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Here, we present a method for enrichment of double-stranded cfDNA with an average length of ∼40 bp from cfDNA for

high-throughput DNA sequencing. This class of cfDNA is enriched at gene promoters and binding sites of transcription

factors or structural DNA-binding proteins, so that a genome-wide DNA footprint is directly captured from liquid biopsies.

In short double-stranded cfDNA from healthy individuals, we find significant enrichment of 203 transcription factor mo-

tifs. Additionally, short double-stranded cfDNA signals at specific genomic regions correlate negatively with DNA meth-

ylation, positively with H3K4me3 histone modifications and gene transcription. The diagnostic potential of short

double-stranded cell-free DNA (cfDNA) in blood plasma has not yet been recognized. When comparing short double-

stranded cfDNA from patient samples of pancreatic ductal adenocarcinoma with colorectal carcinoma or septic with post-

operative controls, we identify 136 and 241 differentially enriched loci, respectively. Using these differentially enriched loci,

the disease types can be clearly distinguished by principal component analysis, demonstrating the diagnostic potential of

short double-stranded cfDNA signals as a new class of biomarkers for liquid biopsies.

[Supplemental material is available for this article.]

Liquid biopsies are based on various types of analytes, including cir-
culating extracellular nucleic acids like cell-free DNA (cfDNA), extra-
cellular vesicles, or circulating tumor cells, for example (Bronkhorst
et al. 2019; Kustanovich et al. 2019). Physiologically, cfDNA is to a
large extent released from the hematopoietic system by apoptosis,
necrosis, or active secretion from almost all cell types and tissues
into the bloodstream (Grabuschnig et al. 2020). In addition to re-
lease from normal physiological turnover, cancer cells or microbial
pathogens are also known to release their DNA into bloodstream
circulation (Heitzer et al. 2020). Released genomic DNA is then de-
gradedbyDNA-digesting enzymes (nucleases), producing fragments
mainly 147 to 167 bp in size, corresponding to a single nucleosome
(Han et al. 2020; Lo et al. 2021). By high-throughput sequencing of
cfDNA fragments, nucleosome positioning can be inferred at base
pair resolution (Fan et al. 2008; Snyder et al. 2016). The exact posi-

tions of nucleosomes and chromatin structure play a key role in
regulating gene expression by providing access to DNA for the
transcription machinery. Open chromatin structures depleted of
nucleosomes make DNA more accessible for key regulators of tran-
scription, including transcription factors, enhancers, or repressors.
However, the routine and efficient measurement of genome-wide
protection through regulatory DNA-binding proteins (DBPs) is not
yet established. Recently, a minor fraction of double-stranded
cfDNA that is significantly shorter than normal cfDNA was found,
ranging from 35 to 80 nucleotides (nt) using ultradeep sequencing
of total cfDNA (Burnham et al. 2016; Snyder et al. 2016). It has
been proposed that this short cfDNA might be protected by DNA-
binding factors and therefore could represent direct transcription
factor binding.

Here, we established an enrichment approach for short dou-
ble-stranded cfDNA fragments (20–60 bp) from blood plasma (fur-
ther referred to as “short cfDNA sequencing”). Corresponding
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short double-stranded cfDNA fragments
(further referred to as “short cfDNA”) ac-
cumulate at open chromatin as well as
gene regulatory elements. Differential
enrichment of short cfDNA at genomic
loci facilitated discrimination of colorec-
tal and pancreatic cancer patient samples
as well as between septic patients and
clinical controls, showing potential for
diagnostic applications.

Results

Enrichment of cfDNA footprints at

regulatory genomic regions

Enrichment of short double-stranded
cfDNA comprises extraction of total
cfDNA from blood plasma by magnetic
beads followed by double-stranded
DNA-specific library preparation (Sup-
plemental Fig. S1). To select short dou-
ble-stranded cfDNA fragments of up to
60 bp, two size-selection steps were per-
formed using a preparative gel electro-
phoresis device. For this, fragments in
the range of 150 bp to 200 bp are en-
riched, which corresponds to double-
stranded cfDNA fragments of up to 60
bp ligated to a sequencing adapter of
140 bp (Supplemental Fig. S2). After
high-throughput sequencing of size-
selected libraries, reads were quality-
checked to ensure a size range between
20 bp and 60 bp (Supplemental Fig. S3).
The protocol revealed sequencing reads
with a mean read length of 37.9 bp across the patient conditions
and comparable read length distributions per condition despite
varying sample storage durations (SD=6.6 bp, n =2×107 reads uni-
formly sampled from the total reads of 20 individuals: four healthy
individuals, four patients with pancreatic ductal adenocarcinoma
[PDAC], four patients with colorectal carcinoma [CRC], four pa-
tients with sepsis, and four nonseptic postoperative clinical con-
trol patients [Post-OP]) (Supplemental Fig. S4; Supplemental
Table S1). Short cfDNA reads revealed an elevated average GC con-
tent of 57.8% (SD=1.9%) (Supplemental Fig. S5) in contrast to
40.9% for average human genomic DNA (Piovesan et al. 2019).
We mapped short cfDNA to the human genome and compared
it with themapping of regular cfDNAof four additional healthy in-
dividuals. Coverage profiles of short cfDNA and regular cfDNA dif-
fered considerably as short cfDNA tends to accumulate either in
single narrowpeaks or in clusters of narrowpeaks (clustered peaks),
which are frequently located at transcriptional start sites (TSSs) or
ChIP-seq-validated transcription factor binding sites (TFBSs) (Fig.
1A). Nucleosome-free regions (NFRs) were analyzed in comparison
to clustered peaks, because the absence of regular cfDNA can be an
indicator of the presence of other DBPs. Assignment of clustered
peaks from short cfDNA and NFRs to annotated functional ele-
ments of the genome shows that an approximately four- and a six-
fold higher proportion of clustered peaks are found in promoters
(>1 kb upstream of the TSS) and 5′ UTRs of genes, respectively.
Moreover, the proportion of clustered peaks assigned to exons is

about four times higher than the proportion of NFRs (Fig. 1B). A
more detailed examination of the genomic coverage for protein-
coding genes reveals an opposite profile between short cfDNA
and regular cfDNA. Although short cfDNA is enriched at TSSs, reg-
ular cfDNA is depleted at these sites. In addition, short cfDNA pos-
sesses a reciprocal pattern oscillation compared with regular
cfDNA, with short cfDNA exhibiting an inverted pattern 1 kb
downstream from the TSS in regular cfDNA (Fig. 1C, inset). In ad-
dition to enrichment at the TSS, short cfDNA also exhibits a prom-
inent signal at DNase I hypersensitive sites (DHSs) from a reference
annotation of the B cell line GM12878, whereas the regular cfDNA
signal oscillates at neighboring genomic locations and is depleted
at the DHS (Fig. 1D). Taken together, short cfDNA accumulates at
open chromatin or TSS of genes, whereas regular cfDNA, namely,
nucleosomes, was clearly depleted in these regions.

