyG index could be calculated. In view of the triglycer-
ides are not repeatedly measured within the first 3 days 
in most ICU clinical practice as triglycerides may not 
change significantly during this stage. The values of tri-
glycerides used in this study encompass those recorded 
within 72 h after admission for the calculation of the TyG 
index. The detailed exclusion criteria in this retrospective 
observational study were set as follows: (1) ICU length of 
stay less than 72  h; (2) non-adult patients with age less 
than 18 years; (3) The total counts of BG were less than 3 
during the first 72 h after ICU admission; (4) Triglyceride 
was not available to calculate TyG index; (5) International 
classification of diseases (ICD) information was not avail-
able (Fig. 1).

Data extraction
All related data used in the study, including all BG and 
triglycerides records, study outcomes, demographic data, 
interventions, laboratory tests, vital signs, and scor-
ing systems such as sequential organ failure assessment 
(SOFA) score and the simplified acute physiology score 
II (SAPS II) within the first 24 h of ICU admission were 
queried with structured query language (SQL) codes, 
which were developed and tested with DBeaver Com-
munity version 23.2.0 (https://​dbeav​er.​io/​downl​oad/), 
and executed with the DBI package version 1.1.3 (https://​
dbi.r-​dbi.​org/) to create the corresponding tables in the 
MIMIC-IV database and related variables in the R global 
environment for futher data analysis.

https://dbeaver.io/download/
https://dbi.r-dbi.org/
https://dbi.r-dbi.org/
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Exposure and outcomes
The TyG index is calculated using the for-
mula:  TyG index = ln [fasting triglycerides (mg/dL) × fasting

glucose (mg/dL) / 2]. 
We assessed overall IR during first 72 h after ICU admis-

sion with temporal TyG index trajectory. Specifically, we 
used the dynamic time warping (DTW) algorithm with 
the tslearn package version 0.6.2 to process the TyG index 
time series data (normalized by min–max), and calculated 
the similarity of the dynamic TyG index trend between 
each individual and other individuals, which formed a 
skew-symmetric matrix with similarity data. Then, we uti-
lized an unsupervised machine learning algorithm hierar-
chical clustering (HC) provided by SciPy package version 
1.11.4 to cluster the skew symmetric similarity matrix. The 
optimal number of clusters was determined by the aver-
age silhouette coefficient calculated with the scikit-learn 
package version 1.3.2. Generally, the higher the average sil-
houette level indicates the better clustering effect. We cal-
culated the average silhouette coefficient of clusters 2–10, 
and selected the number of clusters corresponding to the 
highest average silhouette as the best clustering number. In 
addition, to ensure the stability of clustering, we also use 
NBclust package version 3.0.1 to calculate the best num-
ber of clusters of skew symmetric similarity matrix. The 
primary outcome was 28-day mortality and the secondary 
outcome was in-hospital mortality.

Covariates
In the current study, we defined a comprehensive set of 
31 covariates based on a previous well-designed study 

[21] on sepsis, clustered into 5 distinct categories, served 
as potential confounders. These categories encom-
passed demographic and admission data (e.g., age, gen-
der, weight, SAPS II, SOFA score, Charlson comorbidity 
index), therapeutic interventions [mechanical ventila-
tion, sedative therapy, insulin therapy and vasopressor 
therapy], pre-existing comorbid conditions [e.g., heart 
failure (HF), hypertension, atrial fibrillation (AFIB), type 
2 diabetes mellitus (T2DM), chronic renal disease, liver 
disease, chronic obstructive pulmonary disease (COPD), 
coronary artery disease (CAD), stroke, malignancy], vital 
signs [e.g., mean arterial pressure (MAP), temperature, 
heart rate], along with laboratory tests (e.g., white blood 
cell (WBC) count, hemoglobin, platelet count, potential 
of hydrogen (pH), partial pressure of oxygen (PO2), par-
tial pressure of carbon dioxide (PCO2), lactate, creati-
nine).  We employ the variance inflation factor (VIF) to 
assess the multicollinearity among covariates. Variables 
with a VIF > 5 are considered to have a strong correlation 
with the exposure factors and require further adjustment.

