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Abstract

The design of RNA plays a crucial role in developing RNA vaccines, nucleic acid therapeu-

tics, and innovative biotechnological tools. However, existing techniques frequently lack ver-

satility across various tasks and are dependent on pre-defined secondary structure or other

prior knowledge. To address these limitations, we introduce GenerRNA, a Transformer-

based model inspired by the success of large language models (LLMs) in protein and mole-

cule generation. GenerRNA is pre-trained on large-scale RNA sequences and capable of

generating novel RNA sequences with stable secondary structures, while ensuring distinc-

tiveness from existing sequences, thereby expanding our exploration of the RNA space.

Moreover, GenerRNA can be fine-tuned on smaller, specialized datasets for specific sub-

tasks, enabling the generation of RNAs with desired functionalities or properties without

requiring any prior knowledge input. As a demonstration, we fine-tuned GenerRNA and

successfully generated novel RNA sequences exhibiting high affinity for target proteins. Our

work is the first application of a generative language model to RNA generation, presenting

an innovative approach to RNA design.

1 Introduction

RNAs(Ribonucleic acids) play essential roles in broad biological phenomena. The design and

engineering of RNA is a promising tool in the progress of advanced therapeutics and biotech-

nology. For example, RNA aptamers, which can specifically target proteins or small molecules,

have been engineered and utilized in gene silencing therapies through targeted siRNA delivery

and as alternatives to fluorescent proteins in diagnostic techniques [1, 2]. Furthermore, RNA

aptamers have been developed as therapeutic agents, as demonstrated by the FDA-approved

drug Macugen1 (pegaptanib) for the treatment of age-related macular degeneration. Another

example is the design of 5’ untranslated regions (UTRs) in mRNA, which can impact transla-

tion efficiency and is particularly valuable in the development of mRNA vaccines [3].

Historically, RNA design methodologies have been grounded in empirical approaches and

directed evolution in wet-lab settings, which is a process plagued by high costs and low effi-

ciency [4]. Subsequently, the introduction of computational techniques permitted the explora-

tion of RNA sequences with specific secondary structures, which further advanced RNA

design [5]. However, the reliance on pre-defined RNA structural configuration and other a
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priori knowledge has imposed constraints on the adaptability of these methods [6]. To address

this, there have been recent efforts to integrate deep learning approaches into RNA generation,

such as RNAGEN [7], which utilizes WGAN-GP [8], a variant of the generative adversarial

network (GAN) [9] architecture, to generate new sequences with similar characteristics to

training sequences. Moreover, it can leverage external prediction models to guide the model in

further optimization for target features. This approach has enabled the successful generation

of PIWI-interacting RNA(piRNA) sequences that specifically bind to target proteins. However,

GAN-based models are generally considered less suitable for generating long sequences due to

significant challenges in maintaining contextual coherence and ensuring sequence diversity

[10, 11], which may limit the applicability of RNAGEN to other RNA generation tasks. Rfam-

Gen [12] is another noteworthy contribution in this field. It utilizes covariance model (CM)

[13], which is a statistical framework that incorporates alignment and consensus secondary

structure within RNA family data, in combination with variational autoencoders (VAEs) [14]

to successfully generate functional sequences across diverse RNA families. This approach has

efficiently produced several functional RNAs. While RfamGen overcomes the dependency on

RNA inverse folding, it still operates within the context of RNA families, relying on constraints

such as multiple sequence alignment (MSA) and consensus secondary structure.

The recent advancements in large language models have opened new possibilities for RNA

sequence generation. These models learn from massive unlabeled datasets, produce meaning-

ful representations, and generate high-quality text [15]. This success has resonated in the bio-

logical and chemical domains [16–21], offering a new paradigm where the structure and

function of biomolecules can be handled within the framework of a natural language model.