Short cfDNA sequencing detects binding of transcription factors

Because short cfDNA could be protected from nuclease digestion
by binding to regulatory DBPs, peak regions were examined for en-
compassing transcription factor binding motifs. Accordingly, a
consensus peak set was defined from peaks of short cfDNA se-
quencing data of four healthy individuals. Transcription factor
motif enrichment analysis at the genomic locations of these con-
sensus peaks revealed a significant enrichment of 203 transcrip-
tion factor binding motifs out of 401 listed in the reference

A

B D

C

Figure 1. Short cfDNA is enriched in regulatory regions of genes and open chromatin. (A) Coverage
profile of short cfDNA (green; S03) and regular cfDNA (violet; average of S05–S08). The short cfDNA pro-
file shows narrow and clustered peaks, whereas regular cfDNA shows nucleosome-free regions (NFRs;
depletion of reads). RefSeq genes, ENCODE promoter-like structures (PLSs), and ENCODE transcription
factor binding sites (TFBSs) based on ChIP-seq experiments are included as references. (B) Pie charts dis-
play the proportions of annotated genomic features for clustered peaks from short cfDNA and NFRs from
regular cfDNA. The bar plot shows the ratio between clustered peaks and NFRs for each genomic feature.
(C) Average coverage profiles for short cfDNA (S03) and regular cfDNA (S06) along all annotated protein-
coding genes. The gene bodies of all genes are scaled to 5 kb. Dashed vertical lines indicate the interval
shown in the subplot. The subplot shows average profiles at the transcription start site without rescaling
of the gene body. (D) Average coverage profiles for short cfDNA, regular cfDNA, and publicly available
ATAC-seq data at DNase I hypersensitive sites (DHSs) derived from publicly available DNase-seq data.
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motif database HOCOMOCO (Kulakovskiy et al. 2018). The 203
transcription factor motifs belong to 46 transcription factor fami-
lies fromnine transcription factor superclasses. ChIP-seq-validated
TFBSs from ENCODE3 reveal clear enrichment signals for nuclear
factor, erythroid 2 (NFE2), RE1 silencing transcription factor

(REST), and Spi-1 proto-oncogene (SPI1) in short cfDNA, for exam-
ple. On the other hand, regular cfDNA is depleted at these binding
sites. Overall, the average profile of all ChIP-seq-based TFBSs shows
a clear enrichment of short cfDNA in contrast to regular cfDNA in-
dependent of the transcription factor (Fig. 2A). ChIP-seq-validated

A
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Figure 2. Short cfDNA sequencing directly captures the protection of DNA across the genome by various transcription factors. (A) Treemap showing
transcription factors whose DNA motif was significantly enriched in short cfDNA consensus peaks from four healthy individuals. More than 200 transcrip-
tion factor motifs of all nine transcription factor superclasses in the database were identified as enriched in short cfDNA peaks. The size of squares in the
treemap encodes the relative number of transcription factor motifs per class (thin outlined boxes) and superclass (thick outlined boxes). As examples, av-
erage coverage profiles of short cfDNA (S03) and regular cfDNA (S06) are shown for three transcription factors (NFE2, REST, and SPI1) from three different
transcription factor superclasses. Average profiles are based on the 1000 most robust binding sites annotated in the Gene Transcription Regulation
Database (GTRD). In addition, the average profile of all ChIP-seq TFBSs annotated in ENCODE3 is shown for short cfDNA in comparison to regular
cfDNA. (B) Average coverage profile of short cfDNA, regular cfDNA, DNase-seq, and ATAC-seq at CTCF binding sites (CTCF BSs). (C) Inferred molecular
model for the formation of short cfDNA at the binding site of a DNA-binding protein (DBP) surrounded by two nucleosomes on either side. Arrows indicate
the endpoints of DNA fragments for the respective sequencing technique. The resulting theoretical coverage tracks are depicted for each sequencing
technique.
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binding sites of CCCTC-binding factor
(CTCF) show an even more pronounced
signal for short cfDNA, whereas regular
cfDNA exhibits a high-frequency oscilla-
tion occupancy adjacent to these bind-
ing sites (Fig. 2B). In good agreement,
DNase-seq data show a combination of
a footprint peakwith adjacent oscillation
patterns, whereas ATAC-seq detects a
peak representative for open chromatin
at the CTCF binding sites (Fig. 2B). Our
data suggest that short cfDNA most
specifically reveals protection of DNA
through DBPs at regulatory sites
with high resolution as exemplified by
CTCF, NFE2, REST, or SPI1 (Fig. 2C).
Previously, it has been shown that a sig-
nificant fraction of short cfDNA exists
as short single-stranded DNA (ssDNA).
To analyze how short ssDNA signals
compare to short cfDNA signals, we ex-
amined transcription start sites and
TFBSs with data from Snyder et al.
(2016) for short cfDNA sequencing (sin-
gle-stranded library preparation). We
found a superior signal-to-noise ratio
for DBP footprints, allowing the detec-
tion of signals, for example, tumor pro-
tein p53 binding protein 1 (TP53BP1),
that were not detectable in the short
ssDNA of Snyder et al. (Snyder et al.
2016; Supplemental Fig. S6). These data
suggest that short cfDNA represents a
biological entity that captures DBP
footprints.

