
A spatially resolved single-cell genomic atlas of the adult human 
breast

Tapsi Kumar1,2,16, Kevin Nee3,16, Runmin Wei1,16, Siyuan He1,2,16, Quy H. Nguyen3,16, 
Shanshan Bai1, Kerrigan Blake4,5, Maren Pein3,4, Yanwen Gong3,5, Emi Sei1, Min Hu1, Anna 
K. Casasent1, Aatish Thennavan1, Jianzhuo Li1, Tuan Tran1, Ken Chen6, Benedikt Nilges7, 
Nachiket Kashikar7, Oliver Braubach8, Bassem Ben Cheikh8, Nadya Nikulina8, Hui Chen9, 
Mediget Teshome10, Brian Menegaz11, Huma Javaid11, Chandandeep Nagi11, Jessica 
Montalvan11, Tatyana Lev4,5, Sharmila Mallya4, Delia F. Tifrea12, Robert Edwards12, Erin 
Lin12, Ritesh Parajuli12, Summer Hanson13, Sebastian Winocour14, Alastair Thompson14, 
Bora Lim15,17, Devon A. Lawson4,17, Kai Kessenbrock3,17, Nicholas Navin1,2,6,17

1Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA.

2Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 
Houston, TX, USA.

3Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.

4Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.

5Math, Computational & Systems Biology, University of California, Irvine, Irvine, CA, USA.

6Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, 
Houston, TX, USA.

7Resolve Biosciences, Monheim am Rhein, Germany.

8Akoya Biosciences, Menlo Park, CA, USA.

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence and requests for materials should be addressed to Devon A. Lawson, Kai Kessenbrock or Nicholas Navin. 
dalawson@uci.edu; kai.kessenbrock@uci.edu; nnavin@mdanderson.org.
Author contributions scRNA-seq experiments were performed by K.N., Q.H.N., S.B., T.K., E.S., J.L., M.P., T.T. and S.M. Spatial 
genomics experiments were performed by S.B., E.S., B.N., N.K., O.B., B.B.C. and N. Nikulina. Single-cell data analysis was 
performed by T.K., R.W., S. He., K.B., M.P., Y.G., M.H., A.K.C., B.N., N.K., K.C. and T.L. Spatial data analysis was performed by 
R.W., S. He and A. Thennavan. Tissue samples and clinical coordination was performed by O.B., B.B.C., H.C., A.K.C., M.T., B.M., 
H.J., J.M., R.E., D.F.T., C.N., E.L., R.P., S.W., S.M., A. Thompson, B.L. and S. Hanson. Tissue pathological analysis was performed 
by H.C., C.N. and A. Thennavan. Project management and manuscript writing was performed by B.L., D.A.L., N. Navin and K.K. N. 
Navin and K.K. are the coordinators for the Breast Atlas Bionetwork that is part of the HCA Project.

Reporting summary
Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Code availability
The scripts associated with the analysis are available at GitHub (https://github.com/navinlabcode/HumanBreastCellAtlas).

Online content
Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-023-06252-9.

Competing interests The other authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/
s41586-023-06252-9.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2024 October 01.

Published in final edited form as:
Nature. 2023 August ; 620(7972): 181–191. doi:10.1038/s41586-023-06252-9.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints
https://github.com/navinlabcode/HumanBreastCellAtlas


9Department of Pathology, UT MD Anderson Cancer Center, Houston, TX, USA.

10Department of Breast Surgical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.

11Department of Pathology and Immunology, Baylor Medical College, Houston, TX, USA.

12Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA.

13Department of Surgery, University of Chicago Medicine, Chicago, IL, USA.

14Department of Surgery, Baylor College of Medicine, Houston, TX, USA.

15Department of Medicine, Section of Hematology and Oncology, Baylor College of Medicine, 
Houston, TX, USA.

16These authors contributed equally: Tapsi Kumar, Kevin Nee, Runmin Wei, Siyuan He, Quy H. 
Nguyen.

17These authors jointly supervised this work: Bora Lim, Devon A. Lawson, Kai Kessenbrock, 
Nicholas Navin.

Abstract

The adult human breast is comprised of an intricate network of epithelial ducts and lobules that 

are embedded in connective and adipose tissue1–3. Although most previous studies have focused 

on the breast epithelial system4–6, many of the non-epithelial cell types remain understudied. Here 

we constructed the comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial 

resolution. Our single-cell transcriptomics study profiled 714,331 cells from 126 women, and 

117,346 nuclei from 20 women, identifying 12 major cell types and 58 biological cell states. 

These data reveal abundant perivascular, endothelial and immune cell populations, and highly 

diverse luminal epithelial cell states. Spatial mapping using four different technologies revealed 

an unexpectedly rich ecosystem of tissue-resident immune cells, as well as distinct molecular 

differences between ductal and lobular regions. Collectively, these data provide a reference of the 

adult normal breast tissue for studying mammary biology and diseases such as breast cancer.

The human breast is an apocrine organ that has an important physiological role in producing 

milk to nourish an infant after birth1. This glandular function is mediated by highly 

branched lobular units that produce milk, which is transported through the ductal network. 

The mammary epithelial system is embedded into an adipose-rich tissue and surrounded 

by a dense web of vasculature and lymphatic vessels (Fig. 1a). Human breast tissue is 

composed of four major spatial regions: (1) terminal ductal lobular units (TDLUs) and 

lobules of densely packed, branched epithelium; (2) tubular ducts of mostly bilayered 

epithelium; (3) extracellular matrix (ECM)-rich connective tissue; and (4) adipose-rich 

regions (Fig. 1a). These areas consist of their own cellular neighbourhoods that have 

previously been described in histopathological studies1,3,7. However, a comprehensive and 

systematic unbiased map of their cellular expression programmes and spatial organizations 

is lacking.

Previous studies have mainly focused on the epithelial cells, which comprise the inner 

layer of luminal cells and the outer layer of basal-myoepithelial cells within the ducts 
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and lobules4–6 (Fig. 1a). The focus on epithelium is mainly due to its implication 

in breast cancer8,9, mammary stem cell and progenitor functions10,11 and its changes 

during menstruation, pregnancy and lactation12,13. Previous studies using single-cell RNA 

sequencing (scRNA-seq) have identified three mammary epithelial cell types, laying the 

groundwork for this study4,6,14–16. Increasing evidence suggests that the microenvironment 

contains numerous stromal cells that actively crosstalk with the epithelial cells17–20. 

However, the intense focus on epithelial cells has left a major gap in knowledge concerning 

the non-epithelial cell types. The goal of the HBCA is to create a comprehensive atlas of 

all cell types and cell states in normal breast tissues using unbiased single-cell and spatial 

genomic methods, and is part of the larger Human Cell Atlas (HCA) project21.

Major cell types in adult human breast

In total, the HBCA project collected 220 fresh breast tissue samples from 132 women, 

of which a subset was used for single-cell and spatial genomic profiling (Fig. 1b). To 

identify the breast major cell types, we performed unbiased 3′ scRNA-seq (10x Genomics) 

analysis of 167 tissue samples collected from 126 women (Fig. 1b and Supplementary Table 

1). Fresh breast tissue samples were obtained from disease-free women through reduction 

mammoplasties (n = 111) and prophylactic bilateral mastectomies (n = 18), as well as from 

patients with breast cancer using the contralateral mastectomies (n = 38) from the unaffected 

breast. The fresh tissue samples were collected at the four institutions within 1–2 h after 

surgery to generate viable cell suspensions from large (50–100 g) tissue samples (Methods). 

The tissues were dissociated using three protocols (short, ~1 h; medium, ~6 h; long, ~24 h) 

that differed mainly in their enzymatic dissociation times (Methods and Extended Data Fig. 

1a). The women enrolled in this study were predominantly of Caucasian (46%) and African 

American (41%) ethnicity, but also included other (13%) ethnic backgrounds (Extended 

Data Fig. 1b and Supplementary Table 1).

We sequenced an average number of 9,954 cells per sample at 46,000 average reads per cell 

(Supplementary Table 2). After filtering, scRNA-seq data from 714,331 cells was integrated 

revealing 10 major cell type clusters (Fig. 1c and Methods). These cell types included three 

epithelial components: luminal hormone-responsive (LumHR), luminal secretory (LumSec) 

and basal-myoepithelial (basal); two endothelial (lymphatic and vascular); three immune (T 

cells, B cells and myeloid cells) and two mesenchymal cell types (fibroblasts (fibro) and 

perivascular cells). Although the frequency of the cell types varied across women, all of the 

cell types were detected in most women, irrespective of the surgical procedure, anatomical 

region and dissociation protocol (Extended Data Fig. 1c–e). Many cell types identified were 

consistent with histopathological1,7 and molecular studies14,15; however, the detection of a 

high number of perivascular cells (7.4% total cells) and immune cells (16.7% total cells) 

was unexpected. Many of the top expressed genes represented canonical cell type markers; 

however, more than half have not previously been reported widely, providing a valuable 

resource for future studies (Fig. 1d and Supplementary Table 3).

Notably, the scRNA-seq data did not identify any adipocytes, which represent a major 

component on the basis of histopathological data7,22. This issue was mainly due to the 

large cell size of adipocytes (>50 μm), preventing their encapsulation on the scRNA-seq 
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microdroplet platform23. To identify adipocytes, we performed single-nucleus RNA-seq 

(snRNA-seq) analysis of 117,346 cells from 20 women using 24 tissue samples (Fig. 1e). 

Our snRNA-seq analysis detected most major cell types identified by scRNA-seq (except 

for B cells) and also included clusters of adipocytes and mast cells (Fig. 1e). Many of 

the top cell type marker genes in the snRNA-seq data differed from the scRNA-seq data, 

possibly reflecting biological differences in the cytoplasmic and nuclear RNA pools (Fig. 

1f and Supplementary Tables 3 and 4). To identify transcription factors of cell types, we 

performed regulatory network analysis24 using both scRNA-seq and snRNA-seq datasets 

(Extended Data Fig. 1f,g). These data identified many known25 and previously undescribed 

transcription factors that regulate breast cell type identities.

One potential concern was that sampling different spatial areas could potentially lead to 

differences in cell type compositions. To investigate this issue, we compared the cell 

type frequencies from matched (left–right) breasts from 22 women, which showed high 

concordance based on Procrustes analysis (R = 0.83, P = 1.5 × 10−6; Methods and Extended 

Data Fig. 1d,h). We also compared cell type frequencies across the three main surgical 

procedures, which showed only minor differences (Extended Data Fig. 1c). Finally, we 

performed a cell–cell interaction analysis, which showed substantial crosstalk between the 

major breast cell types through ligand–receptor interactions (Methods and Extended Data 

Fig. 2). Collectively, these data identified 12 major cell types in adult mammary breast 

tissues.

Spatial mapping of cell neighbourhoods

By histopathology, the human breast tissue can be divided into four major topographic 

regions: adipose tissue, connective tissue and epithelial-rich regions, which are further 

subclassified into TDLUs, referred to here as lobules and ductal regions3,7 (Fig. 1a). We 

used three orthogonal technologies to investigate the spatial organization of cell types in situ, 

including unbiased spatial transcriptomics (ST, 10x Genomics)26, targeted single-molecule 

RNA fluorescence in situ hybridization (smFISH) (Resolve Biosciences) and co-detection 

by indexing (CODEX, Akoya Biosciences) for proteomic analysis27 (Fig. 1b).

ST was performed on ten patients and the data were integrated, revealing nine major 

clusters (Fig. 2a–c, Extended Data Fig. 3a,b and Supplementary Table 5). Although each 

ST spot is large (55 μm), a direct comparison to the scRNA-seq clusters showed that most 

ST clusters corresponded to a single prevalent breast cell type (Extended Data Fig. 3c). 