For instance, ProGen, a large-scale protein language model, generates protein sequences with

predictable functions across diverse protein families, also aiding in the exploration of protein

space [22]. Similarly, in the realm of small molecule design, there has been a proliferation of

published generative language models utilizing string-based molecule representations, garner-

ing considerable attention [23]. As for RNA research, pre-trained language models like

RNA-FM, UNI-RNA, and RNABERT have demonstrated their effectiveness in predicting

RNA function and structure [24–26]. However, these language models were specifically

trained to capture patterns in RNA sequences rather than generation.

Building on this, we introduce GenerRNA, the first generative language model for RNA.

The motivation behind our study is to provide a platform that both eliminates the dependency

on external knowledge and offers versatile functionality, as well as to explore the potential of

applying LLMs that have been proven successful in protein and small molecule design to RNA.

Our model is based on the Transformer decoder architecture [27], which is typically pre-

trained on large text datasets to learn underlying syntactic and linguistic patterns in an unsu-

pervised manner. This process entails predicting subsequent words or characters in a text

sequence without the need for labels or annotations. GenerRNA was pre-trained on approxi-

mately 16 million RNA sequences encompassing 11.6 billion nucleotides, in order to gain a

comprehensive understanding of RNA representations across different families, facilitating de
novo sequence generation. We evaluated the generated RNA sequences from the following

standpoints: secondary structural stability measured by minimum free energy (MFE) and nov-

elty assessment by conducting homology searches. Additionally, the nucleotide propensities of

the generated sequences are similar to those found in natural sequences. The results reveal that

GenerRNA can generate RNA sequences that are novel, nature-like, and structurally meaning-

ful. Furthermore, we fine-tuned the model to generate RNAs with the capability to bind to spe-

cific proteins as a demonstration for versatility. In silico evaluations indicated that these

generated RNAs exhibit high affinity scores with target proteins. Additionally, ablation
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experiments demonstrated the substantial role of pre-training, allowing for the generation of

more rational and novel sequences.

GenerRNA presents a new option for automated RNA design, and our work demonstrates

that generative language models have the potential to become a promising approach in RNA

engineering.

2 Methods

2.1 Learning the RNA language

GenerRNA is a language model that processes RNA sequences through a linguistic perspective.

By employing unsupervised learning on a large-scale RNA dataset, it is possible to discern the

inherent syntax, grammar, and semantics in RNA sequences, thereby mastering the ability to

generate the RNA “language”—signifying a capacity to generate RNA sequences akin to

nature.

Within this framework, GenerRNA computes the probability for each specific token xi in a

sequence, where a token refers to a discrete unit consisting of one or more nucleotides, and the

index i denotes the token’s position in the sequence. This probability is influenced by the

token’s context, determined as the joint probability of preceding tokens in the sequence rang-

ing from x1 to xi−1. The aggregate probability of a sequence X consisting of L tokens is derived

from the joint probability distribution of its constituent tokens.

pðXÞ ¼
YL

i¼1

pðxijx<iÞ ð1Þ

Focusing on sequence generation, GenerRNA employs an autoregressive approach, imply-

ing that the model operates in a sequential, left-to-right fashion to construct the sequence one

token at a time. This process necessitates that the prediction of each subsequent token depends

on all previously generated tokens, ensuring a contextually coherent progression in the

sequence generation.

Our model is built on the Transformer decoder architecture, which features a series of

stacked layers designed to learn the global context within sequences, with each layer incorpo-

rating a self-attention mechanism, as illustrated in Fig 1b. This self-attention mechanism

within each layer is responsible for interpreting pairwise interactions among all positions in its

input sequence. Our decoder-only architecture model consists of 350 million parameters

across 24 transformer layers and has a model dimension of 1280. This configuration mirrors

the GPT-2-medium model architecture proposed by OpenAI [32].

We trained the model by minimizing the negative log-likelihood (NLL) across the entire

dataset. This approach involves the model learning the relationship of each token in a sequence

with the preceding tokens.

NLLseq ¼ �
XL

i¼1

log pyðxijx<iÞ ð2Þ

Here, log pθ(xi|x<i) is the log is the log probability of the ith token xi, given the model parame-

ters θ and the the preceding context.