Correlation to epigenetic activation

and gene transcription

Given that short cfDNA fragments are
likely derived from the protection of reg-
ulatory DBPs and are overrepresented at
open chromatin regions, we investigated a potential relationship
between short cfDNA signal strength (i.e., local read enrichment)
and promoter activation state. Annotated promoter-like structures
were classified as active or inactive promoters based on cell-free
histone 3 lysine 4 triple-methylation (H3K4me3) signals frompub-
licly available ChIP-seq data of a healthy individual (Sadeh et al.
2021). Active promoters with a strong H3K4me3 signal showed a
higher coverage of short cfDNA than did promoters with weak or
no H3K4me3 signal, whereas regular cfDNA shows exactly the op-
posite behavior (Fig. 3A). Moreover, the strongest signals for
H3K4me3, representing the nucleosome positions, occur at local
minima of short cfDNA. DNA methylation is known to be an es-
sential regulator of gene activity and is associated with transcrip-
tion factor binding and thus, potentially, DNA footprint signals.
Consequently, we classified CpG islands (CpGis) into methylated
and unmethylated CpGis based on the signal strength of cell-free
methyl-CpG-binding domain sequencing (cfMBD-seq) data froma
healthy individual. Strongly methylated CpGis show a weaker ac-
cumulation of short cfDNA compared with unmethylated CpGis,
whereas regular cfDNA again behaves the opposite (Fig. 3B), dem-

onstrating the relationship between DNA methylation and short
cfDNA. To further analyze a connection between localized short
cfDNA signals and downstream gene transcription, we used pub-
licly available cell-free RNA-seq data from five healthy individuals
(Zhu et al. 2021). Based on the average transcript abundance level
of protein-coding genes, four subsets of genes were defined: “no
expression,” “low expression,” “medium expression,” and “high
expression” genes (Fig. 3C). Genes with medium or high expres-
sion show considerable enrichment of short cfDNA reads at their
respective TSSs, whereas genes with low or no expression show
no substantial enrichment. Regular cfDNA again behaves contrary
to short cfDNA and shows a much less pronounced difference be-
tween active expression (high and medium) and low, or no, ex-
pression (Fig. 3D). Consistent with the definition of these gene
subgroups, H3K4me3 histone modifications increase and DNA
methylation levels decrease as expression levels increase at the re-
spective TSS of the genes (Supplemental Fig. S7B,C). For amore de-
tailed analysis of the joint effect of DNA footprint signals andDNA
methylation in regulatory elements of genes on its transcription,
we used matched sequencing data from four septic patients.

A B
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Figure 3. Short cfDNA is enriched at loci with markers of epigenetic activation and transcriptionally
active regions. (A) Annotated PLSs from ENCODE are clustered based on publicly available cell-free
H3K4me3 ChIP-seq signal strength into two clusters, representing active (red) or inactive (blue) pro-
moters. Average coverage profiles for short cfDNA and regular cfDNA at active or inactive promoters
demonstrate the influence of the promoter activation status. (B) Annotated CpG islands are clustered
based on cell-free methyl-CpG-binding domain (cfMBD) sequencing signal strength into two clusters.
Average coverage profiles for short cfDNA and regular cfDNA at methylated or unmethylated CpG
islands reveal the influence of methylation levels at CpG islands. (C ) Histogram showing average ex-
pression levels of protein-coding genes in publicly available cell-free RNA sequencing data. For each
category, 5% of all analyzed genes were selected (938 genes each for no expression [dark blue], low
expression [blue], medium expression [red], and high expression [dark red]). (D) Average coverage
profiles for short cfDNA and regular cfDNA at the transcription start sites of the defined gene groups
of C reveal the influence of transcriptional activity. All data in A and D were generated from samples
of healthy individuals. S03 was used as the short cfDNA data set, and S06 was used as the regular
cfDNA data set.
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Different combinations of short cfDNA and DNAmethylation sig-
nals also seem to affect the gene expression levels (Supplemental
Fig. S8A). Genes with clearly decreased DNA methylation in
their proximal CpGis and significantly elevated short cfDNA
abundance at their core promoter seem to be associated with high-
er transcription levels (clusters 2 and 4), whereas genes with in-
creased DNA methylation and reduced short cfDNA abundance
seem to be associated with lower transcription levels (clusters 5,
8, and 9). Between these clear cases, the associations of regulatory
signals with the resulting transcription levels of the genes aremore
complex and becoming less clear (Supplemental Fig. S8B). In sum-
mary, the signal strength of short cfDNA is higher in active pro-
moters than in inactive promoters, higher in unmethylated
CpGis than in methylated CpGis, and higher in TSSs of actively
transcribed genes than in TSSs of untranscribed genes. Thus, short
cfDNA is enriched at loci with markers for epigenetic activation
and transcriptionally active genomic regions.

Disease-specific short cfDNA signatures in liquid biopsies

To identify disease-specific signatures, short cfDNA data were gen-
erated for four biological replicates of four different clinical indica-
tions: two types of gastrointestinal carcinomas (PDAC and CRC),
as well as sepsis and Post-OP controls (Supplemental Table S1).
Post-OP patients were selected as controls because this patient
group is prone to develop a sepsis after surgery, and therefore, a
tight control and separation are of clinical relevance (Chen et al.
2019b; Lukaszewski et al. 2022). Comparison of consensus peak
sets for PDAC versus CRC revealed 136 differentially enriched
loci (Fig. 4A; Supplemental Fig. S10) and 241 lociwith a differential
enrichment comparing sepsis with Post-OP (Fig. 4B; Supplemental
Fig. S10). Principal component analysis (PCA) based on all differ-
entially enriched regions (DERs) demonstrated a clear separation
of all four clinical indications as well as the healthy samples by
the first two principal components (Fig. 4C). Two exemplary
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Figure 4. Comparison of short cfDNA data reveals condition-specific protection of TFBSs. (A) Differential enrichment analysis for pancreatic ductal ad-
enocarcinoma (PDAC) samples with colorectal cancer (CRC) samples identifies differentially enriched TFBSs (Adj. P-value≤0.05 and |log2(FC)|≥1). (B)
Differential enrichment analysis for sepsis samples with postoperative (Post-OP) samples identifies differentially enriched TFBSs (Adj. P-value≤0.05 and
|log2(FC)|≥1). (C) Principal component analysis based on identified differential TFBSs separates all conditions and healthy individuals. Four biological rep-
licates were used per condition. In addition to the samples, a centroid for each group is depicted as a larger data point. Variance explained: PC1=29.6%,
PC2=20.9%. (D) Example for a differentially enriched TFBS in PDAC with novel TF binding near the alternative transcription start site of CD86. (E) Example
for a differentially enriched TFBS in sepsis with novel TF binding in the promoter of KEAP1. (F–I) Top 10 differentially enriched TF motifs. (F ) CRC consensus
peaks in comparison to PDAC consensus peaks. CTCF and CTCFL were identified as well but were not included in the figure. (G) PDAC consensus peaks in
comparison to CRC consensus peaks. (H) Sepsis consensus peaks in comparison to Post-OP consensus peaks. (I) Post-OP consensus peaks in comparison to
sepsis consensus peaks. CTCF and CTCFL were identified as well but were not included in the figure.
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DERs demonstrate a distinct differential DNA footprint near a TSS
in the context of a larger locus with TFBSs (Fig. 4D,E). A differen-
tially enrichedTFBSwas detectednear the alternative transcription
start site in the promoter of the CD86 gene in PDAC patients com-
paredwithCRCpatients (Fig. 4D), whereas another protected TFBS
was detected near the promoter of the kelch-like ECH associated
protein 1 (KEAP1) in sepsis patients in contrast to Post-OP patients
(Fig. 4E). In addition to differential analysis of signal strength at de-
fined consensus peaks, differential enrichment of transcription
factor binding motifs was also analyzed in all consensus peaks.
For this purpose, the relative abundance of transcription factor
motifs in the consensus peaks of one condition was compared
with the abundance in the consensus peaks of the respective refer-
ence condition. Enrichment of 14 different transcription factor
motifs was detected for PDAC in comparison to CRC, 19 for CRC
in comparison to PDAC, 14 for sepsis in comparison to Post-OP,
and 126 for Post-OP in comparison to sepsis (E-value≤10) (Fig.
4F–I). The binding motif with the strongest enrichment in PDAC
patients compared with CRC patients belongs to the recombina-
tion signal binding protein for immunoglobulin kappa J region
(RBPJ) (Fig. 4F), for example. In this context, one of the physiolog-
ical roles of the transcription factor RBPJ is the regulation of early
pancreatic cell development. Overall, short cfDNA sequencing en-
ables the detection of condition-specific enrichment signatures in
liquid biopsies, which can be used to discriminate different diseas-
es for diagnostic purposes. In addition, short cfDNA sequencing
might also help identify transcription factors that may have phys-
iological relevance to the condition.