Importantly, ST-clustered differential genes showed a high concordance (mean r = 0.8, 

Pearson correlation) with the cell type marker genes defined by scRNA-seq, validating 

many of the markers in situ (Fig. 2b, Methods and Extended Data Fig. 3d). The frequency 

of the ST clusters corresponded to the four different tissue areas that were annotated by 

histopathology. The adipose region had a high proportion of ST1-adipocytes, whereas the 

connective region had elevated ST3-fibroblasts and ST9-vascular cell clusters. Furthermore, 

the ductal region contained higher proportions of the ST6-LumSec/basal cells, while the 

lobular region contained a higher proportion of the ST4-LumHR and ST5-LumSec cells 

(Fig. 2c).
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As ST spots contain mixtures of cells, we applied smFISH (Resolve) using a custom 

100-gene panel based on the top marker genes from the scRNA-seq data (Methods and 

Supplementary Table 6). The smFISH analysis of 12 breast tissues from 5 women validated 

many top marker genes in situ (Fig. 2d–f, Extended Data Fig. 4a–c and Supplementary 

Table 7). We performed cell segmentation and cell type annotation using combinations 

of the top gene markers (Fig. 2d, Methods and Extended Data Fig. 4a). We computed 

a cell neighbourhood proximity graph, which showed that the three epithelial cell types 

co-localized with B cells and T cells, whereas fibroblasts co-localized with vascular and 

lymphatic cells (Fig. 2e and Methods). We quantified the cell type frequencies in three major 

tissue regions, showing that the connective region was composed mainly of fibroblasts and 

vascular endothelial cells, whereas the ductal region comprised mainly basal cells and high 

levels of LumSec cells, and the lobular region was composed of basal cells as well as high 

levels of LumHR cells (Fig. 2f and Extended Data Fig. 4a). The smFISH data also showed 

that the overall cell density was low in the connective regions and high in the ductal and 

lobular regions (Extended Data Fig. 4b).

We further investigated the spatial distribution of breast cell types in 8 women at the 

protein level using CODEX with a 34-antibody panel, which resolved 8 major cell types 

(Supplementary Tables 8 and 9). One advantage of CODEX is that large tissue areas 

(approximately 1 cm2) can be imaged (Fig. 2g and Extended Data Fig. 4d–f). To perform a 

quantitative analysis, we performed cell segmentation and unsupervised clustering, followed 

by label transfer from the scRNA-seq data (Fig. 2g and Methods). This analysis showed 

that most cell types were consistent between the eight tissue samples in the CODEX data 

(Extended Data Fig. 4d). Consistent with the smFISH data, the proteomic data showed that 

connective tissue areas have low cell density, ductal regions have intermediate densities 

and lobular regions have high cell density (Extended Data Fig. 4e). We performed a cell 

proximity analysis, which was consistent with the smFISH data (Fig. 2h). Overall, these data 

were used to define the cellular composition of the topographic regions at the protein level 

and were consistent with the smFISH data (Fig. 2i).

Epithelial cells in ducts and lobules

On the basis of histopathology, the bilayered breast epithelium consists of an outer layer of 

basal-myoepithelial cells (basal) and an inner layer of luminal cells1,2 (Fig. 3a). Unbiased 

clustering of 240,804 epithelial cells and 55,557 epithelial nuclei (33.7% of cells, 50.5% of 

nuclei) identified three major epithelial cell types: Basal, LumSec and LumHR, consistent 

with previous studies4,6,14,15 (Fig. 3b,c). As expected, nuclear expression of the hormone 

receptors (ESR1, AR and PGR) was specific to the LumHR cells (Extended Data Fig. 5a). 

We performed an unbiased analysis of cytokeratin gene expression, which revealed Basal 

LumSec- and LumHR-specific cytokeratins (Fig. 3d).

To resolve epithelial diversity, we performed subclustering for each epithelial cell type 

independently, showing cell states that varied across women (Fig. 3e–j and Extended Data 

Fig. 5b). The basal cells were highly homogenous, expressing ACTA2 and TP63, as well 

as low levels of EPCAM, consistent with their role in basement membrane production and 

myoepithelial functions (Fig. 3j and Extended Data Fig. 5c). Within the LumHR cells, 
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three distinct cell states were identified. LumHR-major was characterized by high EGLN3 
expression, whereas LumHR-SCGB showed high expression of secretory genes, including 

MUCL1, prolactin-inducible protein (PIP) and secretoglobins. The LumHR-active cluster 

had abundant FASN28 and EREG29 expression, which are both associated with hormone-

dependent proliferation (Fig. 3j).

LumSec cells displayed the largest degree of diversity, with seven distinct cell states (Fig. 

3g,j). The LumSec-major state was marked by MMP7 expression (Fig. 3j). LumSec-HLA 

expressed genes encoding MHC class I and MHC class II molecules, as well as the 

chemokine CCL20, suggesting a role in immune cell signalling (Fig. 3i,j). LumSec-lac 

was marked by genes encoding caseins (CSN2 and CSN1S1) and showed a high lactation 

signature16 score (Fig. 3k). The LumSec-prol state was characterized by cell-cycle-related 

genes and showed an elevated G2/M score (Fig. 3l). The LumSec-KIT state showed elevated 

expression of KIT, as well as transcription factors including SOX4, HES1 and MAFB (Fig. 

3j). We also detected two cell states with basal-luminal intermediate features: LumSec-basal, 

which expressed both luminal and basal markers (for example, KRT5, KRT14) as reported 

previously15, and LumSec-myo, which expressed genes related to myo-contractile functions 

such as MYLK (Fig. 3j). Together, 11 epithelial cell states were identified and our analysis 

of cell–cell interactions suggested an active crosstalk between these epithelial cell states 

(Extended Data Fig. 5d).

Previous studies have reported stem and progenitor populations within both the basal and 

luminal compartments11,14–16. Here we found that cell proliferation (as an indicator of active 

amplifying progenitor function) was restricted to the two luminal compartments, whereas 

basal cell proliferation was not detected. These data are consistent with previous research 

studying telomere length in basal and luminal cells30. Small percentages of proliferating 

cells were identified in the scRNA-seq and snRNA-seq data within the LumSec (1.7% 

of cells, 4.4% of nuclei) and LumHR (0.8% of nuclei) clusters (Fig. 3c,m). Consistent 

with S-phase activity, high levels of PCNA protein expression was detected in luminal 

cells (Fig. 3n), along with elevated S-phase signature scoring within the LumSec-prol and 

LumHR-prol clusters in the scRNA-seq and snRNA-seq data (Extended Data Fig. 5e,f). 

Luminal cell proliferation occurred in both the ductal and lobular regions, as revealed by in 

situ PCNA staining (CODEX) and MKI67 transcript detection using smFISH (Fig. 3n and 

Extended Data Fig. 5g). We investigated our dataset for several previously reported stem and 

progenitor cell markers, including LGR5, PROCR, ALDH1A3, THY1 and CD4411,14–16, 

which showed only diffuse expression across the majority of cells in the epithelial clusters 

(Extended Data Fig. 5c).

To resolve the spatial distribution of the epithelial cell states, we applied MERFISH 

(MERSCOPE, Vizgen) using a custom panel of 266 genes (Extended Data Fig. 5h–k and 

Supplementary Tables 11 and 12). Although many epithelial cell states did not have specific 

ductal–lobular localization (for example, LumSec-prol), other cell states, including LumSec-

basal (marked by LTF) and LumSec-HLA (AQP3, CCL20 and RBP1), mainly localized to 

the ducts, while LumSec-KIT and LumSec-major (ELF5) were predominantly localized to 

the lobules (Extended Data Fig. 5h–j). Moreover, the LumHR-SCGB cell state (SERPINA1 
and TFPI2) was found in discrete clusters in the lobular regions (Extended Data Fig. 5k).
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We further compared ductal and lobular regions using additional spatial technologies (Fig. 

3o–q and Extended Data Fig. 6). Using ST, we found that ductal regions were associated 

with LumSec-related genes (for example, KRT17, LTF and KRT23), whereas lobular regions 

showed increased expression of LumHR-specific genes (such as MUCL1 and DBI) (Fig. 3o 

and Extended Data Fig. 6a). Similarly, smFISH analysis revealed that ductal regions with 

increased expression of LumSec-related genes (such as LTF, SLPI and KRT15), whereas 

lobular regions were enriched for LumHR-associated genes (ANKRD30A, AR, ESR1 and 

PGR) (Fig. 3p,q and Extended Data Fig. 6b). Using CODEX, we found elevated levels of 

KRT5 and KRT19 in ducts versus lobules (Extended Data Fig. 6c). We found KRT5/KRT19 
double-positive cells that are enriched in ductal structures and probably represent the cell 

state defined as LumSec-basal in our scRNA-seq data and other studies15. Previous studies 

referred to the two luminal cell types (LumHR and LumSec) as alveolar and ductal15,17; 

however, our analysis indicates that, although the abundance of LumHR and LumSec cells 

differs between ducts and lobules, both cell types exist within ducts and alveolar structures 

of lobules (Fig. 2c,f,i and Extended Data Fig. 6b–e).

Immune ecosystem of the normal breast

On the basis of histopathology, immune cells in the breast tissue including plasma B cells, T 

cells, mast cells and macrophages can be identified (Extended Data Fig. 7a). The scRNA-seq 

dataset of 119,866 cells from 126 women and 16,339 nuclei from 20 women showed that 

immune cells were organized into three major populations (myeloid, natural killer (NK), T 

and B cells) and were unexpectedly abundant (16.7% of total cells, 13.9% of total nuclei) 

in tissues from all three different breast surgical procedures (Fig. 4a,b and Extended Data 

Fig. 7b–e). The abundance of immune cells was validated in situ using CODEX and smFISH 

(Fig. 4c–e). To investigate immune cell diversity, we clustered cells within the myeloid, NK, 

T and B cell clusters and annotated them using both unbiased and canonical immune marker 

genes31–33 (Fig. 4f–k).

Within the NK and T cells, the scRNA-seq dataset of 76,567 cells identified 14 subsets 

(Fig. 4f,g and Supplementary Table 10). The CD4+ T cells included naive T cells (SELL), 

T helper (TH) and TH-like (IL7R, CCR6, CCL20), T effector memory (TEM) (LMNA) 

and T regulatory (Treg) (FOXP3, CTLA4) cells. Two populations of CD8+ T cells were 

identified, T resident memory (TRM; ITGA1) and TEM (GZMK). We detected clusters of 

activated CD4+ and CD8+ T cells that displayed upregulation of genes associated with TCR 

engagement (PLCG2, ZNF683). We also observed a cluster of γδ T cells (TRDC, TRGC2). 

Our subclustering further resolved populations of NK (GNLY), NKT (GNLY, CD3D) and 

innate lymphoid cells (ILCs; IL7R). A small proliferating cluster (MKI67) that contained 

cells from many NK and T cell subsets was also detected. The T cells displayed low levels 

of checkpoint and exhaustion markers34, which is consistent with a homeostatic, rather 

than disease phenotype (Extended Data Fig. 7f). Clustering of the 12,510 B cells from 

the scRNA-seq dataset showed three main subpopulations, including memory, plasma and 

naive (Fig. 4h,i and Supplementary Table 10). Among the memory B cells, both switched 

(MYC) and unswitched (no MYC expression) cells were identified. We also identified two 

populations of plasma B cells (IgG or IgA).
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Within the myeloid cells, the scRNA-seq data of 30,789 cells resolved distinct subsets of 

dendritic cells (DCs), monocytes, macrophages and mast cells (Fig. 4j,k and Supplementary 

Table 10). Four subpopulations of DCs were identified, including mature (mDC) (LAMP3), 

plasmacytoid (pDC) (LILRA4) and two conventional cell states (cDC1 (CLEC9A) and 

cDC2 (CLEC10A)). Among the macrophages, we detected classical (macro-m1) (IL1B) 

and alternatively (macro-m2) (MRC1) activated subsets, which further subclustered 

by chemokines (macro-m1-CCL and macro-m2-CXCL). Macrophages also included a 

population expressing interferon response genes (macro-IFN) (IFIT1, IFIT2) and a 

lipid-associated macrophage subcluster (macro-lipo) (APOC, LIPA, LPL). We identified 

populations of classical (EREG) and non-classical (FCGR3A) monocytes, as well as mast 

cells (TPSAB1). This analysis also identified a heterogenous cluster of proliferating myeloid 

cells (Mye-prol; MKI67). Although the NK, T, B and myeloid cell states showed variable 

frequencies, they were consistently identified across the 126 women, suggesting a role in 

normal breast homeostasis (Extended Data Fig. 7b–e).