GenerRNA was trained for 12 epochs on 11GB of sequence data (S1 Fig in S1 File). The

parameter weights were initialized prior to training, with the linear layers initialized using

Kaiming initialization [33], while other layers were initialized to a Gaussian distribution with a

mean of 0 and a standard deviation of 0.02. The optimizer used was Adam (β1 = 0.9, β2 =

0.999) [34] with the learning rate experiencing a warm-up over the first 0.67 epoch to 1e-3
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with a linear decay to 1e-4 for the remainder of the training. The training was executed on 16

A100 GPUs and was completed within four days.

2.2 Pre-training data preparation

For pre-training, we obtained a total of 34.39 million sequences from RNAcentral (release 22),

a comprehensive database that combines RNA sequences from 51 expert databases [35]. The

training data comprised over 2,600 Rfam families and 30 types of RNA types such as rRNA,

tRNA, and lncRNA, but notably excluded mRNA [36]. In our preprocessing steps, we replaced

‘U’ with ‘T’ while retaining all ambiguity code, and employed MMseqs2 [37] for deduplication

with an identity threshold of 80%. The deduplication process improved the generalizability of

the validation set and increased the information density of the training data, allowing the

model to learn a more diverse range of sequences at the same computational cost.

We then selected sequences shorter than 1,024 tokens once after tokenization, refining the

dataset to 16.09 million sequences, encompassing 17.4 billion nucleotides. Of these sequences,

99% were allotted for training, with the remaining 1% allotted to the validation set. Training

GenerRNA on longer sequences enables it to learn more complex patterns, but it also signifi-

cantly increases computational demands. This is due to the quadratic growth in computational

complexity with sequence length in the attention mechanism, along with the increased mem-

ory required for storing intermediate results [38]. Moreover, current computational biology

methods struggle to model excessively long RNA sequences, such as in secondary structure

prediction, where there is a challenging trade-off between computational time and accuracy.

Given these challenges, we filtered out excessively long sequences from the training data. Gen-

erRNA has a maximum output length and context window of 1024 tokens, corresponding to

approximately 4000 nucleotides (nt), which meets the requirements for sequence length in

most current RNA design tasks (S3 Fig in S1 File). Additionally, we have released a historical

Fig 1. Overview of GenerRNA workflow and design architecture. a. GenerRNA undergoes unsupervised pre-training on a large-scale RNA corpus,

enabling de novo sequence generation. The model can be further fine-tuned to perform specific downstream tasks. b. GenerRNA is composed of 24

Transformer decoder layers. The model operates in an autoregressive manner to predict the subsequent token. Both the input and output of the model

are in the form of tokens, which are encoded and decoded by a trained tokenizer. A special token (EOS) is used to delimit sequences, indicating the start

and end of each sequence. The 3D structures in the diagram were sourced from RNAComposer [28] and the Protein Data Bank [29–31].

https://doi.org/10.1371/journal.pone.0310814.g001
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version of the model in our code repository, which supports a maximum output length and

context window of 256 tokens, requiring fewer computational resources.

2.3 Training tokenizers

Neural networks are inherently incapable of directly manipulating character-based data,

necessitating the conversion of sequences into a tokenized format. In the pre-training phase of

our model, we utilize Byte-Pair Encoding (BPE) for tokenization [39]. Originally devised as a

text compression algorithm, BPE facilitates the representation of variable-length subwords

within a fixed vocabulary size. Such capability is notably absent in the k-mer tokenization,

which is commonly employed in biological sequence analysis. Additionally, compared to the

one-hot tokenization, where each base corresponds to one token, the BPE tokenizer com-

presses the information content, enabling the learning and generation of longer sequences.

The straightforwardness and effectiveness of BPE tokenization have garnered widespread pop-

ularity in the realm of Large Language Models [40].