Statistical analysis
As the sample size of each group was less than 2000, 
we executed the Shapiro–Wilk normality test to eval-
uate the normal distribution of the data. F-test was 
applied to assess the equality of variances. Given the 
circumstances where the data exhibited normal distri-
bution across groups and the homogeneity of variance 
test revealed no statistical difference, we conducted 
the t-test for continuous covariates. In contrast, if such 
conditions were not met, the Wilcoxon test was deemed 

Fig. 1  Study flowchart
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suitable. The Chi-square test was utilized for categori-
cal covariates, while Fisher’s exact test was used if the 
sample size for any cell was less than 10. Continuous 
variables were articulated as mean (standard deviation), 
while categorical variables were conveyed as numeri-
cal values (percentage). We used generalized additive 
model (GAM) to explore the relationship between TyG 
index and 28-day mortality [22].

We performed propensity score matching (PSM) and 
inverse probability of treatment weighting (IPTW) 
based on the propensity score to adjust for covari-
ates, thereby fortifying the robustness of our results. 
The Matching package was utilized to generate a 1:1 
matched cohort. The propensity score, generated with 
the logistic regression model, was used as the basis for 
further propensity score-based analysis. Whether the 
absolute values of standardized mean difference (SMD) 
of all covariates between groups exceeded the threshold 
of 0.1 was used to assess the balance of covariates. Mul-
tiple imputations (MI) were performed with the mice 
package [23] before PSM. The unadjusted log-rank test 
was employed with the survival package [24] to estimate 
the original cohort. When Kaplan–Meier curves cross, 
the log-rank test becomes unsuitable due to its assump-
tion of a constant hazard ratio. In such instances, we 
will utilize a Time-Dependent Cox model for analysis, 
employing the tt function (defined as “tt = function (x, 
t, …) x * log(t + 20)”) for transformation.

To ensure the robustness of the results, we applied a 
series of models as sensitivity analyses for 28-day and 
in-hospital mortality. We employed the random forest 
algorithm to evaluate the impact of covariates on out-
comes. This method calculates the importance of each 
feature variable in predicting the outcome and ranks 
them accordingly. Based on their significance, feature 
variables are categorized into three groups: “Con-
firmed,” “Tentative,” and “Rejected.” Variables labeled 
as “Confirmed” are considered the most influential and 
are incorporated into subsequent models for further 
analysis. The models included the McNemar’s test for 
matched cohort outcomes (PSM model) [21], the multi-
variable logistic model adjusted with all covariates, the 
multivariable logistic model adjusted with covariates 
selected by Boruta, the multivariable logistic model 
adjusted with all covariates using IPTW, and doubly 
robust estimation model [21]. Subgroup analyses were 
also performed by the level of covariates including age, 
gender, HF, hypertension, CAD and T2DM with jstable 
package version 1.1.2.

All statistical approaches were deployed with Python 
version 3.10.12 or R version 4.2.3. The threshold of statis-
tical significance is established at P < 0.05.

Result
The tyg index trajectory and clinical subphenotype
We identified a total of 34,677 septic patients in the 
MIMIC-IV database based on the Sepsis 3.0 criteria. 
After excluding those with ICU stays less than 72 h, indi-
viduals under 18 years of age, patients with fewer than 3 
blood glucose recordings within the initial 72  h of ICU 
admission, those with missing triglyceride data, and indi-
viduals lacking usable ICD information, the final cohort 
consisted of 2,350 patients (Fig. 1).

The DTW-derived skew-symmetric similarity matrix 
of TyG index trajectory was processed with processed 
by the unsupervised machine learning HC algorithm 
(Fig. 2). The highest silhouette score was detected at level 
of 2 clusters, indicating that the optimal number of clus-
ters was 2, which was further confirmed by the NBclust 
package when processing the skew-symmetric similarity 
matrix.