Discussion

In this study, we present a novel approach for comprehensive
DNA footprinting in liquid biopsies by analysis of short double-
stranded plasma cfDNA. Our short cfDNA sequencing approach
comprises preparative gel electrophoresis to specifically enrich
cfDNA fragments with a mean length of ∼40 bp in combination
with high-throughput sequencing. We observed an enrichment
of short cfDNA at the TSS of genes, in which regular cfDNA is de-
pleted. A closer inspection of the average signals at the TSS also
showed an oscillation pattern reciprocal to that of regular cfDNA
at the 5′ UTR. These findings indicate a regular shift of nucleo-
somes from the promoter to the 5′ UTR of genes and protection
by regulatory DBPs between displaced nucleosomes as revealed
by short cfDNA enrichment. In line with the enrichment of short
cfDNA at TSS, we also found that short cfDNA fragments showed a
higher GC content than the human genome on average (short
cfDNA=57.8%, human genome=40.9%). Gene regulatory ele-
ments in humans possess an increasedGC content. Consequently,
short cfDNA fragments and TFBSs that are enriched in such regions
of the genome have elevated GC contents. Short cfDNA also accu-
mulates at DHSs. At these open chromatin locations, regular
cfDNA exhibits a combined signal originating from high-frequen-
cy and low-frequency nucleosomal oscillation signals, as described
by Ulz et al. (2019). Comparable to this finding, we observed two
different types of short cfDNA signals created by DBPs with a nar-
row binding signal, such as CTCF, and multiple adjacent protein
binding events that result in a broader signal. The observed narrow
signal of regulatory proteins, like CTCF, SPI1, or REST, can be ex-
plained by their ability to initiate nucleosome displacement in
closed chromatin (pioneer factors) (Fu et al. 2008; Heinz et al.
2010; Barozzi et al. 2014; Vanzan et al. 2021). Pioneer factors can
bind directly to closed chromatin without the need or presence

of auxiliary proteins. In contrast, the binding sites of regulatory
proteins such as MYC proto-oncogene, bHLH transcription factor
(MYC), or TP53BP1 exhibit a much broader signal. These regulato-
ry proteins bind in open chromatin, accompanied by the presence
of additional regulatory proteins. Consequently, we also found a
striking correlation between DNA footprint signals and markers
representative for transcriptional regulation. In this context, we
determined that promoters with H3K4me3 histonemodifications,
a characteristic for active gene transcription, revealed stronger
short cfDNA signals than thosewithout. Furthermore, weobserved
an opposing correlation between methylation levels of CpGis and
corresponding enrichment of short cfDNA. Because unmethylated
CpGis are considered markers of epigenetic activation, depletion
of regular cfDNA and the presence of DNA footprinting signals in-
dicate a protection from regulatory activating factors at such loci.
Regarding gene expression, short cfDNA signals at the TSS are in-
creased at actively transcribed genes compared with genes with
low expression. However, short cfDNA does not strictly capture
continuous dynamics of gene expression levels, rather more it
exhibits a binary switch between high and low expression. Com-
parable findingswere obtained through the analysis of the joint ef-
fect of DNA footprint signals and DNA methylation in regulatory
elements of genes on their transcription. Here, the change be-
tween low and high gene expression levels can be detected to a cer-
tain extent, but not so precisely to exactly quantify gene
expression levels. These aberrations are likely owing to the multi-
tude of other epigenetic regulatory mechanisms that fine-tune
gene expression levels. Although this holds also true for other reg-
ulatory signals of gene expression, such as DNA methylation, this
might reflect a potential limitation of our approach to quantita-
tively predict an individual’s physiology exactly. Further targeted
studies are needed to assess the extent of this limitation. Neverthe-
less, short cfDNA is clearly correlated with DNA-methylation sig-
natures, H3K4me3 histone modifications, and transcriptional
activity of downstreamgene loci.We found consistent enrichment
of short cfDNA where regular cfDNA is depleted. Hence, we pro-
pose that the molecular origin of short cfDNA most likely is dou-
ble-stranded cfDNA, which has been protected from enzymatic
digestion by regulatory proteins, including transcription factors.
In agreement with this model, we found that short cfDNA consen-
sus peaks comprise a plethora of transcription factor motifs and
that known TFBSs revealed clear enrichment for short cfDNA. Tak-
en together, our data provide evidence that short cfDNA represents
a characteristic subset of cfDNA that is distinct from nucleosomal
cfDNA and therefore most likely does not originate from the deg-
radation of regular cfDNA.