To train our tokenizer, we constructed a dataset comprising 1 million sequences randomly

extracted from RNAcentral. Throughout this procedure, we experimented with various vocab-

ulary sizes ranging from 512 to 50,296 and observed that larger vocabulary sizes led to single

tokens encompassing more nucleotides (S2 Fig in S1 File). We opted for a vocabulary size of

1024 primarily for the following reasons: A larger vocabulary size would significantly reduce

the number of tokens in the training data, making it fall below the number we estimated to be

suitable for our computational resources based on the Chinchilla Scaling Law [41]. Conversely,

a smaller vocabulary size would limit the tokenizer’s ability to compress information, restrict-

ing the length of sequences the model could process within the same context window.

2.4 Statistical examination of nucleotide propensities

Our research aimed to generate RNA sequences that share similar properties with natural

sequences. To realize this, we examined nucleotide distributions under various sampling strat-

egies and parameters. We focused our analysis on three main sampling strategies: greedy

search, beam search, and random sampling.

Greedy search persistently chooses the nucleotide with the highest probability, while beam

search retains and explores a set of highly probable token sequences within a predefined beam

width. We evaluated beam sizes ranging from 5 to 100, incrementing by 5. Due to the inherent

determinism of outputs generated by greedy and beam searches, we generated sequence pre-

fixes by creating all possible combinations of A, U, G, and C in the first five nucleotide posi-

tions. This approach allowed us to generate 1,024 sequences for each parameter configuration

in both search methods.

Random sampling chooses from the top k tokens according to the next token’s probability

distribution. For this method, we set the temperature at 1.0, a parameter that modulates gener-

ation randomness by modifying the logits before the softmax function. We varied the topk
value, ranging from 2 to 1000, creating 1000 sequences for each configuration. We calculated

and compared the distribution of k-mer frequencies between the generated and natural

sequences for different k-mer sizes, with k-values ranging from 1 to 6. Using a sliding window

of 1 bp, we accommodated a total of 4k unique k-mers for each value of k. Finally, to quantify

the differences in k-mer frequency between the generated and natural sequences, we employed

the Kullback-Leibler (KL) Divergence:

KLD ¼
X64

i¼1

PðiÞ log
PðiÞ
QðiÞ

� �
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Here, P(i) represents the frequency of the i-th k-mer in the generated sequences, whilst Q(i)
denotes its frequency in natural sequences. This formula sums over all 4k possible k-mers(such

as AAA, AAU, AAG, etc. when k = 3).

2.5 Evaluation of generated RNAs

We investigated the minimum free energy (MFE) of generated RNA sequences as an indicator

of secondary structural stability through a control experiment. Since longer RNA sequences

tend to have more opportunities for intramolecular interactions, which can result in lower

MFE values [42], we controlled for sequence length by matching the length distribution across

all experimental groups. First, we selected 2,000 sequences generated by our model to form the

Generated Group. We then randomly sampled 2,000 natural sequences with the same length

distribution as the generated sequences, creating the Natural Group. For each sequence in the

Generated Group, we also generated a corresponding sequence of the same length composed

of random AUGC nucleotides, which we designated as the Random Group. To further control

for the influence of nucleotide composition (e.g., GC content, k-mer distribution), we created

a Shuffled Group by shuffling the nucleotide sequences from the Generated Group using uSh-
uffle [43], which allowed us to shuffle the sequences while maintaining their 3-mer

distribution.

Additionally, to evaluate the robustness of our model’s performance across different

sequence lengths, we calculated the MFE distribution for sequences of varying lengths: we

sampled 50 generated sequences for each length interval respectively, ranging from 0 to 4,000

nucleotides in 50-nucleotide increments, and prepared a corresponding Shuffled Group for

each interval. All MFE calculations were performed using RNAFold [44].

To evaluate the similarity between the generated RNA and known RNA sequences, we

employed the sequence search API provided by RNAcentral, which operates on nhmmer [45].

The nhmmer, based on hidden Markov models, demonstrates enhanced sensitivity in detect-

ing sequence similarities when compared to BLAST [46]. Furthermore, the sequence search

API of RNAcentral offers improved efficiency through parallel computing and target database

splitting, enabling faster search times than when running nhmmer on a local environment

[47]. Moreover, this API allows us to simultaneously search Rfam [48] to map query sequences

to RNA families. We conducted searches with 1,000 of our generated sequences as queries

against the comprehensive sequence database in RNAcentral (S1 Table in S1 File).