The spatial organization of seven immune cell types (monocytes, macrophages, CD4+ T, 

CD8+ T, CD4+ Treg, DCs and B cells) was resolved using a total of 18 markers on 

the smFISH (Resolve) platform and 8 markers on the CODEX platform (Supplementary 

Tables 6 and 9, respectively). These analyses showed that all seven immune cell types 

were present in three major tissue regions (connective, ductal, lobular), excluding adipose, 

which could not be assessed (Fig. 4l–n and Extended Data Fig. 8a–h). The ductal and 

lobular regions contained a much higher density of immune cells relative to the connective 

tissue regions (Extended Data Fig. 8d). Most immune cells were found in the breast tissue 

parenchyma rather than in blood vessels, consistent with a tissue-resident phenotype (Fig. 

4l–n). Furthermore, many T cells had elevated levels of RUNX3, indicative of a tissue-

resident phenotype35(Extended Data Fig. 8a,b).

Further spatial analysis of selected immune cell states was performed by smFISH 

(MERSCOPE) (Extended Data Fig. 8i–l). These data revealed differences in the distribution 

of macrophage and B cell subsets between the four tissue regions. Although macro-m2 

(MRC1, RNASE1, SELENOP) cells were identified in both the connective and epithelial 

regions, macro-m1 (C3, RGS1) were predominantly found in the ductal and lobular regions 

(Extended Data Fig. 8i,j). B cells were also enriched in the epithelial regions and rarely 

observed in the connective areas (Extended Data Fig. 8k,l). While plasma B cells (IGA 
and IGG) were found in both ductal and lobular regions, the naive and memory B cells 

(CD37, LTB, IGHD) were predominantly found in lobular areas (Extended Data Fig. 8k,l). 

However, in contrast to T cells, B cells were mainly localized to the stroma around the 

ductal and lobular regions (Extended Data Fig. 8g). Informed by the spatial co-localization 

of the macro-m2 cells and fibroblasts in the connective tissue regions, we predicted cellular 

interactions, which identified BSG–PPIA (fibroblast/macro-m2) and APP–CD74 (fibroblast/

macro-m2) as putative ligand–receptor interactions (Extended Data Fig. 7g).

Fibroblast diversity in the breast

Fibroblasts represented an abundant breast cell type in our patient cohort (29.2% of cells, 

15.1% of nuclei). Previous histopathological studies have classified breast fibroblasts as 
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intralobular or interlobular on the basis of their tissue localization1,7 (Fig. 5a). Reclustering 

of the scRNA-seq data from 208,390 fibroblasts across 126 women identified four distinct 

cell states that varied across women (Fig. 5b,c and Extended Data Fig. 9a). The fibro-

major (MMP3, CXCL1 and CXCL2) state was associated with ECM remodelling and 

immune signalling, whereas the fibro-matrix cells showed high expression of collagen genes 

(COL1A1, COL3A1) and scored high for a collagen gene signature, suggesting a role in 

ECM production (Fig. 5d and Extended Data Fig. 9b). The fibro-prematrix cells (GPX3, 

WISP2, PCOLE2) were associated with pre-collagen formation and vasculogenesis, whereas 

the fibro-SFRP4 cell state (SFRP4, MGP) was associated with tissue remodelling and WNT 

signalling (Fig. 5c and Extended Data Fig. 9b). We further investigated the expression of 

the cancer-associated fibroblast marker FAP, which showed very low expression, but was 

slightly elevated in the fibro-SFRP4 cell state (Fig. 5d).

To investigate the spatial distributions, we used vimentin (VIM) in our CODEX analysis, 

which revealed two locations of fibroblasts in the interlobular and intralobular regions 

(Extended Data Fig. 9c). To distinguish between the two fibroblast cell states, we used 

four genes from the spatial smFISH panel (Resolve), including COL1A1 (fibro-matrix), as 

well as FBLN1 and SERPINF1 (fibro-prematrix, fibro-SFRP4), showing that these markers 

were expressed predominantly in the lobular regions (Fig. 5e and Extended Data Fig. 

9d). To further quantify this finding, we classified the smFISH genes into three groups 

(epi-proximal, epi-middle and epi-distal), which confirmed that SERPINF1 and FBLN1 
was elevated in the intralobular regions (Methods and Extended Data Fig. 9e,f). We also 

used RNAscope to investigate the expression of MMP3 in the fibro-major cell state, which 

showed higher levels in the fibroblasts proximal to lobular regions (Methods and Extended 

Data Fig. 9g).

Adipose tissues of the breast

Adipose tissue represents a large proportion of the human breast and has an important role 

as a source of energy and hormones13,23,36. Adipocytes are the main cell type in adipose 

tissues and are readily identified by histopathology (Fig. 5f). However, adipocytes have been 

notoriously difficult to profile using single-cell genomics methods owing to their large cell 

size, high lipid content and fragile nature6. Indeed, adipocytes were not captured using our 

scRNA-seq methods (Fig. 1c). We therefore used snRNA-seq to capture the transcriptomic 

profiles of 6,637 breast adipocytes (Fig. 1e) and ST data from 10 women (Fig. 5g,h). 

Collectively, these methods identified ADH1B, CD36, PLIN1, PLIN4, ADIPOQ, FABP4, 

LEP and LPL as the top genes expressed in breast adipocytes, which was consistent across 

the two orthogonal platforms (Fig. 5i). Both the snRNA-seq and ST data showed that most 

adipocyte markers were expressed uniformly across all adipocytes, with limited cell-state 

heterogeneity. The dataset was analysed for brown/beige and white adipocyte markers, 

showing that breast adipocytes exclusively corresponded to white adipocytes (Fig. 5i). 

We further investigated potential receptor–ligand interactions between the adipocytes and 

fibroblasts with the myeloid cell states, identifying many putative interactions between these 

cell types (Extended Data Fig. 9h).
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Vascular and lymphatic cells

The human breast is a highly vascularized organ containing a network of veins and arteries 

that are often detected in histopathological sections (Fig. 6a). Our scRNA-seq analysis 

of 83,651 endothelial cells across 126 women showed that vascular endothelial cells 

(expressing PECAM1 and VWF) represent an abundant cell type (11.7% of cells, 7.2% of 

nuclei) in normal breast tissue (Fig. 6b). Reclustering of the scRNA-seq vascular endothelial 

cells identified three major cell states that varied across women and corresponded to arterial 

endothelial (SOX17, GJA4), venous endothelial (ACKR1, SELP) and capillary endothelial 

(RGCC, CA4) cells on the basis of canonical markers37,38, and further revealed many new 

top marker genes (Fig. 6b,c and Extended Data Fig. 10a).

The lymphatic network is a passive system for removing cellular waste and can be identified 

in histopathological tissue sections, along with lymph globules (Fig. 6d). Our data show that 

lymphatic endothelial cells (PROX1 and PDPN) occur at low frequencies (1.3% of cells, 

3.5% of nuclei) in breast tissue. Clustering of 8,982 lymphatic cells from the scRNA-seq 

data identified four major cell states that varied across women (Fig. 6e,f and Extended 

Data Fig. 10a). The Lym-major cells (LYVE1 and CCL21) represented the most abundant 

component of the lymphatic vessels. The Lym-immune cells (ACKR4 and NTS) resemble 

cells on the ceiling of subcapsular sinus in human lymph nodes38 and expressed chemotaxis 

signatures, suggesting a role in immune cell signalling (Extended Data Fig. 10b). The 

two other cell states (Lym-valve1 and Lym-valve2) are lymphatic valve cells that express 

CLDN11 and are important for preventing lymphatic fluid backflow39.

Using four spatial platforms, we investigated the localization of the vascular and lymphatic 

cell states. The ST data showed two distinct clusters for vascular and lymphatic cells that 

corresponded to the histopathological vessel structures and validated many scRNA-seq cell 

type markers in situ (Extended Data Fig. 10c). The smFISH data (Resolve) showed that 

larger venous structures expressing ACKR1 and the vascular marker VWF are typically 

found in the connective tissues, whereas smaller capillary structures (RBP7) were closely 

integrated within lobular and ductal regions (Fig. 6g and Extended Data Fig. 10d). Spatial 

analysis using smFISH (Resolve) showed that the lymphatic cells (PROX1) are located 

predominantly in connective tissues regions (Fig. 6g). This was also reflected in the CODEX 

analysis using anti-PDPN antibodies (Fig. 6h). Moreover, smFISH (MERFISH) analysis 

showed that capillary endothelial cells are highly localized to the ductal and lobular regions, 

whereas arterial and venous endothelial cells are more enriched in the connective regions 

(Extended Data Fig. 10e,f).

Perivascular cells of the breast

In addition to the blood vessels, the perivascular cells support and regulate the blood flow 

in vasculature (Fig. 6i). Clustering of the 52,638 cells from scRNA-seq data identified two 

major cell subtypes: the pericytes that regulate blood flow from capillaries into tissues40,41 

and the vascular smooth muscle cells (VSMCs) that regulate arterial contraction42 (Fig. 

6j). These cells were abundant (7.4% of cells, 1.4% of nuclei) and varied in their 

frequencies across the 126 women (Extended Data Fig. 11a). Both pericytes and VSMCs 
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can be identified in histopathological H&E sections (Fig. 6i). Pericytes expressed canonical 

markers such as RGS5, but also genes involved in immune signalling (such as CXCL3) 

and matrix production (COL6A3) (Fig. 6k). The VSMCs expressed the canonical markers 

CNN1 and MYH11, in addition to other smooth muscle (SYNM, ACTG2) marker genes 

(Fig. 6k and Extended Data Fig. 11b). Spatial analysis using smFISH (Resolve) showed 

that pericytes (RGS5) were highly abundant in the lobular regions, in which they often 

co-localized with vascular cells (VWF positive) (Extended Data Fig. 11c–e). Similarly, 

CODEX showed that pericytes (LIF positive) were often located in lobular regions and 

co-localized with vascular markers (CD31 positive) (Extended Data Fig. 11f). Moreover, 

smFISH (MERFISH) showed that pericytes were co-localized with capillary structures in 

the ductal and lobular regions, whereas VSMCs (SYNM, ACTG2) were spatially organized 

around arteries (SOX17) in the connective regions (Extended Data Fig. 11g,h).