Subsequently, we analyzed the dynamic trajectories of 
these two clusters. Patients in the TyG index increasing 
group (n = 1424) had a gradual rise in their TyG index 
from an initial value of approximately 9.10 to over 9.31 
within the first 72 h, whereas patients in the TyG index 
decreasing group (n = 926) had a gradual decline from 
an initial value near 9.48 to approximately 9.03 (Fig.  3). 
Considering that the TyG index represents a dynamic 
change in the degree of IR, we identified these 2 clusters 
as clinical subphenotype of increased and alleviative IR 
respectively.

The baseline characteristics of different trajectory 
subphenotypes
Table  1 presents the baseline data for the TyG index 
decreasing and increasing groups. Within the original 
cohort, both 2 groups exhibited differences in age, SOFA 
score, and Charlson comorbidity index. The decreas-
ing group had a slightly lower mean age (60.55 ± 16.49) 
compared to the increasing group (62.77 ± 16.05). 
The baseline SOFA score was marginally lower in the 
increasing group (6.96 ± 4.14) compared to the decreas-
ing group (7.49 ± 4.21). Concerning comorbidities, the 
incidence rates of hypertension, T2DM, renal disease, 
CAD, stroke, and other complications were lower in the 
decreasing group than in the increasing group. Regard-
ing outcomes, the 28-day mortality rate was lower in the 
decreasing group (23.54%) compared to the increasing 
group (28.51%), and the in-hospital mortality rate was 
also lower in the decreasing group (21.60%) compared to 
the increasing group (25.49%). The detailed baseline data 
before PSM were provided in Additional File 1, Table S1.

To mitigate bias arising from baseline data imbalances, 
we performed PSM between the two groups. Table  1 
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illustrated the changes of patients between the two 
groups before and after PSM. Specifically, in the original 
cohort, the TyG index decreasing group comprised 926 
patients, while the TyG index increasing group included 
1,424 patients. After performing 1:1 propensity score 
matching, the number of patients in both groups was 
reduced to 406. Counts of variables with SMD greater 
than 0.1 significantly decreased between the groups com-
pared to before matching, which indicated a better bal-
ance in baseline characteristics between the matched 
cohorts (Additional File 2, Table S2-S4, Additional File 1, 
Fig. S1).

Primary and secondary outcome
We first analyzed the association between the TyG 
index and 28-day mortality in septic patients. Using a 
GAM model, we found a nonlinear negative relationship 
between the TyG index and 28-day mortality in these 
patients (Additional file 2, Fig. S2).

We analyzed the differences in 28-day and in-hospital 
mortality between the TyG index increasing and decreas-
ing groups. Before PSM, the time dependent Cox model 
showed that the increasing group had a higher 28-day 
mortality risk compared to the decreasing group [hazard 
ratio (HR): 1.07, 95% confidence interval (CI): 1.02–1.12, 
P = 0.01]. A similar trend was observed for in-hospital 
mortality (HR: 1.05, 95% CI: 1.00–1.11, P = 0.045) (Addi-
tional File 1, Table S5, Table S6). As shown in Fig. 4, the 
increasing group exhibited significantly higher risks of 
28-day (P = 0.01) and in-hospital mortality (P = 0.045) 
compared to the decreasing group in the original cohort.