In contrast to short cfDNA, which is characterized by short
double-stranded DNA (short dsDNA), publications by Snyder
et al. (2016), Hisano et al. (2021), and Hudecova et al. (2022)
reported on the presence of short ssDNA. Contrary to short
dsDNA, short ssDNA fragments may represent a significant frac-
tion of total cfDNA, comprising as much as 20% of a sequencing
library. However, short ssDNA demonstrated that the relative sig-
nal strength at transcription start sites or TFBSs of proteins, such
asMYC, is very low compared with short dsDNA. Therefore, we as-
sume that cfDNA originally protected by regulatory DBPs is short
dsDNA, whereas short ssDNA might be of other biological origin
with higher signal-to-noise ratios. Hisano et al. (2021) and
Hudecova et al. (2022) suggested that much of the short ssDNA
could originate from noncanonical DNA structures, such as G4
quadruplexes, whichmay largely superimpose signals from regula-
tory protein DNA-binding events.
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Transcription factor motifs from short cfDNA revealed sets of
differentially enriched transcription factors between different con-
ditions including samples from septic, CRC, and pancreatic cancer
(PDAC) patients, suggesting a diagnostic potential for liquid biop-
sy applications. Sepsis is characterized by a complex interplay of
proinflammatory and anti-inflammatory processes orchestrated
by regulators of the immune system. Seven out of the top 10 differ-
entially enriched transcription factor motifs identified in septic
samples are linked to regulatory pathways of the immune system.
For example, transcription factor 4 (TCF4; also known as E2-2 or
ITF2) regulates genes for the differentiation of dendritic cells into
interferon-producing plasmacytoid dendritic cells (Reizis 2010).
TCF4 also regulates the immune response as a downstream target
of toll-like receptor 2 (TLR2) signaling to induce the expression
of immunoregulatory genes such as interleukin 10 (IL10)
(Manoharan et al. 2014). The identified transcription factor zinc
finger protein X-linked (ZFX) is known to be involved in themain-
tenance of peripheral T cells as well as expansion andmaintenance
during B cell development and peripheral homeostasis (Arenzana
et al. 2009; Smith-Raska et al. 2018). For CRC patients, Sp1 tran-
scription factor (SP1) was identified as the top hit, and several
FOS/JUN family transcription factors were identified as differen-
tially enriched. SP1 is a ubiquitous transcription factor and medi-
ator of critical physiological pathways, including cell cycle,
proliferation, and metastasis. SP1 plays a key role in regulating
genes involved in CRC growth and metastasis (Bajpai and
Nagaraju 2017). Two members of the FOS/JUN family—FOS-like
1, AP-1 transcription factor subunit (FOSL1), and FOS-like 2, AP-1
transcription factor subunit (FOSL2)—are known to promote tu-
morigenesis and metastasis in colon cancer (Li et al. 2018; Liu
et al. 2021). For PDAC patients, RBPJ was identified as the corre-
sponding top hit. RBPJ is known to form a heterocomplex with
pancreas associated transcription factor 1a (PTF1A), and their
interaction is required in the early stage of pancreatic growth, mor-
phogenesis, and lineage fate decision (Masui et al. 2007). In addi-
tion, peroxisome proliferator-activated receptor gamma (PPARG)
and retinoid X receptor alpha (RXRA) were identified, which are
known to form a heterocomplex (Lehrke and Lazar 2005). PPARG
is a key regulator of adipocyte differentiation, regulates insulin
and adipokine production and secretion, and is associated with
PDAC. In addition, RXRA promotes proliferation and inhibits apo-
ptosis of pancreatic cancer cells (Chen et al. 2019a). Moreover, we
found disease-specific differentially enriched loci that may enable
clear separation of patients with PCA. For example, in PDAC pa-
tients, we found differential protection from DBPs near the alterna-
tive TSS of the CD86 gene compared with CRC patients. In PDAC,
the tumor microenvironment is highly immunosuppressive and
characterized by a dense stroma and an abundance of immunosup-
pressive cells such asmyeloid-derived suppressor cells and regulato-
ry T cells, as well as increased levels of monocytes in peripheral
blood (Gautam et al. 2023; Hansen et al. 2023). CD86 is an impor-
tant costimulatorymolecule involved in T cell activation. CD86, to-
getherwithother immunemarkers such as integrin subunit alphaX
(ITGAX; also known as CD11c) and CD274 molecule (CD274; also
known as PD-L1), can serve as a prognostic indicator in PDAC, in
which increased expression of CD86 on peripheral blood mono-
cytes of PDAC patients significantly correlates with disease severity
(Hansen et al. 2023). In septic patients, we found an additional sig-
nal of short cfDNA near the TSS of the KEAP1 gene compared with
postoperative controls. KEAP1 regulates oxidative stress and inflam-
mation in sepsis via the NFE2-like bZIP transcription factor 2
(NFE2L2; also known as NRF2) signaling pathway. Inhibition of

KEAP1 allows NRF2 to activate antioxidant responses, thereby re-
ducing the damage caused by sepsis. Enhanced NRF2 activity is as-
sociated with better outcomes, whereas impaired signaling worsens
sepsis inmouse studies. The use of protein–protein interaction (PPI)
inhibitors targeting the NRF2-KEAP1 signaling pathway are consid-
ered and evaluated in various studies for the treatment of sepsis by
increasing NRF2 activity (Gunne et al. 2020; Wang et al. 2023).

Taken together, analysis of short double-stranded cfDNA
might provide the most accurate picture of a genome-wide tran-
scription factor footprint in liquid biopsies. With the ability to
identify disease-specific TFBS enrichment for patient classifica-
tion, we see considerable potential in the application of short
cfDNA sequencing for liquid biopsy applications.

Many studies explore the properties and information to be in-
ferred from various cfDNA fragments and fragmentation patterns.
Often the clinical relevance of the obtained information is not yet
well evaluated. Although we started to explore the clinical rele-
vance and potential of short cfDNA sequencing with clinical sam-
ples, the results presented in this study are based on a limited
number of samples. Further studies with more clinical samples
are still required to validate the potential of this approach. In
addition to validity and utility, cost-effectiveness is an essential
factor for clinical diagnostic methods. Although our workflow
already represents a resource-efficient alternative to ultradeep
high-throughput sequencing of total cfDNA, a targeted and
even-more-economical approach might be advantageous for im-
plementation. With the new short cfDNA sequencing approach,
which directly maps the protection across the genome via regula-
tory proteins, we want to add a new tool to liquid biopsy diagnos-
tics that could improve the detection of cancer or enable clinically
relevant differential diagnosis of cancer types.