Clinical metadata correlations

We investigated the association of the breast cell type and cell state frequencies with the 

clinical metadata (Extended Data Fig. 12 and Supplementary Table 1). To avoid potential 

complications due to the impact of different tissue types, we restricted this analysis to tissue 

samples from reduction mammoplasty surgeries (n = 76 women). The ethnicity analysis 

compared Caucasian (n = 20, 29%) and African American (n = 49, 71%) women, showing 

that fibroblasts and myeloid and B cells were elevated in African American women (P < 

0.05, Wilcoxon rank-sum test) (Extended Data Fig. 12a). Compared with Caucasian women, 

African American women were associated with significant increases in 13 cell states (P < 

0.05, Fisher’s exact test) (Extended Data Fig. 12a). In post-menopausal women, these data 

show significant decreases in the basal epithelial cell type (P < 0.05, Wilcoxon rank-sum 

test), whereas pre-menopausal women were associated with increases in the LumSec-major, 

fibro-matrix, B-memory-switched and LumHR-active cell states, as well as decreases in 

macro-m2-CXCL (P < 0.05, Fisher’s exact test) (Extended Data Fig. 12b). Younger women 

(aged less than 50 years) were correlated with significant increases in basal cell types (P < 

0.05, Wilcoxon rank-sum test) and increases in LumHR-active, LumSec-major, fibro-matrix 

and pericyte cell states (P < 0.05, Fisher’s exact test), as well as decreases in the macro-m2-

CXCL and NK cell states (P < 0.05, Fisher’s exact test) (Extended Data Fig. 12c). High 

levels of breast density were correlated with decreased levels of basal epithelial cells and 

increased levels of lymphatic cell types (P < 0.05, Wilcoxon rank-sum test), as well as 

decreases in the fibro-SFRP4 cell state (P < 0.05, Fisher’s exact test) (Extended Data Fig. 

12d). Furthermore, obesity or high levels of body mass index was correlated with increased 

fibroblasts and myeloid cells, while parity status was significantly associated with increased 

levels of T cells (P < 0.05, Wilcoxon rank-sum test) (Extended Data Fig. 12e,f). Overall, this 

analysis shows that ethnicity, age and menopause were associated with the greatest changes 

in the breast cell type and cell state compositions.

Discussion

Here we report an unbiased atlas of the adult human breast tissues from 126 women, 

comprising 12 major cell types and 58 unique cell states organized into 4 major spatial 

tissue domains (Extended Data Fig. 13). In the epithelial cells, our data show limited basal 
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cell-state diversity, whereas the two luminal epithelial cell types comprise 10 cell states 

with diverse biological functions. Our data estimate that only 1–4% of the LumSec breast 

epithelial cells are proliferative, which is consistent with their previous classification as 

luminal progenitors43. However, we also identified a small number (0.8%) of proliferating 

cells in the snRNA-seq data of the LumHR population. Notably, no proliferating cells 

were detected in the basal cells or cell states with stem cell markers, raising questions 

about the concept of a basal stem cell fuelling epithelial homeostasis11. Our detailed spatial 

comparison between epithelial ducts and lobules identified the presence of luminal cells 

with basal-like features (LumSec-basal, LumSec-myo) consistent with another scRNA-seq 

study15.

In the non-epithelial compartment, we identified an unexpectedly abundant (15.6%) and 

diverse milieu of tissue-resident immune cells that congregate in both the lobules and 

ducts. Only a small number of immune cells overlapped with vascular structures, and 

large proportions express the tissue residency marker RUNX3(ref. 35). Understanding the 

diversity of the immune cells is important for breast cancer, for which immunotherapy 

has recently become the standard of care for some subtypes44. The genomic profiles of 

lymphatic endothelial cells are also of biomedical relevance owing to their wide use in the 

clinical evaluation of lymph-node-positive breast cancers45. Furthermore, the snRNA-seq 

and ST data provide one of the first genomic references of breast adipocytes and show that 

they are exclusively white fat cells46.

Our metadata analysis identified significant changes in the breast tissue architecture 

that corresponded to ethnicity, age and menopause, consistent with a few pathological 

studies47,48. Owing to the known technical challenges in obtaining accurate measurements 

of the menstrual cycle49, our study could not investigate any associated changes. However, 

another study using scRNA-seq has reported menstrual-cycle-related changes in the 

epithelial cell types50. Overall, these data highlight the critical need to match the correct 

normal reference breast tissue dataset when studying disease states. A notable drawback 

of our current HBCA is the lack of ethnic and ancestral diversity, as this atlas comprised 

mainly Caucasian (46%) and African American (41%) women (Extended Data Fig. 1b). 

This bias should be addressed in future studies to advance our understanding of diseases and 

improve the outcomes for women from all backgrounds. Although our atlas has identified 

a large number of cell states and validated them in situ, future studies will be needed to 

validate their functional roles in experimental systems. In closing, the HBCA significantly 

advances our knowledge of the epithelial and non-epithelial cell types in adult human breast 

tissues, providing a comprehensive reference for studying mammary biology, development 

and diseases such as breast cancer.

Methods

Protocol availability

The breast tissue dissociation protocols for preparing cell suspensions and nuclear 

suspensions that were developed for the HBCA project have been deposited 

at protocols.io (https://www.protocols.io/view/dissociation-of-single-cell-suspensions-from-

human-bp2l641bkvqe/v1 (dissociation of viable cell suspensions from human 
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breast tissues) and https://www.protocols.io/view/dissociation-of-nuclear-suspensions-from-

human-bre-x54v98ym4l3e/v1 (dissociation of nuclear suspensions from human breast 

tissues)).

Collection of normal breast tissue samples

Fresh breast tissue samples were collected from the University of California, Irvine, 

Baylor College of Medicine, MD Anderson Cancer Center, St Luke’s Medical Center 

and the Cooperative Human Tissue Network (CHTN). The study was approved by the 

Institutional Review Boards at the respective institutions using mirror protocols, including 

MD Anderson Cancer Center (PA17–0503), Baylor College of Medicine (H-46622) and UC 

Irvine (HS-2017–3552). Reduction mammoplasty tissues were collected mainly at Baylor 

St Luke’s Medical Center, while prophylactic mastectomies and contralateral mastectomies 

from the other breast of patients with cancer were collected at MD Anderson and UC 

Irvine. With the exception of the CHTN samples, all of the fresh breast tissue samples were 

collected 1–2 h after the surgical procedures and dissociated into viable cell suspensions 

using 1 h (short), 6 h (medium) or 24 h (long) enzymatic dissociation protocols. All of the 

tissue samples at the respective institutions were analysed for normal pathology at the time 

of collection and any women within incidental tissues with pre-cancer diagnosis (such as 

ADH or DCIS) were excluded.

Breast tissue dissociation for scRNA-seq

Detailed protocols for breast tissue mechanical and enzymatic digestion for scRNA-seq 

were developed and optimized for the HBCA project and can be found with step-by-step 

instructions at protocols.io (www.protocols.io). In brief, surgical tissue was transported 

in sterile DMEM medium (Sigma-Aldrich, D5796) on ice. Excess adipose tissue was 

removed before dissociation. Large breast tissue pieces were divided into individual 1–2 

g preparations, which were subjected to dissociation solution consisting of collagenase A (1 

mg ml−1 working solution, Sigma-Aldrich, 11088793001) dissolved in DMEM F12/HEPES 

medium (Gibco, 113300) and BSA fraction V solutions (Gibco, 15260037) mixed at a 3:1 

ratio, respectively or, 20 ml of 4 mg ml−1 collagenase type 1 (in 5% FBS DMEM). For 

each preparation, a 10 cm dish with 2 ml dissociation solution was used to mince tissue into 

homogenous suspension with paste-like consistency. Minced tissue was transferred into a 50 

ml conical tube with 40 ml of dissociation solution in a rotating hybridization oven for 1 

to 6 h at 37 °C until completely digested (short digestion protocol: 30 min to 1 h; medium 

digestion protocol: 3–6 h). The cell suspension was centrifuged at 500g for 5 min and the 

supernatant was removed. The pellet was resuspended in 5 ml trypsin (Corning, 25053CI) at 

room temperature and incubated in a rotating hybridization oven at 37 °C for 5 min. Trypsin 

was neutralized with 10 ml DMEM containing 10% heat-inactivated FBS (Sigma-Aldrich, 

F0926). The solution was mixed by pipetting up and down, and then filtered through a 70 

μm strainer (Falcon, 352350). A sterile syringe plunger flange was used to grind the leftover 

unfiltered tissue and DMEM was used to wash the remaining single cells off the filter. The 

flow-through was centrifuged at 500g for 5 min and the supernatant was removed. The 

resulting pellet was nutated at room temperature for 10 min in 20 ml 1× MACS RBC lysis 

buffer (MACS, 130–094-183) to remove red blood cells (RBCs). To stop RBC lysis, 20 ml 

DMEM was added and then centrifuged at 500g for 5 min. The cell pellet was washed in 10 
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ml of cold DMEM and centrifuged at 500g for 5 min. The pellet was then resuspended 

in cold PBS (Sigma-Aldrich, D8537) + 0.04% BSA solution (Ambion, AM2616) and 

filtered through a 40 μm Flowmi (Bel-Art, h13680–0040). Trypan-Blue-stained cells were 

counted in the Countess II FL automated cell counter (Thermo Fisher Scientific) and their 

concentration was adjusted to 700–1,200 cells per μl.

For overnight digestions (long digestion protocol: 24 h), after digestion, the enzymatic tissue 

digestion mixture was centrifuged at 400g for 5 min. The supernatant was removed and the 

tissue pellet was washed with 50 ml of PBS. The supernatant was removed and 2 ml of 

0.05% trypsin was used to break up tissues into single-cell suspensions in a 15 ml conical 

flask and placed into a 37 °C water bath. Dissociation was accelerated by pipetting with a 

p1000 set at 1 ml, pipetting up and down 10 times every 2 min. A total of 10 ml of 10% FBS 

+ DMEM was used to neutralize the enzymatic digestion, and the sample was centrifuged 

for 5 min at 400g. The resulting pellet was resuspended in 100 μl in 20 U ml−1 DNase I 

(Sigma-Aldrich, D4263–5VL) and incubated at 37 °C for 5 min to liberate cells from DNA. 

A total of 10 ml of 10% FBS + DMEM was added and the tissue was centrifuged at 400g 
for 5 min. The resulting single-cell suspension was passed through a 100 μm strainer filter. 

Cells were then stained for fluorescence-activated cell sorting (FACS) using fluorescently 

labelled antibodies for CD31 (eBioscience, 48–0319-42), CD45 (eBioscience, 48–9459-42), 

EPCAM (eBioscience, 50–9326-42) and CD49f (eBioscience, 12–0495-82), and SytoxBlue 

(Life Technologies, S34857). Only samples with at least 80% viability as assessed using 

SytoxBlue with FACS were included in this study. For scRNA-seq, we excluded doublets 

and dead cells (SytoxBlue+) for FACS isolation. Flow-cytometry-sorted cells were washed 

with 0.04% BSA in PBS and suspended at approximately 1,000 cells per μl.

scRNA-seq

Single-cell suspensions were immediately processed for scRNA-seq using the Chromium 

platform (10x Genomics). Single-cell capture, barcoding and library preparation were 

performed by following the 10x Genomics Single Cell Chromium 3′ protocols (V2: 

CG00052, V3: CG000183, V3.1: CG000204). The final libraries were sequenced on the 

NovaSeq 6000 system S2–100 flowcell (Illumina). Data were processed using the CASAVA 

v.1.8.1 pipeline (Illumina), and sequencing reads were converted to FASTQ files and UMI 

read counts using the CellRanger software (10x Genomics).

snRNA-seq

The detailed protocol for overnight breast tissue mechanical isolation for snRNA-seq can 

be found at protocols.io (www.protocols.io). To isolate single nuclei, 0.5–1 g fresh breast 

tissue was placed into a 10 cm dish with 2 ml lysis buffer. Nucleus lysis buffer consists of 

NST-DAPI buffer with 0.1 U μl−1 RNase Inhibitor (NEB, M0314L)51,52. Tissue was minced 

until tissue chunks were no longer visible. The suspension was filtered through a 40 μm 

cell strainer (Falcon, 352340). A sterile syringe plunger flange was used to gently grind 

the leftover tissue on the filter and then rinsed with 3 ml of lysis buffer. The flow-through 

was transferred into 5 ml DNA LoBind tubes and incubated on ice for 10 min. The tube 

was centrifuged at 500g for 5 min at 4 °C. The supernatant was removed, and nuclei 

were washed with 1 ml cold lysis buffer and centrifuged again. The nucleus pellet was 