Sensitivity analyses and subgroup analyses
To validate the robustness of the outcomes, we con-
structed multiple models for sensitivity analyses. We 
employed the random forest algorithm for feature selec-
tion to assess the importance of variables on outcomes. 
As shown in Additional file 2, Fig. S3, a total of 13 vari-
ables were marked as “confirmed,” including SAPS-II, 

Fig. 2  Heatmap of similarity of the TyG index trajectory after hierarchical clustering. Each patient was depicted by horizontal and vertical axes. 
DTW-derived normalized pairwise patient similarity is represented by color intensity. The best number of clusters was 2 according to the silhouette 
score
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age, Charlson Comorbidity Index, SOFA score, tempera-
ture, WBC count, Lactate, liver disease, platelet, stroke, 
chronic renal disease, sedative therapy, and hemoglobin. 
These variables were incorporated into subsequent mod-
els for further analysis. Meanwhile, to evaluate the mul-
ticollinearity of the variables, we analyzed the VIF for all 
variables. As shown in Additional File 1, Tables S7-S8, the 
VIF values for all variables were below 5, indicating no 
need for further adjustments. The models for sensitivity 
analyses including the PSM model, multivariable logistic 
model adjusted with all covariates, multivariable logistic 
model adjusted with covariates selected by Boruta, multi-
variable logistic model adjusted with all covariates using 
IPTW, and doubly robust estimation with all covariates. 
As presented in Table  2, in all models, the increasing 
group demonstrated higher 28-day and in-hospital mor-
tality relative to the decreasing group. Detailed data are 
provided in Additional File 1, Table S9-S18.

Moreover, we conducted a stratified analysis concern-
ing the relationship between the TyG index increas-
ing and decreasing groups for 28-day mortality, as 
well as in-hospital mortality. Similar findings persisted 
across the majority of subgroups (Fig. 5). The TyG index 
increasing group exhibited a significant association with 
elevated 28-day mortality (Fig. 5A) in subgroups consist-
ing of females[odds ratio (OR): 1.56, 95% CI: 1.16–2.11, 

P = 0.004], aged ≥ 60 years (OR: 1.43, 95% CI: 1.12–1.82, 
P = 0.004), and those not afflicted with heart failure(OR: 
1.3, 95CI: 1.03–1.64, P = 0.028), hypertension (OR: 1.55, 
95% CI: 1.11–2.16, P = 0.01), CAD (OR: 1.4, 95% CI: 
1.13–1.76, P = 0.003), or T2DM (OR: 1.46, 95% CI: 1.17–
1.84, P = 0.001). Similar results were obtained in stratified 
analyses for the in-hospital mortality (Fig. 5B).

Discussion
Our study identified two dynamic TyG index trajectory 
subphenotypes in septic patients. Due to DTW’s capac-
ity to accurately capture heterogeneous evolution within 
temporal sequences, it was utilized to determine how 
similar the trajectories of individual patients were to one 
another. And then HC was used to divided patients into 
similar trajectories together. This allowed for the iden-
tification of various clusters and the subsequent deter-
mination of trajectory differences. The subphenotypes 
were identified as the increased and alleviative IR groups, 
which were characterized by the TyG index increasing 
and decreasing within the first 72  h respectively. The 
increased IR group exhibited higher 28-day and in-hos-
pital mortality than the decreasing group. Furthermore, 
sensitivity analyses further confirmed the robustness of 
our findings.

Fig. 3  The TyG index trajectory revealed the increased and alleviative IR subphenotypes
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IR represents a significant manifestation of meta-
bolic dysregulation in septic patients [4]. This metabolic 
abnormality has previously been connected to sympa-
thetic nervous system activation [8], elevated plasma 
levels of counter-regulatory hormones [3], and GLUT4 
translocation [6] in septic patients. The occurrence of IR 
is significantly correlated with adverse outcomes in sep-
tic patients and contributes to higher mortality rates [10]. 
With increased awareness and technological advance-
ments, this metabolic abnormality has gained wider 

recognition and treatment. Clinical evaluation of the 
status of IR in septic patients is frequently insufficient, 
and the effect of IR trajectory on the mortality of septic 
patients has not been adequately assessed.