Methods

Blood samples

This study included blood samples from nine healthy individuals,
four individuals with PDAC, four individuals with CRC, four indi-
viduals with sepsis, and four individuals that underwentmajor ab-
dominal surgery (Supplemental Table S1). Blood from the healthy
individuals was acquired commercially from Biomex. Septic pa-
tients participated in a previously published, prospective observa-
tional clinical study that was conducted in the surgical intensive
care unit of Heidelberg University Hospital, Germany between
November 2013 and January 2015 (S13–S16 and S25–S37;
German Clinical Trials Register: DRKS00005463) (Decker et al.
2017). Treatment of these sepsis patients included early-goal
directed therapy, elimination of the septic focus, and broad-spec-
trum antibiotic therapy. Identified pathogens of all sepsis patients
and blood cell counts are included in Supplemental Table S2.
Patients without cancer (nonseptic controls, i.e., Post-OP) that un-
derwent major abdominal surgery and all individuals with cancer
were recruited at the University Hospital of Erlangen with the ap-
proval of the local ethics committee and the clinical trial number
180_19 B (S09–S12 and S17–S24). All experiments were performed
in accordance with the study protocol approved by the ethics
committee.

cfDNA isolation

Plasma was prepared by centrifugation of whole blood for 10 min
at 1600g and 4°C. Afterward, blood plasma was centrifuged again
for 10 min at 16,000g and 4°C. Afterward, 1.1 mL of the superna-
tant was transferred into a fresh 1.5 mL DNA LoBind tube and
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stored at−80°C. If necessary, the sample volumewas filled upwith
freshly prepared 1×phosphate-buffered saline solution. cfDNA
was isolated with the QIAsymphony SP DNA preparation system
and the QIAsymphony DSP circulating DNA kit (Qiagen) accord-
ing to the manufacturer’s advice. Eluted cfDNA was quantified
with the Qubit dsDNA HS assay kit (Thermo Fisher Scientific),
and the cfDNA quality was assessed by the fragment analyzer
high-sensitivity DNA kit (Agilent).

High-throughput sequencing

Sequencing libraries for regular cfDNA were prepared with the
NEBNext Ultra II DNA library prep kit (New England Biolabs) ac-
cording to the manufacturer’s protocol; 0.5 ng isolated cfDNA
was used as input. The NEBNext adaptor was diluted 1:25 for all re-
actions. PCR was performed with 10 PCR cycles and 4 µL primers.
Sequencing was performed on a NextSeq 2000 (Illumina) with 100
bp single-end reagent kits.

Sequencing libraries for short double-stranded cfDNA (short
cfDNA) were prepared from 3 ng to 15 ng of cfDNA, depending
on the clinical condition, using the NEXTFLEX cell free DNA-seq
kit (V2; PerkinElmer) according to the manufacturer’s advice
with one exception: The final library after PCR amplification was
eluted in 20 µL nuclease-free water. Library generation was per-
formed with a Biomek FXP workstation (Beckman Coulter).
Library quality was assessed by the fragment analyzer high-sensi-
tivity DNA kit (Agilent), and the concentration was measured by
theQubit dsDNAHS assay kit (Thermo Fisher Scientific). Size selec-
tion of the cfDNA libraries was performed using a BluePippin in-
strument (Sage Science). To select the short cfDNA portion in
the range of 150–200 bp, samples were applied to a 3% agarose
BluePippin cassette according to the manufacturer’s protocol.
Briefly described, samples were filled up with water to 30 µL and
were mixed with 10 µL of supplied internal marker (100 bp to
250 bp). Twenty-three microliters of the eluted, size-selected sam-
ple was reamplified with 25 µL of NEXTFLEX PCR master mix 2.0
and 2 µL of 1:10 diluted NEXTFLEX primer mix 2.0 as described in
the NEXTFLEX cell free DNA-seq kit (V2; PerkinElmer), step C PCR
amplification. Afterward, samples were purified with 1.2 × the vol-
ume of AMPureXP beads (BeckmanCoulter) according to theman-
ufacturer’s advice. Size-selection performancewas evaluated by the
fragment analyzer high-sensitivity DNA kit (Agilent). If the sample
still contained fragments outside the target range of 150 bp to 200
bp, size selectionwas repeated as previously described, with the ex-
ception that the input sample was adjusted to 30 µL with water
and the reamplification step was performed with five to eight cy-
cles. After size selection, sequencing was performed on a
NextSeq 2000 (Illumina) with 100 bp single-end reagent kits.

Methylation enrichment of cfDNA was performed using the
EpiMark methylated DNA enrichment kit (New England Biolabs)
according to the manufacturer’s instructions. Two reactions with
5–15 ng of cfDNA input each were performed in parallel per sam-
ple. Methylated cfDNA was eluted sequentially from both reac-
tions using the same 50 µL of nuclease-free water to increase
yield. Sequencing libraries were prepared with the NEBNext Ultra
II DNA library prep kit (New England Biolabs) according to the
manufacturer’s protocol. Fifty microliters of methylated cfDNA
from the EpiMark procedurewas used as input. TheNEBNext adap-
tor was diluted 1:25 for all reactions. PCR was performed with 17
PCR cycles and 3 µL primers. Sequencing was performed on a
NextSeq 2000 (Illumina) with 100 bp single-end reagent kits.

For whole-blood RNA-seq, blood of patients was collected in
PAXgene blood RNA tubes (BDBiosciences), incubated at room tem-
perature for 2h to achieve complete lysis of blood cells, and frozen at
−80°C until further processing. Before nucleic acid isolation, tubes

were thawed at room temperature for 2 h. Nucleic acid isolation
was performed using the QIAcube (Qiagen) and the PAXgene blood
miRNAkit according to themanufacturer’s protocol to extract gene-
encodingmRNAs. Nucleic acids were eluted in 2×40 µL buffer BR5.
The quantity and quality of the isolated RNAwere determined with
a Qubit fluorometer (Thermo Fisher Scientific) and a fragment ana-
lyzer (Agilent), respectively. Library preparation and sequencing
were performed using 250 ng RNA with the ScriptSeq kit v2
(Illumina). Sequencing of the libraries was performed with HiSeq
2500 (Illumina), with 100 bp single-end reagent kits.