2.6 Fine-tuning GenerRNA on protein-binding RNAs

With the goal of generating novel RNA sequences that bind to specific proteins, we fine-tuned

GenerRNA (Fig 2). We then evaluated the binding affinity between artificially generated

RNAs and the target proteins by employing DeepClip [49], an in silico method leveraging deep

learning techniques to model protein-RNA interactions.

Four in vivo CLIP datasets [50–52] and five in vitro RNAcompete datasets [53] were col-

lected for the ELAVL1 protein. ELAVL1 has been implicated in a variety of biological pro-

cesses and has been linked to a number of diseases, including cancer [54]. The positive

sequences (protein-binding sequences) and negative sequences (background sequences sam-

pled from non-target regions) were grouped independently. To minimize the risk of data leak-

age due to sequence overlap between training and testing sets, we applied a CD-HIT [55]

identity threshold of 80% for deduplication. This process yielded 78,085 positive and 101,178

negative sequences. Similarly, for the SRSF1, which acts as an oncoprotein and an important

target for cancer therapy [56], we obtained 128,053 positive and 107,950 negative deduplicated

sequences from three CLIP datasets [57–60] and five RNAcompete datasets [53, 61].
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Regarding each protein’s binding RNA, 60% of the sequences were allocated for the fine-

tuning of GenerRNA, while 30% were used as positive data for training DeepClip, respectively.

The remaining 10% was set aside for testing. Subsequently, an equivalent count of sequences

from the negative set was randomly selected to function as the negative training, validation,

and testing set for DeepClip. We fine-tuned GenerRNA using the ELAVL1 and SRSF1 Clip

datasets for 500 epochs each. The learning parameters were consistent with those of the pre-

training phase, except for a learning rate of 1e-4 without any warmup or scheduler. Through-

out the fine-tuning process, both the validation loss and perplexity exhibited a consistent

reduction during the training period.

2.7 Evaluation of the generated protein-binding RNAs

We employed a fine-tuned version of GenerRNA to generate protein-binding RNAs de novo.

The decoding parameters used during sequence generation were consistent with those applied

in our pre-tuning experiments. The number of sequences generated was equivalent to those in

our curated test set.

We trained DeepClip over ten epochs, selecting the checkpoint that demonstrated the best

performance on the validation set. We then computed binding affinity scores for three distinct

sequence datasets: 1. Dataset Generated by GenerRNA, 2. Positive (binding) testset, and 3.

Negative (background) testset. These affinity scores ranged from a minimum of 0 up to a

maximum of 1.0, where a higher score indicates a stronger binding affinity. It should be

emphasized that for each specific target protein, the fine-tuning and evaluation of GenerRNA

were conducted independently, ensuring tailored optimization for each protein-binding RNA.

In addition to evaluating the affinity of the generated protein-binding RNA, we also con-

ducted a homology search between the generated sequences and existing sequences using

nhmmer. We designated the curated protein-binding RNA dataset as a database, with all gen-

erated RNA specific to that protein serving as the query. We intentionally set a relatively

relaxed threshold to enhance the sensitivity for alignments (S1 Table in S1 File).

Fig 2. Schematic representation of fine-tuning on protein-binding RNA: The experimental data collected were

consolidated and deduplicated using CD-HIT to prevent sequence overlap and data leakage across different

datasets. The data were divided into three parts: one for training DeepClip, another for the test set, and the last for

fine-tuning the GenerRNA dataset. The trained DeepClip model was subsequently utilized to score sequences

generated by GenerRNA.

https://doi.org/10.1371/journal.pone.0310814.g002
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Furthermore, we attempted to evaluate similar existing RNA generation models for com-

parison. However, it was not feasible to construct a truly meaningful multiple sequence align-

ment and covariance model (CM) based on our curated dataset, which prevented us from

applying RfamGEN to this task. On the other hand, RNAGEN is capable of incorporating

other constraint models to optimize target features and also supports direct training on RNA

sequence datasets without relying on external knowledge. Therefore, we trained RNAGEN on

the same dataset as GenerRNA, subsequently evaluating the generated sequences using the

same methods.