The TyG index has been considered an effective surro-
gate marker for assessing IR. Gold standard techniques 
like the euglycemic insulin clamp and intravenous glu-
cose tolerance testing are pricy and difficult to perform, 
and HOMA-IR’s applicability is constrained by things 
like insulin therapy [25]. The TyG index has received a 

Table 1  Baseline characteristics before and after propensity score matching of two cohorts

Values are presented as mean (standard deviation) for continuous variables and number (percentage) for categorical variables. Variables in bold have P -value < 0.05

Before Matching After Matching

TyG index 
decreasing 
(N = 926)

TyG index increasing 
(N = 1424)

SMD TyG index 
decreasing 
(N = 406)

TyG index 
increasing (N = 406)

SMD

Age 60.55 (16.49) 62.77 (16.05) 0.136 63.87 (15.09) 59.97 (16.92) 0.243
Gender (Female) 382 (41.25%) 586 (41.15%) 0.002 179 (44.09%) 158 (38.92%) 0.105

Weight 87.12 (25.69) 86.82 (28.74) 0.011 85.08 (25.88) 86.80 (24.34) 0.069

SAPS II 42.89 (15.08) 42.28 (14.83) 0.04 41.13 (13.76) 42.37 (14.24) 0.089

SOFA score 7.49 (4.21) 6.96 (4.14) 0.126 6.69 (4.11) 7.45 (4.02) 0.187
Charlson comorbidity index 4.93 (2.94) 5.49 (3.08) 0.186 5.49 (2.90) 4.72 (2.92) 0.265
Mechanical ventilation (YES) 668 (72.14%) 1050 (73.74%) 0.036 298 (73.40%) 297 (73.15%) 0.006

Sedative therapy (YES) 705 (76.13%) 1068 (75.00%) 0.026 304 (74.88%) 312 (76.85%) 0.046

Insulin therapy (YES) 390 (42.12%) 487 (34.20%) 0.164 121 (29.80%) 157 (38.67%) 0.188
Vasopressor therapy (YES) 489 (52.81%) 632 (44.38%) 0.169 177 (43.60%) 223 (54.93%) 0.228
HF (YES) 282 (30.45%) 424 (29.78%) 0.015 122 (30.05%) 129 (31.77%) 0.037

Hypertension (YES) 560 (60.48%) 951 (66.78%) 0.131 273 (67.24%) 243 (59.85%) 0.154
AFIB (YES) 121 (13.07%) 171 (12.01%) 0.032 53 (13.05%) 47 (11.58%) 0.045

T2DM (YES) 233 (25.16%) 457 (32.09%) 0.154 112 (27.59%) 79 (19.46%) 0.193
Renal (YES) 166 (17.93%) 306 (21.49%) 0.09 90 (22.17%) 68 (16.75%) 0.137

Liver (YES) 120 (12.96%) 169 (11.87%) 0.033 51 (12.56%) 58 (14.29%) 0.051

COPD (YES) 138 (14.90%) 226 (15.87%) 0.027 64 (15.76%) 63 (15.52%) 0.007

CAD (YES) 237 (25.59%) 303 (21.28%) 0.102 85 (20.94%) 102 (25.12%) 0.1

Stroke (YES) 198 (21.38%) 435 (30.55%) 0.21 122 (30.05%) 66 (16.26%) 0.331
Malignancy (YES) 165 (17.82%) 252 (17.70%) 0.003 71 (17.49%) 69 (17.00%) 0.013

MAP 86.40 (20.89) 85.73 (19.24) 0.034 85.01 (18.01) 85.72 (20.85) 0.036

Temperature 36.80 (0.99) 36.88 (0.97) 0.087 36.90 (0.85) 36.75 (0.99) 0.16

Heart rate 94.72 (21.37) 92.64 (21.61) 0.097 91.36 (20.20) 95.05 (20.16) 0.183
WBC count 14.98 (14.47) 13.58 (11.76) 0.106 13.27 (10.67) 15.27 (13.54) 0.164
Hemoglobin 10.99 (2.53) 10.88 (2.48) 0.045 10.75 (2.45) 11.02 (2.51) 0.111