Kumar et al. Page 14

Nature. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.protocols.io/


resuspended in 1% BSA (Sigma-Aldrich, SRE0036) in PBS supplemented with 0.2 U μl−1 

RNase inhibitor. Nuclei were filtered through a 40 μm Flowmi cell strainer, counted using 

a haemocytometer under the DAPI channel and the concentration was adjusted to 700–

1,200 nuclei per μl. 10x Genomics RNA experiments were performed immediately to avoid 

nucleus aggregation. Single-cell capture, barcoding, library preparation and sequencing 

were the same as described above. For nucleus preparations that were sorted using flow 

cytometry, a 10 ml dounce tissue homogenizer was placed onto ice, and 40 g of breast 

tissue was placed into a 10 cm tissue culture dish on ice. Approximately 10 g of tissue was 

minced into fine (~2 mm × 2 mm) pieces, and the sample was then added to the dounce 

homogenizer. A total of 10 ml of nuclear isolation buffer (400 μl 1 M Tris-HCL pH 7.5, 80 

μl 5 M NaCl, 120 μl 1 M MgCl2, 400 μl 10% NP-40, 39 ml DNase/RNase-free sterile H2O) 

was pipetted over the tissue into the dounce homogenizer. Tissue was dounce-homogenized 

with the piston until running smoothly. Homogenization was repeated until all 40 g of tissue 

was digested. The nucleus suspension was then centrifuged at 500g for 5 min at 4 °C, 

washed in 1% BSA in PBS and stained with Hoechst for flow-cytometry-based sorting of 

high-quality nuclei to be sequenced using snRNA-seq.

ST profiling of normal breast tissues

ST experiments were performed using the Visium Platform (10x Genomics) with the 

following modifications to the manufacturer’s protocols. Fresh breast tissues from four 

patients were embedded in cryomolds with OCT compound (Thermo Fisher Scientific, 

NC9542860, 1437365) over dry ice. The tissue blocks were stored at −80 °C in sealed 

bags. Sectioning (thickness, 12 μm) was performed on a cryomicrotome (Cryostar NX70, 

Thermo Fisher Scientific) with chuck and blade temperatures set at −17 °C and −15 °C, 

respectively. The tissue section was placed within the capture area of the Visium spatial 

slide (10x Genomics PN-1000184). The protocol was optimized for normal breast tissue 

according to manufacturer’s tissue optimization protocol (10x protocol, CG000238) and 

the slides were permeabilized for 12 min. The sectioned slides were fixed and stained as 

described by manufacturer (10x protocol, CG000160). Imaging was conducted using the 

Nikon Eclipse Ti2 system according to the imaging guidelines (10x protocol, CG000241). 

The final libraries were constructed according to the user guide (10x protocol, CG000239) 

and sequenced on the Illumina NovaSeq 6000 system S1–200 flowcell.

Resolve highly multiplexed in situ RNA profiling using smFISH

Resolve Biosciences probes were designed to target 100 genes based on the top expressed 

genes in each of the breast cell types from the scRNA-seq data and are listed in 

Supplementary Table 6. To prepare the tissue for Resolve smFISH analysis, OCT-embedded 

tissues were cut to 12 μm sections in a microtome with the chuck and blade temperatures 

set at −17 °C and −15 °C, respectively. The tissue sections were thawed and fixed with 

4% (v/v) formaldehyde (Sigma-Aldrich, F8775) in 1× PBS for 30 min at 4 °C. After 

fixation, the sections were washed for 1 min in 50% ethanol and then 70% ethanol at 

room temperature. The fixed samples were used for Molecular Cartography according to the 

manufacturer’s instructions (protocol 3.0; www.resolvebiosciences.com ), starting with the 

aspiration of ethanol and the addition of buffer BST1 (step 6 and 7 of the tissue priming 

protocol). In brief, tissues were primed followed by overnight hybridization of all probes 
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specific for the target genes (see below for probe design details and the target list). The 

samples were washed the next day to remove excess probes and fluorescently tagged in a 

two-step colour development process. Regions of interest were imaged as described below 

and fluorescent signals were removed during decolourization. Colour development, imaging 

and decolourization were repeated for cycles to build a unique combinatorial code for 

every target gene that was derived from raw images as described below. The samples were 

imaged on the Zeiss Celldiscoverer 7, using the ×50 Plan Apochromat water-immersion 

objective with an NA of 1.2 and the ×0.5 magnification changer, resulting in a ×25 final 

magnification. Standard CD7 LED excitation light source, filters and dichroic mirrors were 

used together with customized emission filters optimized for detecting specific signals. 

Excitation time per image was 1,000 ms for each channel (DAPI was 20 ms). A z-stack was 

taken at each region with a distance per z-slice according to the Nyquist–Shannon sampling 

theorem. The custom CD7 CMOS camera (Zeiss Axiocam Mono 712, 3.45 μm pixel size) 

was used.

For each region, a z-stack per fluorescent colour (two colours) was imaged per imaging 

round. A total of 8 imaging rounds were performed for each position, resulting in 16 

z-stacks per region. The completely automated imaging process per round (including water 

immersion generation and precise relocation of regions to image in all three dimensions) 

was realized using a custom Python script using the scripting API of the Zeiss ZEN software 

(open application development).

Highly multiplexed immunostaining using CODEX

Formalin-fixed paraffin-embedded human breast tissue was analysed using CODEX 

(PhenoCycler, Akoya Biosciences). The experiments were performed according to the 

manufacturer’s protocols. In brief, the tissue was sectioned at 5–7 μm and mounted 

onto 22 mm × 22 mm glass coverslips, previously coated with 0.1% poly-l-lysine. 

The tissue section was dewaxed and stained with a mixture of oligonucleotide-barcoded 

PhenoCycler antibodies and post-fixed according to the PhenoCycler user manual. The 

tissue was then imaged on the PhenoCycler-Open platform, whereby three fluorescent oligo 

reporters with spectrally distinct dyes were applied to the tissue in iterative imaging cycles. 

Imaging data were acquired using the Keyence BZ-X800 fluorescent microscope at ×20 

magnification. The tissue was stained with a 34-antibody panel targeting the proteins listed 

in Supplementary Table 10.

RNAscope in situ hybridization combined with immunofluorescence

To simultaneously detect MMP3 mRNA and vimentin and pancytokeratin (PanCK) protein 

in situ in human breast FFPE tissue sections, the RNAscope Multiplex Fluorescent Reagent 

Kit V2 (ACD Biotechne, Cat. 323100) was combined with immunofluorescence analysis. 

The manufacturer’s instructions were followed for RNAscope in situ hybridization unless 

otherwise indicated using a probe targeting human MMP3 gene (Hs-MMP3 RNAscope 

Probe, 403421). FFPE tissue sections (thickness, 5 μm) were baked at 60 °C for 1 h 20 min, 

followed by deparaffinization using Histoclear (twice for 10 min) and 100% ethanol (twice 

for 2 min). After pretreatment, hydrogen peroxide incubation and target retrieval for 15 min, 

a barrier was created using a hydrophobic pen and dried at room temperature for 40 min. 
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After MMP3 probe hybridization for 2 h at 40 °C and washing, three signal-amplification 

steps were performed and the HRP signal was developed using Opal 570 at a 1:1,500 

dilution (Akoya Biosciences, FP1488001KT). Immunofluorescence was performed after the 

HRP blocker step with all of the steps conducted in the dark. The tissue was washed twice 

in TBST and blocked in 10% FBS in TBS + 0.1% BSA at 4 °C overnight. Anti-vimentin 

antibodies (R&D, raised in goat, AF2105) and anti-PanCK antibodies (GeneTex, raised in 

mouse, GTX26401) were used at 1:200 and 1:500 dilution, respectively, in TBS + 0.1% 

BSA for 2 h at room temperature. After three washes with TBS, donkey anti-goat-AF488 

(for Vim) and donkey anti-mouse-AF647 (for PanCK) antibodies were used as secondary 

antibodies at a 1:500 dilution in TBS for 2 h at room temperature. Tissues were washed 

three times in TBS and mounted with Vectashield Antifade Mounting Medium with DAPI 

(Vector laboratories, H-1200). Images were acquired on the Keyence BZ-X700 using the 

DAPI, Cy3, Cy5 and GFP filter sets.

MERFISH experimental procedures

The MERFISH custom panel of 266 genes was designed on the basis of the top marker 

genes from the scRNA-seq 10x Genomics dataset (Supplementary Table 12). Fresh tissue 

from normal human breast samples was embedded in OCT and frozen, then used to prepare 

cryosections that were cut to 12 μm and placed onto the Merscope slide (VizGene). Tissue 

fixation, permeabilization, cell boundary staining, encoding probe hybridization and gel 

embedding were performed according to Vizgen Merscope User Guide (v.91600002 RevB). 

Autofluorescence quenching was not performed for normal breast tissue processing. The 

frozen tissue clearing protocol was followed by incubation for 4–6 h in digestion mixture 

and in clearing solution overnight in a humidified incubator at 47 °C. The clearing solution 

was replenished and the slide was incubated for three additional days at 37 °C until the 

tissue section became transparent under microscopy examination. After the tissue clearing 

was completed, imaging was performed according to the Merscope Instrument User Guide, 

with minor modifications. The slide was quickly rinsed twice with 5 ml sample prep wash 

and then incubated for 15 min in diluted DAPI and Poly(T) staining reagent while rocking 

(staining reagent was diluted 1/3 in sample prep wash buffer). The slide was quick rinsed 

twice in 5 ml formamide wash buffer and then incubated in 5 ml formamide wash buffer for 

10 min. The stained slide was checked under the ×10 objective (Evos FL microscope) with 

100% DAPI power to verify that there was no DAPI signal saturation. When necessary, 

formamide washes were repeated for 5–10 min until the DAPI signal was no longer 

saturated. The slide then was washed twice with 5 ml sample prep wash buffer and kept 

in the last wash until ready for imaging. After preparing the thawed imaging cartridge with 

RNase inhibitor and imaging buffer activator, 3 ml of the prepared mixture was transferred 

into a 3 ml Luer lock syringe to load the Merscope flow chamber. In the MERSCOPE 

Instrument software v.230–231, the sample verification protocol was run after modifying the 

instrumentConfiguration.json file on the instrument (rna ilm405 was set to 3 and protein 

medium ilm405 was set to 8). DAPI images were evaluated for saturation areas in the results 

panel. If needed, formamide washes were repeated. Once the appropriate DAPI intensity was 

reached, mineral oil was added to the imaging cartridge and the MERFISH run was initiated.
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Computational methods

Single-cell RNA and nucleus RNA data preprocessing and filtering.—
Sequencing reads from single cells and single nuclei from the 10x Genomics Chromium 

were demultiplexed, aligned to the GRCh38.p12 human genome reference53,54 using the 

default parameters of the CellRanger pipeline (v.3.1.0, 10x Genomics). Count matrices 

were generated for both datasets that were further analysed using Seurat (v.3.2.3)55. Cells 

from each sample were further filtered for low quality by removing cells with fewer than 

500 UMIs or 200 genes detected. Potential doublets and multiplets were classified as cells 

expressing more than 20,000 UMIs or 5,000 genes and were removed. Cells with higher 

than 10% mitochondrial or 50% ribosomal transcripts were also filtered as they represented 

low-quality or dying cells. Similarly, for single-cell nuclei, the same filtering metrics were 

used for the single-cell data, except the minimum number of genes used for filtering cells 

was 150, as nucleus data express fewer genes.