Sequencing data processing

After initial quality control of short cfDNA sequencing of raw se-
quencing reads with FastQC (v0.11.8), the following steps were per-
formed sequentially to remove sequencing artifacts: (1) removal of
sequencing adapters, terminal poly(G) sequences (min 10 sequen-
tial G’s), and quality trimming (BBTools bbduk.sh v38.67); (2) re-
moval of terminal single A nucleotide added during library
preparation (BBTools bbduk.sh v38.67); (3) size selection of se-
quenced fragments allowing read lengths >20 bp and <60 bp
(BBTools bbduk.sh v38.67); (4) removal of sequencing reads with
low complexity, that is, dust scores smaller than seven (prinseq-
lite v0.20.4) (Andrews 2010; Schmieder and Edwards 2011;
Bushnell et al. 2017); (5) processed reads mapped to the human ref-
erence genome assemblyGRCh37usingNextGenMap (v0.5.5)with
default settings (Sedlazeck et al. 2013); and (6) mapped reads dedu-
plicatedwith SAMtools rmdup (v1.9), reads inblacklisted regions re-
moved with BEDTools intersect (v2.30.0), and reads with a MAPQ
value lower than one removed with SAMtools view (v1.9) (Li et al.
2009; Quinlan and Hall 2010; Amemiya et al. 2019). These reads
were converted to bigWig format for visualization and other down-
stream analyses with deepTools (bin size =10, normalization=
counts per million [CPM], bamCoverage v3.5.1) (Ramírez et al.
2016). This workflow is graphically summarized in Supplemental
Figure S3. Realigning the reads to GRCh38 or newer assemblies
would not significantly affect the results and conclusions, as only
Chromosomes 1–22, X, and Ywere analyzed, which are highly con-
served across different genome versions. Using the ENCODE black-
list with GRCh37 helps to avoid potential sequencing artifacts in
poorly mappable regions of these chromosomes, such as centro-
meres and telomeres, by excluding such problematic regions.

After initial quality control of regular cfDNA raw sequencing
reads with FastQC (v0.11.8), the following steps were performed
(Andrews 2010): (1) removal of sequencing adapters, removal of
terminal poly(G) sequences (min 10 sequential G’s), removal of
reads <50 bp, and quality trimming (BBTools bbduk.sh v38.67)
(Bushnell et al. 2017); (2) processed reads mapped to the human
reference genome assembly GRCh37 using NextGenMap (v0.5.5)
with default settings (Sedlazeck et al. 2013); and (3) mapped reads
deduplicated with SAMtools rmdup (v1.9), and reads in blacklisted
regions removed with BEDTools intersect (v2.30.0) (Li et al. 2009;
Quinlan and Hall 2010). Mapped reads were converted to bigWig
format for visualization and other downstream analyses with
deepTools (bin size = 10, normalization=CPM, bamCoverage
v3.5.1) (Ramírez et al. 2016).

cfMBD-seq data were processed as regular cfDNA sequencing
data.

Public sequencing data processing

FASTQ files of five publicly available cell-free RNA sequencing data
sets of different healthy individuals from Zhu et al. (2021) were ob-
tained from the NCBI Sequence Read Archive (SRA; https://www
.ncbi.nlm.nih.gov/sra). Accession numbers and unique identifiers
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are listed in Supplemental Table S3. All samples were sequenced in
paired-endmodewith a read length of 150 bp and about 10million
reads per sample on average. After initial quality control of raw se-
quencing reads with FastQC (v0.11.8), the following steps were per-
formed to obtain read counts for individual genes (Andrews 2010):
(1) removal of sequencing adapters, quality trimming, and removal
of reads <100 bp (BBTools bbduk.sh v38.67) (Bushnell et al. 2017);
(2) mapping of processed reads to the human reference genome as-
sembly GRCh37 using NextGenMap (v0.5.5) with default settings,
keeping only reads with a MAPQ value greater than two
(Sedlazeck et al. 2013); (3) gene quantification in raw read counts us-
ing featureCounts (v2.0.1) with the UCSC Genes annotation (avail-
able at https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/
genes/hg19.knownGene.gtf.gz) (Liao et al. 2014), and only protein-
coding genes on the autosomal chromosomes included in the final
readcount matrix to reduce confounding by the gender of sample
donors; and (4) if required, raw read counts converted to transcripts
per million (TPM) using R (R Core Team 2024).

FASTQ files of cfDNA sequencing data sets of a healthy in-
dividual from Snyder et al. (2016) were obtained from the
SRA. Accession numbers and unique identifiers are listed in
Supplemental Table S3. After initial quality control of raw sequenc-
ing readswith FastQC (v0.11.8), the following stepswere performed:
(1) removal of sequencing adapters and quality trimming (cutadapt
v4.0) (Martin 2011); (2) mapping of trimmed reads to the human
reference genome assembly GRCh37 using NextGenMap (v0.5.5)
withminimummapquality of 10 (Sedlazeck et al. 2013); (3) in silico
size selection of the mapped reads with 35–80 nt for short cfDNA
and 120–180 nt for regular cfDNA; (4) removal of low complexity
reads and deduplication (prinseq-lite v0.20.4) (Schmieder and
Edwards 2011); (5) removal of reads in blacklisted regions with
BEDTools intersect (v2.30.0) (Quinlan and Hall 2010); and (6) for
downstream analysis and visualization, bigWig files generated
with deepTools (bin size =10, normalization=CPM, bamCoverage
v3.5.1) (Ramírez et al. 2016).

ATAC-seq and DNase-seq data from ENCODE (see
Supplemental Table S3) were retrieved as processed BAM files
and only converted to other data types, like bigWig for down-
stream analysis. Cell-free H3K4me3 ChIP-seq data from Sadeh
et al. (2021) (see Supplemental Table S3) were retrieved as pro-
cessed BED files and only converted to other data types, like
BAM and bigWig for downstream analysis.

Peak calling and NFR calling

For short cfDNA sequencing data, narrow peaks and clustered
peaks were called with MACS2 callpeak (narrow: ‐‐nomodel
‐‐extsize 32 ‐‐call-summits ‐‐min-length 30 -q0.05, clustered: ‐‐broad
‐‐nomodel ‐‐extsize 32 ‐‐max-gap 100 ‐‐min-length 500 ‐‐broad-
cutoff 0.05) (Zhang et al. 2008). Consensus peaks of a condition
were identified using R and defined as genomic sites where a nar-
row peak was identified in at least three of four samples (R Core
Team 2024). In addition, consensus peaks <31 nt apart were com-
bined. For regular cfDNA, NFRs were called on the merged data set
of four biological replicates to increase genome-wide coverage and,
thus, reliability. NFRswere identifiedwith the R packagesNucDyn,
utilizing nucleR, with default settings (Buitrago et al. 2019). Peaks
and NFRs were annotated to genomic features in R with the
ChIPseeker package and default settings (Yu et al. 2015).