Platelet 207.53 (120.49) 199.73 (112.50) 0.067 197.87 (115.46) 212.51 (118.68) 0.125

pH 7.33 (0.12) 7.35 (0.11) 0.177 7.36 (0.09) 7.33 (0.11) 0.298
PO2 137.98 (96.11) 139.70 (94.45) 0.018 135.48 (82.64) 131.97 (87.04) 0.041

PCO2 42.32 (13.87) 43.14 (14.59) 0.057 42.90 (12.87) 42.14 (12.93) 0.059

Lactate 2.80 (2.41) 2.37 (2.34) 0.183 2.02 (1.48) 2.79 (2.01) 0.437
Creatinine 1.67 (1.55) 1.61 (1.61) 0.037 1.50 (1.35) 1.63 (1.53) 0.088

28-day mortality (Death) 218 (23.54%) 406 (28.51%) 0.113 94 (23.15%) 124 (30.54%) 0.167
In-hospital mortality (Death) 200 (21.60%) 363 (25.49%) 0.092 80 (19.70%) 116 (28.57%) 0.208
Hospital LOS 18.48 (15.84) 18.22 (15.51) 0.016 17.79 (14.68) 18.79 (16.35) 0.064
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lot of attention as a useful tool for assessing IR in clinical 
settings because of its ease of use, low cost, and effective-
ness that is comparable to HOMA-IR [26]. It has dem-
onstrated its utility in non-diabetic patients and those 
receiving insulin therapy, where it may even outperform 
HOMA-IR [11, 27].

Previous research has focused on the predictive capa-
bilities of the TyG index for cardiovascular diseases [27]. 

The TyG index has demonstrated good prognostic value 
in conditions such as coronary artery disease [28], heart 
failure [29], ischemic stroke [30], etc. Studies have shown 
that this risk prediction efficacy is unaffected by hyper-
triglyceridemia and diabetes [11]. For example, a nested 
case–control study involving 3,745 patients demon-
strated an association between the TyG index and the risk 
of cardiovascular events (HR: 1.364, 95% CI: 1.100–1.691, 

Fig. 4  K-M curve for 28-day (A) and in-hospital mortality (B) by time dependent Cox model

Table 2  Primary and secondary outcome analyses with different models for cohort

Statistical analyses of different models with P -value < 0.05 were displayed in bold
a OR Odds Ratio, CI Confidence Interval

Models P -value Result

28-day mortality
  Propensity score matching model [OR (95% CI)]a  < 0.05 1.46 (1.07, 2.00)
  Multivariable logistic model adjusted with all covariates [OR (95% CI)]a  < 0.05 1.28 (1.04, 1.57)
  Multivariable logistic model adjusted with covariates selected by Boruta [OR (95% CI)]a  < 0.05 1.3 (1.06, 1.60)
  Multivariable logistic model adjusted with all covariates using IPTW [OR (95% CI)]a  < 0.01 1.29 (1.11, 1.51)
  Doubly robust estimation with all covariates [OR (95% CI)]a  < 0.05 1.29 (1.04, 1.61)
In-hospital mortality
  Propensity score matching model [OR (95% CI)]a  < 0.01 1.61 (1.16, 2.23)
  Multivariable logistic model adjusted with all covariates [OR (95% CI)]a  < 0.05 1.28 (1.03, 1.59)
  Multivariable logistic model adjusted with covariates selected by Boruta [OR (95% CI)]a  < 0.05 1.3 (1.05, 1.60)
  Multivariable logistic model adjusted with all covariates using IPTW [OR (95% CI)]a  < 0.01 1.28 (1.09, 1.50)
  Doubly robust estimation with all covariates [OR (95% CI)]a  < 0.05 1.28 (1.02, 1.60)
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P = 0.005) [31]. Another retrospective cohort study of 733 
patients with ischemic stroke found a significant associa-
tion between elevated TyG index and all-cause in-hospi-
tal mortality (HR: 1.371, 95% CI: 1.053–1.784, P = 0.013) 
[32]. Additionally, in acute coronary syndromes, a high 
TyG index is associated with higher mortality rates and 
a greater risk of major adverse cardiovascular events 
[15, 33]. The correlation of the TyG index with the inci-
dence of organ dysfunction in cardiovascular disease 
patients has also been noted. The risk of acute kidney 
injury was significantly associated with an elevated TyG 
index, according to a retrospective cohort study of 1,393 
patients with heart failure (HR: 1.57; 95% CI: 1.34–1.84; 
P = 0.001) [34].