Clustering of major cell types in scRNA-seq and snRNA-seq data

Clustering of the major cell types in the scRNA-seq data and nuclei in the snRNA-seq 

data was performed by integrating all of the samples together using canonical-correlation-

analysis-based integration from the Seurat package. The filtered gene matrices from each 

sample were normalized using the NormalizeData function. To identify highly variable 

genes, we used FindVariableFeatures, which models the mean-variance relationship of 

the normalized counts of each gene across cells, and identified 5,000 genes per sample. 

We further identified anchors using FindIntegrationAnchors to integrate all patients using 

following parameters: dims = 20, k.filter = 30, anchor. features = 3000 and k.score = 30, 

which were used for the IntegrateData function with dims=20. The integrated dataset was 

then used for downstream analysis, which included scaling and centring the data using 

ScaleData, finding the most significant principal components using RunPCA and using the 

ElbowPlot to determine the number of principal components used for clustering. Different 

resolution parameters for unsupervised clustering were then examined to determine the 

optimal number of clusters. For the major cell type and nucleus clustering, the first 20 

principal components were used for unsupervised clustering with a resolution = 0.2, yielding 

a total of 21 cell clusters, and for nuclei the resolution = 0.3, yielding 21 nucleus clusters 

using the FindNeighbours and FindClusters functions. For visualization, the dimensionality 

was further reduced using the UMAP methods with Seurat function RunUMAP. The 

principal components that were used to calculate the UMAP embedding were the same as 

those used for clustering. Each resulting cluster was further analysed for potential doublets 

or low-quality cells using a three-step process: (1) we calculated quality metrics such as 

nCount_RNA and mitochondrial content, and clusters with any outlier values (greater or 

less than 2 s.d. than the average of all clusters) were removed; (2) we checked the top 15 

differentially expressed genes of each cluster and removed the clusters in which genes were 

predominantly mitochondrial, ribosomal or haemoglobin genes; (3) using the canonical cell 

type markers for each cell type, we determined whether any cluster had cells expressing 

canonical markers from a different cell type, suggesting they are doublets with another cell 

types. On the basis of the above criteria, we identified 10 major cell type clusters and 11 

nucleus clusters that were well-separated in UMAP space.
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Assignment of cell type annotations to clusters

To annotate the major cell type of each single cell or nucleus, FindAllMarkers was used 

to find differentially expressed genes in each cluster using the Wilcoxon rank-sum test 

statistical framework. The top 12 most significant differentially expressed genes (ranked 

by average log-transformed fold change; adjusted P < 0.05) were then carefully reviewed. 

Furthermore, we checked each cluster using the known canonical markers such as EPCAM 

for epithelial cells, PTPRC for immune cells, CD3D/E/G for T cells, CD19/MS4A1/CD79A 

for B cells, LUM/DCN/COL6A1 for fibroblasts, PECAM1 for endothelial cells and RGS5 

for pericytes. We also applied SingleR56 to annotate the clusters. The three approaches 

were combined to infer major cell types for each cell and nucleus cluster according to the 

resulting annotation designated by SingleR and the enrichment of canonical marker genes 

and top-ranked differentially expressed genes in each cell cluster.

Identification of cell states by reclustering of cell type data

Each cell cluster was further extracted and underwent clustering and filtering as described 

above with different parameters. The different parameters used for clustering the expression 

states of major cells were as follows: B cells (dims = 12; k.param = 20, scaled by 

nCount_RNA, resolution = 0.3), T cells (dims = 20; k.param = 20, scaled by nCount_RNA, 

resolution = 0.4), myeloid cells (dims = 30; k.param = 20, scaled by nCount_RNA, 

resolution = 0.4), fibroblasts (dims = 30, k.param = 20, scaled by nCount_RNA, resolution 

= 0.4), LumHR (dims = 35; k.param = 20, resolution = 0.075, scaled by nCount_RNA), 

LumSec (dims = 35; k.param = 20, resolution = 0.2 scaled by nCount_RNA), perivascular 

(dims = 25; k.param = 20, scaled by nCount_RNA, resolution = 0.4), lymphatic cells (dims 

= 30; resolution = 0.05) and vascular endothelial cells (dims = 30; resolution = 0.1). Each 

round of clustering was followed by filtering for low-quality and doublet cells. Differentially 

expressed genes were calculated for each cell cluster relative to other cells within its cell 

type compartment using the FindMarkers function in Seurat with the Wilcoxon rank-sum 

test for statistical significance. Expression states were further annotated by investigating 

the top 200 genes of each cluster and performing pathway enrichment on the cell states as 

described in the ‘Pathway enrichment analysis’ section. For each cell type, we showed top 

genes of each cell state in the heatmaps based on the average log fold change.

Cell cycle analysis

We used the CellCycleScoring function from the Seurat package that is based on the cell 

cycle phase genes described previously57. Each cell and nuclei were given a quantitative 

score for G1, G2/M and S scores on the basis of the scoring of marker genes at each stage of 

the cell cycle.

Pathway enrichment analysis

For gene set enrichment analysis, ranked genes were selected on the basis of the above 

test filtered for an adjusted P ≤ 0.05 and arranged by average log-transformed fold change 

values between each cluster and fed into the fgsea R package58 using 1,000 permutations. 

Curated gene sets of KEGG, Biological Processes and Reactome were downloaded from 

the Molecular Signature Database (MSigDB, http://software.broadinstitute.org/gsea/msigdb/
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index.jsp) and were used to calculate enrichment scores. Significantly enriched gene sets 

were identified with a Benjamini–Hochberg adjusted P ≤ 0.05. For the identified cell states, 

we also selected top 200 genes and performed GO and KEGG enrichment analysis using the 

clusterProfiler package59.

Regulatory network analysis

For the RNA regulatory network analysis, we used SCENIC24 to inference the regulatory 

networks from the scRNA-seq and snRNA-seq data following the instructions available 

online (https://scenic.aertslab.org/). For the regulon score matrix, we performed differential 

expression analysis using a similar approach to the gene differential expression analysis and 

identified top regulons for each cell type.

Spatial analysis of smFISH Resolve data

We used QuPath (v.0.3.0)60 to segment cells on the basis of their DAPI images, then used 

ImageJ (v.1.52n)61 and the Molecular Cartography plug-in (Resolve Biosciences) to count 

genes in each cell. For the DAPI image, we also manually annotated different regions 

(duct, lobule, connective tissue and fibrocysts) by matched pathology H&E sections using 

ImageJ. The cell-gene count matrix was then input into Seurat (v.3.2.3)55 for downstream 

analysis. For the 12 samples of Resolve spatial data, cells with less than 10 gene counts 

were filtered. Counts data were then normalized using NormalizeData with the default 

LogNormalize method. Afterwards, normalized counts were scaled and centred using the 

ScaleData function. All of the genes were used for principal component analysis using 

RunPCA with the default parameters. ElbowPlot was used to determine the number of 

principal components for the downstream analyses and RunUMAP was applied to reduce 

data to a 2D space. We applied a two-step approach to annotate cells. First, we curated 

a marker list of each cell type and used AddModuleScore from Seurat to calculate the 

cell type scores of each cell (Supplementary Table 6). By comparing cell type scores, 

we took the largest score to assign the cell types and assigned cells with all scores less 

than 0.5 as low confident cells. Then, a random-forest machine learning model with a 

default of 500 trees was trained on the data while setting the cell type assignment as 

output and top 20 principal components as predictors using the randomForest package62 

(CRAN). Out-of-bag predictions were used as our final cell type annotation while cells with 

a largest voting rate of less than 0.5 were assigned to the low-confidence group and were 

filtered for the downstream analysis. Cell type differentially expressed genes were identified 

using FindAllMarkers. The cell spatial colocalization graph was calculated using the scoloc 

function with the DT method in the CellTrek package63.

ST data analysis

Sequencing reads from Visium ST (10x Genomics) experiments were first preprocessed with 

Space Ranger (v.1.2.0; 10x Genomics) and mapped to the GRCh38 reference genome. The 

count matrices were subsequently analysed using Seurat (v.3). We filtered out spots with 

total counts of less than 100. The UMI counts were normalized using SCTransform. Similar 

to the scRNA-seq analysis, we then used Seurat anchor-based integration with the default 

parameters for the four samples. After integration, dimensionality reduction was performed 

using the RunPCA function. Clustering was performed using the FindClusters function. 
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Differentially expressed genes for each ST cluster were identified using FindAllMarkers 

with two-sided Wilcoxon rank-sum test. P values were adjusted by Bonferroni correction 

and genes with adjusted P < 0.05 were retained. For the correlation analysis between ST 

and scRNA-seq data, we first selected markers (pct.1 > 0.25 and avg_logFC > 0.25) for 

each cell type on the basis of our scRNA-seq differential gene list. Then, for the markers 

of each cell type, we calculated the mean expression in the corresponding scRNA-seq and 

ST data, respectively. We performed the Pearson correlation analysis between these two data 

modalities.

Procrustes analysis between the left and right breast

In contralateral samples, we calculated Bray–Curtis dissimilarity between samples using 

the vegdist function from the vegan package (v.2.5–6) based on the cell type count matrix 

and then performed multi-dimensional scaling using cmdscale. To compare the cell type 

composition between the left and right breast, we applied Procrustes analysis using the 

protest function from the vegan package and performed a permutation test with 9,999 

permutations. A Pearson’s correlation test was used to measure the similarities on the top 

two dimensions between the left and right breast after Procrustes rotations.

Metadata statistical analysis

Wilcoxon rank-sum tests were used to evaluate the associations between clinical 

metavariables for comparing cell type frequencies. Fisher’s exact tests were used to compare 

the counts of patients with a minimum of 20 cells of each cell state. The P values from the 

two-tailed tests are reported for each comparison and only the significant ones are shown in 

Extended Data Fig. 12.

Computational analysis of CODEX data

StarDist trained on TissueNet dataset (https://datasets.deepcell.org/data) was used for cell 

segmentation. The average intensity of each protein was then calculated for individual 

cells using the segmentation masks and the protein images. If the protein was localized 

in nuclei, for example, Ki-67, PCNA, FOXP3, then the average intensity was calculated 

from the nuclear mask obtained using StarDist. Otherwise, if the protein was localized in 

the cell membrane, for example, CD4, CD3, E-cadherin, then the average intensity was 

calculated from the membrane mask. The average protein intensities were then z-scored 

across all cells. Unsupervised clustering using Leiden algorithm was performed based on the 

normalized average protein intensities to assign cluster labels for all cells in each sample 

individually. The average intensity of each protein was then recalculated for each cluster and 

displayed on a heat map to identify cell types manually on the basis of marker expression, 

for example, basal, luminal, fibroblast, T cells, myeloid, endothelial cells. Tissue regions 

were manually annotated into lobules, ducts and connective tissue on the basis of their 

histological structure and morphology. The number of cell types in each annotated region 

was counted, and the relative cell percentages and densities (cell counts per area unit) were 

compared between the different regions. For the immune-cell-specific analysis, we took out 

the previously identified myeloid and T cells clusters and increased the clustering resolution 

and identified CD8+ T cells, CD4+ T cells, T regulatory cells, monocytes, macrophages and 

DCs. RUNX3-positive cells were defined by examining the gene expression distribution.
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Merscope data analysis

For each tissue section, the tissue was annotated and divided into different spatial regions 

(duct, lobule, adipose, connective tissue, adipose/connective tissue) by a pathologist. 