Average coverage profiles and heatmaps

Average coverage profiles and heatmaps were created from bigWig
files with deepTools (computeMatrix, plotHeatmap, and
plotProfile; v3.5.1) (Ramírez et al. 2016). Different genomic refer-

ence locations were used for average coverage profiles. For Figure
2 and Supplemental Figure S2, validated binding sites of transcrip-
tion factors were retrieved from theGene Transcription Regulation
Database (GTRD) (Kolmykov et al. 2021). Here, TFBSs were ranked
according to their robustness across different cell lines and tissues,
namely, the number of tissues and cell lines in which the respec-
tive binding site was found. Only the top 1000 binding sites
were used for average coverage profiles. Promoter-like structures
from ENCODE were converted from GRCh38 to GRCh37 with
the liftOver tool from UCSC and used as reference regions in
Figure 3A (available at https://www.encodeproject.org/files/
ENCFF379UDA/) (Hinrichs et al. 2006). CpGis were used as refer-
ence regions in Figure 3B (available at UCSC TableBrowser, track
name= cpgIslandExt) (Karolchik et al. 2004). The heatmaps in
Figure 3, A and B, were clustered in two groups using the imple-
mented k-means clustering based on the line-wise average.
Missing data in heatmaps were plotted in black.

Composite effect of DNA methylation and DNA footprint

signals on gene transcription

From four sepsis patients, matched short cfDNA, cfMBD, and
whole-blood RNA sequencing data were acquired (S26–S37). For
a combined analysis, different genomic annotations were com-
bined. The same gene annotation as used with the cfRNA sequenc-
ing data from Zhu et al. (2021) was utilized. A core promoter
annotation for GRCh37was retrieved from the eukaryotic promot-
er database (EPD; version 6; available at https://epd.expasy.org/ftp/
epdnew/H_sapiens/006/Hs_EPDnew_006_hg19.bb) (Dreos et al.
2015; Meylan et al. 2020). For each gene, only the best-matching
core promoters were kept (“_1” flag). As for CpGis, the aforemen-
tioned CpGis from UCSC were used again. CpGis were assigned to
genes based on their proximity to the EPD promoter of the gene in
the genome, with a maximum absolute distance of 5 kb. With
these assignments, from the roughly 20,000 protein-coding genes
in the annotation, about 12,000 remained with an associated core
promoter and CpGis. Counts of sequencing reads of each sequenc-
ing data type and each patient were retrieved for the curated gene
bodies, core promoters, and CpGis with featureCounts (v2.0.1)
and converted to TPM (Liao et al. 2014). From the patient repli-
cates a mean TPM value was calculated per region and sequencing
type. Additionally, a pseudocount of 0.01 was added. For better
comparability of the signals, the cfMBD-seq data in CpGis and
short cfDNA sequencing data in core promoters were additionally
adjusted for GC content. The GC content of the respective regions
was extracted from GRCh37 using BEDTools nuc (v2.30.0)
(Quinlan and Hall 2010). The adjusted signal was calculated as fol-
lows: A locally weighted regression function was fitted with the
mean readcount value and GC content for each annotation type
(R lowess function). Each mean readcount value (observed) is di-
vided by its fitted value (expected) to obtain an observed over ex-
pected (OoE) ratio. For better interpretability and visualization, the
values are also log2-scaled. Genes with comparable composite sig-
nals in the core promoter and in the CpGis were identified by k-
means clustering (k=10) and visualized in a heatmap using R
and ComplexHeatmap (Fig. 3E; Gu et al. 2016). The average gene
expression values were added as an annotation but had no influ-
ence on clustering. For better visualization and comparison of
the distributions of gene expression values, the RNA-seq data
were also visualized in a ridge plot in R with ggplot2, according
to the clusters from the heatmap, and sorted by descending medi-
an value (Fig. 3F). Clusters with fewer than 200 genes were exclud-
ed from this visualization as the sample size was considered too
small for a representative distribution.
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Transcription factor motif enrichment analysis

Enriched transcription factor motifs were identified with the AME
tool from MEME suite (‐‐scoring avg ‐‐method fisher; v5.4.1)
(McLeay and Bailey 2010). Input DNA sequences were retrieved
from consensus peak sets and analyzed for the enrichment of mo-
tifs listed in the HOCOMOCOv11_core_HUMAN_mono database
(Kulakovskiy et al. 2018). DNA sequences of consensus peaks from
short cfDNA sequencing data of healthy individuals were com-
pared with control sequences, generated by shuffling the letters
in the input while preserving the frequencies of k-mers (‐‐shuffle).
The proportions of identified transcription factormotif classes and
their respective superclasseswere summarized in a treemap plot us-
ing R and the treemap package (v.2.4.3; https://cran.r-project.org/
web/packages/treemap/index.html). Short cfDNA sequencing
data from other than healthy states were compared with each oth-
er. The DNA sequences underlying each consensus peak set were
used as control sequences, for example, consensus peak DNA se-
quences from CRC as input compared with consensus peak DNA
sequences from PDAC as control.

Differential enrichment analysis

Identification of DERs was performed with the R package
DEBrowser (v1.2.0) using the implemented edgeR method with
raw read counts in the combined consensus peak sets of two
compared conditions, TMM normalization, a glmLRT, and
dispersion=0 (Robinson et al. 2010; Kucukural et al. 2019). The
use of this analysis is based on the observation that the read counts
in the consensus peak sets are best modeled with a negative bino-
mial distribution in comparison to a Poisson of geometric dis-
tribution (Supplemental Fig. S9). Genes were considered as
differentially expressed between two conditions (four biological
replicates per condition) with an adjusted P-value smaller than
0.05 and a log2(fold change)≤−1 or ≥1. Volcano plots for the dif-
ferential enrichment analysis were generated with the R package
EnhancedVolcano (v1.8.0). The identified DERs of both compari-
sons were used for a PCA, and the first three principal components
were visualized in R with pca3d (v0.10.2). Samples of each condi-
tion were linked to the centroid of the respective condition with a
line.

Data access

The raw high-throughput sequencing data generated in this study
have been submitted to the NCBI BioProject database (https://
www.ncbi.nlm.nih.gov/bioproject/) under accession number
PRJNA1033613. Processed high-throughput sequencing data of
samples S01–S33 are available as genome coverage tracks in a
UCSC Genome Browser session (https://genome.ucsc.edu/s/jnmllr/
Short_cfDNA_seq_manuscript) or as files at Figshare (https://doi
.org/10.6084/m9.figshare.25211525.v2). Custom data analysis
code created for this work is available on GitHub (https://github
.com/janmueller17/short_ds_cfDNA) and as Supplemental Code.
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