Furthermore, the trajectory of the TyG index can serve 
as a predictor of cardiovascular diseases, demonstrat-
ing value in atherosclerosis and stroke. According to 
Yan et  al.’s study, the brachial-ankle pulse wave velocity 
increased by 37.1 cm/s for every unit increase in the TyG 
index (95% CI: 23.7–50.6 cm/s, P < 0.001), with the high-
est TyG index trajectory group showing the fastest pro-
gression of arterial stiffness (OR 2.76; 95% CI: 1.40–7.54) 
[17]. Huang et al. analyzed 19,924 hypertensive patients 
and identified five different TyG index trajectories, with 
the elevated-increasing group having the highest risk of 
stroke (HR: 2.21, 95% CI: 1.49–3.28) [18]. These findings 
collectively demonstrate the TyG index’s strong predic-
tive ability for both short-term and long-term risk in car-
diovascular disease patients.

More recently, the TyG index has shown promise in 
predicting outcomes in critically ill patients. Liao et  al. 
conducted a retrospective cohort study comprising 
3,026 critically ill patients, revealing that the TyG index 

serves as an independent risk indicator for ICU mortal-
ity (HR: 1.72, 95% CI: 1.18–2.521.18–2.52, P = 0.005) 
[35]. Another study involving 639 critically ill patients 
with concomitant CKD and CAD demonstrated a sig-
nificant association between elevated TyG index and 
one-year ICU mortality and in-hospital mortality [36]. 
Zheng et al.’s study investigated the association between 
the TyG index and mortality rates among septic patients. 
The research revealed a significant correlation between 
elevated TyG index and increased in-hospital mortality 
risk among patients with sepsis (OR 1.440; 95% CI 1.106–
1.875; P = 0.00673) [20].

The studies mentioned above collectively affirm that 
TyG index, as an indicator reflective of IR status, demon-
strates notable prognostic value. However, little attention 
has been devoted to exploring the impact of TyG index 
trajectory, or rather, the changes in IR, on outcomes in 
septic patients. Our research conveniently addresses this 
lacuna.

We explored the similarities of dynamic changes of the 
TyG index in different subjects, and identified two tra-
jectory subphenotypes: the increased and alleviative IR 
groups, which stand for increasing and decreasing TyG 
index within the initial 72  h after ICU admission. As 
previously discussed, the TyG index serves as an alterna-
tive metric for IR, wherein its elevation implies a wors-
ening of IR, and its decline suggests an amelioration of 
IR. Consequently, our findings can be interpreted as a 
significant correlation between the improvement in IR 
within the first 72  h of admission and a reduced mor-
tality rate among septic patients. This outcome holds 
promising applications in clinical practice. By monitor-
ing and calculating the TyG index and its alterations, 

Fig. 5  Forest plots of odds ratios for 28-day (A) and in-hospital mortality (B) in different subgroups
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we can dynamically assess a patient’s IR status, evaluate 
their metabolic anomalies, and thereby implement tai-
lored preventive and therapeutic measures. In the strati-
fied analysis, we observed that patients over 60 years old, 
without hypertension, heart failure, CAD, or T2DM had 
a higher risk of mortality when exhibiting an increas-
ing trend in IR. This might be attributed to patients who 
were older or with HF, CAD, and T2DM inherently hav-
ing a higher incidence of IR, thus underestimating the 
role of IR changes within these populations. Simultane-
ously, in the presence of an increasing IR trend, females 
faced an elevated risk of mortality. This association may 
be linked to the comparatively lower incidence of IR in 
females than males [37], thereby indicating a relatively 
diminished tolerance to the impacts of IR.