We performed cell segmentation using CellPose64 based on the co-staining of nuclear 

DAPI signal and the cell membrane staining. The output cell gene count and cell 

coordinate matrices were then loaded into Seurat65. Cells were filtered with fewer than 

20 UMIs or 10 genes detected. Similar to our smFISH Resolve data analysis, gene count 

matrices were processed using the NormalizeData, ScaleData, RunPCA and RunUMAP 

functions in Seurat. For the cell type and cell state identification, we used a supervised 

classification approach to predict cell labels on the basis of a curated list of gene markers 

(Supplementary Table 12). In brief, for each cell, we calculated cell type/state scores using 

the AddModuleScore function and assigned each cell to a cell type/state label based on 

the largest score. Cells with scores of less than 0.5 were annotated as low-confidence 

assignments. To further refine the cell annotations, a random-forest model with a default of 

500 trees was trained on the data while setting the cell assignment as output and top 20 

PCs as predictors using the randomForest package (CRAN). These predictions were used as 

final cell annotations, while cells with largest voting rate less than 0.5 or prediction scores 

between the largest and the second largest less than 0.1 were annotated as low confident 

cells.

CellPhoneDB analysis

To identify potential cell–cell interactions within the human breast tissue, we used 

CellPhoneDB v3 (https://github.com/ventolab/CellphoneDB)66. Our single-cell and single-

nucleus adipocyte data were downsampled to include a minimum of 2,000 cells in each cell 

type and 100 cells in each cell state, resulting in a total of 23,584 cells. We conducted a 

differential gene expression analysis on the cell type level and applied CellPhoneDB using a 

threshold of 0.1 (expression greater than 10% cells within a cell type) for the degs_analysis 

and the default parameters for the statistical_analysis modules. To organize and determine 

the direction of ligand–receptor interactions, we used custom scripts and excluded integrin 

interactions. The results were then grouped into five categories: epithelium, epithelium-

immune, epithelium-stroma, stroma-stroma and adipocytes-stroma. From each category, we 

selected the top 50 interactions between cell types with P < 0.05 and mean > 0.5. For 

specific cell-type/cell-state analysis, we generated dot plots with the direction of interaction 

pairs indicated with arrows using custom functions.
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Extended Data

Extended Data Fig. 1 |. Frequency of Major Breast Cell Types Across Women and Sample Types.
a, Experimental workflow for breast tissue processing for scRNA-seq, showing different 

conditions used for digestion times and trypsin treatments. b, Pie chart showing ethnic 

backgrounds of women who provided tissue samples for the breast atlas. c, Cell type 

frequencies for different tissue sources (reduction mammoplasties - RM, prophylactic 

mastectomies - PM and contralateral mastectomies - CM), cells vs nuclei single cell RNA-
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seq protocols, and experimental dissociation protocol. d, Major cell type frequencies of 

matched left and right breasts from 22 women (left) and averages across all left and all 

right breast tissues (right). e, Stacked barplot showing the variation of cell type frequencies 

across the 126 women in scRNA-seq data. The top annotation bar shows the experimental 

workflow used (short/medium/long). f, Top regulons identified with SCENIC for each cell 

type cluster from the snRNA-seq data. g, Top regulons identified with SCENIC for each cell 

type cluster from the scRNA-seq data. h, Multi-dimensional scaling and Procrustes analysis 

to determine the concordance of left and right breast cell type frequencies and Pearson 

correlations for 22 women with matched breast tissue samples. P-value was calculated based 

on a two-sided test.
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Extended Data Fig. 2 |. Ligand-receptor Interaction Analysis Between Cell Types.
Ligand-receptor interaction plots predicted from scRNA-seq data using CellPhoneDB 

between the major breast cell types. a, Interaction plot between the epithelial (Basal, 

LumHR and LumSec) cell types. b, Interaction plot between the epithelial and immune 

(B-cells, T-cells, Myeloid cells) cell types. c, Interaction plot between the epithelial and 

stromal (Fibroblasts, Perivascular and Vascular endothelial cells) cell types. d, Interaction 

plot within the stromal (Fibroblasts, Myeloid, Lymphatic, Vascular and Perivascular cells) 

cell types. e, Interaction plot between adipocytes and stromal cell types.
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Extended Data Fig. 3 |. Spatial Transcriptomic Analysis of Breast Cell Types.
a, Integrated UMAP and unbiased clustering of ST data from 10 breast samples, showing 

9 ST clusters. b, Histopathological images, and spatial distribution of ST clusters in the ST 

data from the breast tissues. c, Concordance of ST clusters and the scRNA-seq clusters of 

the major cell types using Fisher’s exact test. d, Pearson correlation analysis of marker gene 

expression levels between the ST clusters and the scRNA-seq data for different cell types. 

All p-values were calculated based on two-sided tests.
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Extended Data Fig. 4 |. Spatial Analysis of Breast Cell Types with CODEX and smFISH.
a, Cell segmentation results of smFISH (Resolve) data across 12 tissue samples profiled 

from 5 different women. Cells were annotated based on combinations of markers for each 

cell type as described in Supplementary Table 6. b, Densities of cell types across three 

topographic areas using 12 tissues profiled by smFISH (Resolve). c, Heatmap of the top 5 

targeted maker genes for each cell type in the smFISH (Resolve) data from 12 combined 

tissue samples. d, Cell segmentation results of CODEX data from 8 different women. Cells 

were annotated based on combinations or single protein markers to identify different cell 
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types. e, Densities of cell types across three topographic areas from 8 different women by 

CODEX. f, Heatmap showing protein levels for markers that were used to identify different 

cell types in the CODEX data. (D: ducts, L: lobules and C: connective regions).

Extended Data Fig. 5 |. Analysis of Single Cell and Spatial Epithelial Data.
a, UMAPs of snRNA-seq data showing the expression of hormone receptor genes. b, 

Epithelial cell state frequencies across the 126 women in scRNA-seq data, where the 

top annotation bar represents the dissociation protocol. c, UMAP feature plots showing 
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the expression of previously reported stem cell marker genes in the scRNA-seq epithelial 

dataset. d, Ligand-receptor interactions within the epithelial cell states predicted with 

CellPhoneDB. e, Cell cycle scoring of S-phase for different epithelial cell states detected 

in the scRNA-seq data. f, Cell cycle scoring for S-phase in the epithelial cell type clusters 

detected in the snRNA-seq data. g, smFISH (Resolve) data showing the expression of the 

MKI67 proliferation marker in the epithelial cells of the ducts and lobules from 4 different 

breast tissues. h, UMAP of different LumSec cell states and ELF5, LTF signature scores, 

respectively. i, Histopathological image of adjacent H&E section showing the anatomic 

annotation of ducts and lobules (left) and smFISH MERFISH (right panel) from P101 

showing the spatial distribution of different LumSec cell states across different regions. j, 
Stacked barplot showing the distribution of different LumSec cell proportions in ducts and 

lobules across 3 MERFISH samples. k, Histopathological image (left panel) and smFISH 

MERFISH (right panel) from P101 showing the spatial distribution of the LumHR-SCGB 

population in a specific region of epithelium.
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Extended Data Fig. 6 |. Spatial analysis of epithelial cells in ductal and lobular structures.
a, Spatial transcriptomic analysis showing clusters labelled as duct or lobule/TDLU from 3 

breast tissues (P10, P35 and P47). b, smFISH (Resolve) data (P46-S1 and P46-S4) showing 

a subset of Keratin markers (left) and hormone receptor genes (right) and their localization 

to different breast tissue regions annotated as either duct or lobule/TDLU. c, CODEX data 

from P131 showing KRT5 in ducts and KRT19 in lobules/TDLU regions, with enlarged 

panels of the right. d, CODEX analysis from P130 of ductal and lobular/TDLU regions, 

showing differences for KRT14 levels in ducts and lobules. e, CODEX data from P131 
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showing protein levels of KRT8 and progesterone receptor (PR) in epithelial cells in the 

ducts and lobular/TDLU regions.

Extended Data Fig. 7 |. Immune cell subtypes in the breast and their variation in women.
a, H&E staining of plasma B-cells, T-cells, mast cell and macrophages (arrows) in human 

breast tissues. b, Stacked barplot showing the cell type frequencies of T, B and myeloid 

cells across 126 women in scRNA-seq data. Top annotation bar represents different tissue 

dissociation protocols that were utilized. c-e, Stacked barplots showing the cell state 
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frequencies of T, B and myeloid cells across 126 women in scRNA-seq data respectively. f, 
Dot plot showing expression of checkpoint/exhaustion markers in NK and T cell states from 

the scRNA-seq data of 126 women. g, Ligand-receptor interaction analysis predicted with 

CellPhoneDB between the fibroblasts cell states and macrophage cell states.

Extended Data Fig. 8 |. Spatial analysis of immune cells in human breast tissues.
a, CODEX data from patient P130 and P131 showing localization of different immune 

cells with epithelial marker KRT19 and vascular marker CD31. Yellow and white arrows 
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indicate CD4 Tregs and DCs, respectively. b, Frequency of T cells with the RUNX3 tissue 

residency marker in CODEX data. c, CODEX data (P130) showing immune cells in ductal, 

lobular and connective regions. d, Stacked barplots of CODEX data showing the density of 

immune cell types in each spatial region in 8 women. e, smFISH (Resolve) data (P46-S1) 

showing RNA localization of T, B and myeloid cells. f, Segmented smFISH (Resolve) 

data (P46-S1) showing cell localization of T, B and myeloid cells. g, smFISH (Resolve) 

data (P46-S1 and P47-S1) showing immune cell localization of B, T and myeloid cells 

across ducts, lobules and connective regions. h, Stacked barplots of smFISH (Resolve) 

data showing the density and proportion of immune cell types in different spatial regions. 

i, Adjacent histopathological tissue section (left) and segmented smFISH MERFISH data 

(right) from patient P91 showing the spatial distribution of m1, m2 macrophages and 

cDC2 populations in different regions of human breast tissue. j, Stacked barplot showing 

the density of m1, m2 macrophages and cDC2 populations in different regions across 

3 smFISH MERFISH samples. k, Adjacent histopathological tissue section (left) and 

segmented smFISH MERFISH data (right) from patient P96 showing the spatial distribution 

of different B-cell states in different regions of human breast tissue. l, Stacked barplot 

showing the density of different B-cell states in different regions across three smFISH 

MERFISH samples.
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Extended Data Fig. 9 |. Fibroblast cell states in the human breast.
a, Stacked barplot showing the fibroblasts cell state frequencies across 126 women in 

scRNA-seq data with top annotation bar representing the tissue dissociation protocol. b, 

Gene ontology enrichment analysis showing top enriched biological process gene sets 

associated with each cell state (Pos: positive; Neg: negative; Reg: regulation; RSTK: 

receptor protein serine/threonine kinase; TGF: transforming growth factor; IGF: insulin-like 

growth factor). c, CODEX data from P132 showing fibroblasts marked by VIM in the 

connective tissue (I) and interlobular (II) regions. d, smFISH (Resolve) data showing 
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fibroblast markers in areas of connective tissue regions (I) and epithelial regions (II) 

from two women (P47-S1 and P69-S3). e, smFISH (Resolve) data (P35-S1) indicating 

spatial proximity regions with epithelial-proximal (Epi-prox), epithelial-middle (Epi-mid) 

and epithelial-distant (Epi-Dist) regions for 4 marker genes. f, Percentages of 4 markers 

that are proximal, middle or distant to the epithelial cells, quantified from the smFISH 

(Resolve) data. g, RNAscope in situ hybridization of breast tissues using an MMP3 probe in 

combination with anti-Vimentin and anti-PanCK immunofluorescent staining, with enlarged 

panel (right). h, Ligand-receptor interactions between fibroblasts, adipocytes and myeloid 

cell states predicted using CellPhoneDB.
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Extended Data Fig. 10 |. Endothelial cell diversity in the Human Breast.
a, Stacked barplot showing the endothelial cell state frequencies across the 126 women in 

scRNA-seq data, with top annotation bar showing the tissue dissociation protocol. b, Dot 

plot of gene ontology enrichment results for 4 lymphatic cell states. c, Heatmap showing 

top gene expression for vascular and lymphatic endothelial clusters detected in the ST data. 

d, smFISH (Resolve) data showing veins (ACKR1) and capillaries (RBP7), as well as a 

canonical vascular marker (VWF) in two different HBCA samples (P46-S3 and P69-S3). 

e, Adjacent H&E tissue section with pathological annotations (left panel) and segmented 
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smFISH MERFISH data (right panel) from P101 showing the spatial distribution of vascular 

endothelial cell states in different regions of human breast tissue. f, Stacked barplot showing 

the density of vascular endothelial states in different regions across 3 smFISH MERFISH 

samples.

Extended Data Fig. 11 |. Perivascular cells in Human Breast Tissues.
a, Stacked barplot showing the perivascular cell state frequencies across the 126 women 

in scRNA-seq data with top annotation bars indicating the tissue dissociation protocol. 
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b, UMAPs of pericytes and vascular smooth muscle cells (VSMCs) and feature plots of 

the VSMCs marker genes (SYNM and ACTG2). c-e, smFISH (Resolve) data showing 

expression of pericyte marker RGS5, together with vascular marker VWF and fibroblast 

marker COL1A1 in lobular and ductal regions from 2 different breast tissue samples (P47-

S1 and P46-S3). f, CODEX results from P131 showing vascular cells (anti-CD31) and 

pericytes (anti-LIF) in a TDLU region. g, smFISH MERFISH from P96 showing the spatial 

distribution of vascular endothelial cell states (left panel) and perivascular cell states (right 

panel) in different regions of human breast tissue. h, smFISH (MERFISH) data showing 

arteries (SOX17) and VSMCs (ATCG2 and SYNM) in breast tissue.
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Extended Data Fig. 12 |. Metadata correlations with breast cell types and states.
a, Boxplots showing the major cell type frequencies across ethnicity status in the n = 69 

women using Wilcoxon rank sum test (top). Significant associations of cell states with 

ethnicity status using Fisher’s exact test (bottom). b, Boxplots showing the major cell type 

frequencies across pre- and post-menopause status in the n = 71 women using Wilcoxon 

rank sum test (top). Significant associations of cell states with menopause status using 

Fisher’s exact test (bottom). c, Boxplots showing the major cell type frequencies across 

different age groups using Wilcoxon rank sum test, young (<50 years) and old (>50 years) 
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for n = 76 women (top). Significant associations of cell states with age groups using Fisher’s 

exact test (bottom). d, Boxplots showing the major cell type frequencies across different 

breast density (high, low) groups in the n = 16 women using Wilcoxon rank sum test (top). 

Significant associations of cell states with breast density using Fisher’s exact test (bottom). 

e, Boxplots showing the major cell type frequencies across different BMI status in 73 

women using Wilcoxon rank sum test, overweight (BMI >= 25 and < 30) and obese (BMI 

>= 30). f, Boxplots showing the major cell type frequencies across different parity status 

(nulliparous, parous) status in the n=64 women using Wilcoxon rank sum test. All p-values 

were calculated based on two-sided tests. Boxplots show the median with interquartile 

ranges (25–75%), while whiskers extend to 1.5× the interquartile range from the box.
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Extended Data Fig. 13 |. Summary of the Major Cell Types and States in Breast Tissues.
This illustration summarizes all of the breast cell types and cell states that were identified 

in the HBCA study. a, Summary of cell lineages from cell types to cell states. b, Mapping 

of cell types and cell states to the four major spatial regions (Adipose, Connective, Ductal, 

Lobular) that were supported by the spatial technologies. Not all cell states were assigned to 

specific spatial regions, in cases where the data did not support their assignment. Individual 

figures were created with BioRender.com.
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Fig. 1 |. Major cell types of the adult human breast.
a, Anatomy of the adult human breast and a pathological haematoxylin and eosin (H&E) 

section, with illustrations of the major breast cell types. b, The workflow of the HBCA 

project. c, Uniform manifold approximation and projection (UMAP) projection of scRNA-

seq data from 714,331 cells integrated across 167 tissues from 126 women, showing 10 

clusters that correspond to the major cell types. d, Consensus heat map of the top 7 genes 

expressed in each cell type cluster from averaged scRNA-seq data. e, UMAP representation 

of snRNA-seq data from 117,346 nuclei integrated across 24 tissues from 20 women, 
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showing 11 cell type clusters. f, Consensus heat map of the top 7 genes expressed in each 

cell cluster from averaged snRNA-seq data. Adipo., adipocytes; perivasc., perivascular cells.

Kumar et al. Page 47

Nature. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2 |. Spatial analysis of major breast cell types.
a, ST experiment from patient P35 showing the H&E image with histopathological regions 

annotated (left) and clustering results (right). A, adipose tissue; C, connective tissue; D, 

ductal tissue; L, lobule. b, Consensus heat map of the top four marker genes in each ST 

cluster from ten integrated tissue samples. Exp., expression. c, The frequencies of the ST 

clusters from ten tissue samples across the four topographic tissue regions. d, smFISH 

experiments (Resolve) using a custom 100-gene panel, showing a subset of 10 genes 

that mark different cell types in sample 1 of P46 (P46-S1) (left) and cell segmentation 

using combinations of markers to identify cell types, with topographic areas annotated 

(right). e, Spatial colocalization graph of the cell types in smFISH (Resolve) data from 12 

tissue samples. The node size represents the cell number and the edge width represents 

the probability of colocalization. f, Cell type frequencies across 3 topographic regions 

from 12 smFISH (Resolve) tissue samples. g, CODEX data from P130 showing ductal–

lobular structure with five protein markers (left) and cell segmentation using combinations 

of markers to identify cell types, with topographic areas annotated (right). h, Spatial 
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colocalization graph of the cell types in the CODEX data from eight tissue samples. The 

node size represents the cell number and the edge width represents the probability of 

colocalization. i, Cell type frequencies across three topographic regions from eight CODEX 

tissue samples. Scale bars, 1 mm (a) and 500 μm (d and g).
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Fig. 3 |. Epithelial cells of the human breast.
a, H&E section of breast tissue showing the epithelial bilayer of two ducts. b, UMAP 

representation of scRNA-seq data from 240,804 epithelial cells, showing three major 

epithelial types. c, UMAP representation of snRNA-seq data from 55,557 epithelial nuclei, 

showing three major epithelial types and two proliferating clusters. d, The keratin genes 

expressed across the three major epithelial cell types. e, UMAP representation of 102,228 

basal epithelial cells. f, UMAP representation of 75,247 LumHR epithelial cells showing 3 

cell states. g, UMAP representation of 63,329 LumSec epithelial cells showing 7 cell states. 

h, Expression of secretoglobin genes across the epithelial cell states. i, Expression of HLA 
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class I and HLA class II genes for the epithelial cell states. j, The top genes expressed for 

each epithelial cell state averaged across the scRNA-seq data. k, Lactation gene signature 

scores for the epithelial cell states. l, G2/M cell cycle scores across different epithelial cell 

states. m, The fraction of proliferating epithelial cells in the scRNA-seq and snRNA-seq 

data. n, CODEX data from patient P130 showing proliferating cells in ducts and lobules 

labelled with PCNA. o, The top ST differentially expressed genes between ducts versus 

lobules from ten integrated tissue samples. Avg., average. p, smFISH (Resolve) data from 

patient P46 showing genes that are expressed specifically in ductal and lobular regions. q, 

smFISH (Resolve) data in the ducts and lobules. Scale bars, 100 μm (a), 200 μm (n) and 500 

μm (p).
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Fig. 4 |. Immune cell ecosystem in human breast tissues.
a, Immune and non-immune cell type frequencies in the scRNA-seq and snRNA-seq 

data. b, Immune and non-immune cell type frequencies by tissue source in the scRNA-

seq data. CM, contralateral mastectomies; PM, prophylactic mastectomies; RM, reduction 

mammoplasties. c, Immune cell type frequencies in the CODEX (n = 8) and smFISH 

(Resolve) (n = 12) data. d, CODEX data from patient P130 showing a TDLU region 

with localization of six immune cell types/states. Segmented cells are shown as coloured 

dots over immunofluorescence staining of SMA (myoepithelial) and CD31 (vessel) for 
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spatial reference. e, smFISH (Resolve) data (P46-S1) showing a TDLU region with 

localization of three immune cell types. Segmented cells are shown as coloured dots over 

immunofluorescence staining of KRT5 (basal epithelial) and VWF (endothelial) for spatial 

reference. f, UMAP representation of 76,567 NK and T cells from scRNA-seq data showing 

14 cell states. g, The top genes expressed for each NK and T cell cluster using average 

values across single cells. h, UMAP representation of 12,510 B cells from scRNA-seq data 

showing five cell states. Bmem, memory B. i, The top genes expressed for each B cell state 

using average values across single cells. j, UMAP representation of 30,789 myeloid cells 

from scRNA-seq data showing of 15 cell types and states. k, The top genes expressed for 

each myeloid cell cluster using averaged scRNA-seq values. l, CODEX data from patient 

P130 showing localization of immune cells and a vascular marker (CD31). m, smFISH 

(Resolve) segmented data (P46-S1) showing localization of immune cells and a vascular 

marker (VWF). n, The frequency of immune cells that are in the proximity of vascular 

endothelial cells versus other cell types as determined by neighbourhood analysis of the 

CODEX and smFISH (Resolve) data.
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Fig. 5 |. Breast fibroblasts and adipocytes.
a, Histopathological sections showing regions with intralobular and interlobular fibroblasts 

(arrowheads) in the breast. b, UMAP representation of 208,390 fibroblast cells, showing 

4 cell states. c, The top genes expressed for each fibroblast cell state, averaged from the 

scRNA-seq data. d, The collagen gene signature scores (left) and expression of FAP (right) 

across different fibroblast cell states in the scRNA-seq data. e, smFISH data (Resolve) from 

patient P69 (P69-S3) showing a subset of four fibroblast genes and their distribution in the 

connective tissue (i) and intralobular (ii) areas. f, Histopathological section of breast adipose 

tissue. g, UMAP representation of 6,637 adipocytes from snRNA-seq data. h, ST data 

showing an adipocyte cluster in P46. i, Expression of top adipocyte genes, white adipocyte 

markers and beige adipocyte markers in the ST data and snRNA data. For a, e and f, scale 

bars, 100 μm.
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Fig. 6 |. Vascular, perivascular and lymphatic cells in the human breast.
a, Histopathological section showing an artery, vein and capillary structure in normal breast 

tissue. b, UMAP representation of 83,651 vascular endothelial cells showing 3 major cell 

states. c, Canonical and top genes expressed for each vascular endothelial cell state, using 

averaged values from the scRNA-seq data. d, Histopathological section showing a lymphatic 

duct in the breast tissue. e, UMAP representation of 8,982 lymphatic endothelial cells, 

showing 4 major cell states. f, Expression of canonical and top genes for each lymphatic 

cell state, averaged from the scRNA-seq data. g, smFISH (Resolve) data from patient P47 
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(P47-S1) showing a subset of vascular gene markers (VWF, ACKR1, RBP7 and GJA4) 

and lymphatic markers (PROX1), with two enlarged regions (R1 and R2). h, CODEX data 

from patient P130 showing a TDLU region with vascular cells (anti-CD31) and lymphatic 

cells (anti-PDPN) cells, and basal cells labelled (anti-SMA) with two enlarged regions. 

i, Histopathological sections showing a pericyte and capillary structure, as well as an 

artery and VSMCs in normal breast tissue. j, UMAP projection and clustering of 52,638 

perivascular cells, showing 2 cell states. k, Canonical markers and the top genes expressed 

for each perivascular cell state from averaged scRNA-seq data. Scale bars, 50 μm (a, d and i) 
and 500 μm (g and h).
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