Our study confirmed that the elevation of the TyG 
index serves as a predictive factor for increased mortal-
ity risk in septic patients, elucidating that the worsening 
of IR may result in a heightened mortality risk among 
individuals afflicted by sepsis. Nevertheless, there are 
several limitations in our study. Firstly, it is imperative 
to acknowledge that this is a retrospective observational 
study, we have diligently employed a variety of rigorous 
and comprehensive statistical methodologies to mitigate 
bias and ensure the robustness of our findings. However, 
further prospective research is essential to validate the 
impact of TyG index variations on the clinical prognosis 
of septic patients. Secondly, due to limitations within the 
database, we were unable to confirm whether all blood 
glucose and lipid results were obtained in a fasting state. 
In most ICU settings, triglycerides are often not repeat-
edly measured within the first 3 days, making it challeng-
ing to calculate their dynamic change trajectories. While 
blood glucose measurements are relatively frequent in 
the ICU, exhibit significant dynamic changes, and can be 
used to compute dynamic trajectories. Therefore, in this 
study, the dynamic changes in the TyG index may be pri-
marily driven by fluctuations in blood glucose. However, 
the TyG index is calculated from both blood glucose and 
triglyceride data, its trajectory meaningfully represents 
the dynamic changes in insulin resistance, as it incorpo-
rates the influence of triglycerides. Future research could 
consider increasing the measurement frequency of tri-
glycerides to more precisely assess their dynamic change 
trajectories. Moreover, due to the presence of interven-
tions such as insulin therapy and vasopressor medica-
tions, the trajectory changes may be influenced. Although 
we have adjusted potential variables into our model, there 
still might be latent influencing factors (such as insulin 
dosage and patient responses to insulin therapy). These 
factors need to be further controlled in detailed prospec-
tive studies. Thirdly, since the database only encompasses 
critically ill patients in the United States, conducting 

additional studies to verify whether these findings hold in 
other nations is imperative. Fourthly due to the need to 
calculate dynamic trajectories, we included only patients 
who stayed in the ICU for more than 72 h. Patients with 
severe conditions (e.g., those who died within 24 h) may 
have reached the endpoint of the study before their tra-
jectories could be calculated, and patients with milder 
conditions (e.g., those under postoperative monitoring) 
often had too short a stay in the ICU to effectively assess 
“trajectory” changes during their ICU stay. The loss of 
these patients may impact the test’s effectiveness. Fifth, 
we utilized DTW and HC algorithm to determine the 
variation patterns of TyG index for patients, subsequently 
dividing them into two groups based on the results. This 
approach focuses on investigating the patterns of change 
for TyG index, namely, how these 2 different trends/sub-
phenotypes in TyG index fluctuations affect prognosis of 
patients. However, when it comes to different individuals 
within the same subphenotype, for instance, the patients 
in IR decreasing subphenotype both exhibiting a decreas-
ing trend in TyG index, we cannot fully quantify whether 
a decline from higher value to middle range is superior, 
inferior or equivalent to a decline from middle range 
to an even lower value. Similarly, it is difficult to judge 
which is more harmful among the individuals in the 
same trend of TyG index increasing. Precise estimations 
require further elaboration with larger sample sizes and 
higher-resolution data. Therefore, future prospective tri-
als should consider the influence of these patients more 
thoroughly.

Conclusion
This study reveals that a dynamic increase in the triglyc-
eride-glucose (TyG) index trajectory is significantly asso-
ciated with higher mortality rates. Through analyzing 
the TyG index trajectory, we identified clinical subphe-
notypes reflecting changes in insulin resistance, offering 
new insights into patient prognosis. Notably, a sustained 
rise in the TyG index indicates worsening insulin resist-
ance, which is closely linked to poorer clinical outcomes.
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