2.8 Ablation study

Typically, large-scale model pre-training enhances a model’s generalization performance and

robustness. It enables us to fine-tune the model with fewer computational resources and

reduced data, facilitating the transfer of acquired knowledge to specific subtasks.

Here, we conducted an ablation study to assess the impact of large-scale pre-training in the

context of RNA sequence generation. We trained a model from scratch on protein-binding

RNAs, intentionally bypassing large-scale pre-training, to serve as a control in the ablation

group. The model architecture employed was consistent with that used in previous experi-

ments. However, due to the relatively small amount of training data compared to the number

of model parameters, rapid overfitting was anticipated. We adjusted the learning hyperpara-

meters and implemented an early stopping strategy to mitigate overfitting. Subsequently, we

utilized the ablation model and the fine-tuned GenerRNA to independently generate 1000

sequences each. These sequences were then subjected to homology searches using nhmmer,

targeting a database containing RNA sequences that bind to the target protein. The parameter

settings for nhmmer were identical to those introduced in the previous section.

3 Results

3.1 Sampling strategies

Various natural language processing tasks exhibit a propensity for distinct sampling strategies.

By measuring the KL divergence in nucleotide distribution between generated and natural

sequences, we identified the most suitable sampling strategies and parameters for generating

natural-like RNAs.

The greedy search method opts for the token of the highest probability, leading to consis-

tent results. This approach is particularly effective for structured QA tasks but often results in

repetitive segments during long text generation [62]. Notably, a similar phenomenon has also

been observed in the generation of RNA sequences. Beam search aims to mitigate this issue by

retaining a set of most probable token sequences, proving to be beneficial in tasks needing a

balance between efficiency and quality like machine translation [63, 64]. Our results indicate

that while RNA sequences generated using beam search tend to exhibit fewer repetitive seg-

ments relative to those generated via greedy search, a significant disparity remains in the distri-

bution of k-mers between the generated sequences and natural RNA sequences.

Random sampling, which selects from the top k tokens based on the next token’s probabil-

ity distribution, has been found to produce outputs with greater randomness and a more natu-

ral feel in long text generation [65]. Our statistical evaluations reveal that RNA sequences

generated using this method exhibit a k-mer distribution that most closely resembles natural

sequences among all assessed sampling strategies (Fig 3). Setting the topk value to around 250

typically yields the smallest KL divergence across various k-mers when compared to natural

sequences (S4 Fig in S1 File).

PLOS ONE GenerRNA

PLOS ONE | https://doi.org/10.1371/journal.pone.0310814 October 1, 2024 8 / 18

https://doi.org/10.1371/journal.pone.0310814


3.2 Minimum free energy of generated RNAs are similar to that of natural

ones

The minimum free energy of an RNA sequence is defined as the energy of its secondary struc-

ture that contributes the least to the free energy, with a lower MFE that signifies a more stable

RNA secondary structure. To eliminate the impact of sequence length on MFE, we ensured a

consistent sequence length distribution across all control groups. Additionally, nucleotide dis-

tribution in the Shuffled Group was aligned with that of the Generated Group, thereby con-

trolling for factors such as GC content that could affect MFE.

Results indicate that the mean MFE of the generated sequences was slightly higher than that

of the natural sequences (-174.7 vs –177.9 kcal/mol), while there was no statistically significant

difference between two groups (two-sided Mann-Whitney U test, p-value = 0.811). Addition-

ally, the MFE of the generated sequences was significantly lower than that of both the shuffled

and random groups, as determined by a one-tailed Mann-Whitney U test (p-value = 4.43e-3

and 6.65e-11). Besides, Fig 4c. depicts that the majority of the generated sequences, regardless

of their length, had a lower MFE than its shuffled sequences. These findings indicate that our

model can generate sequences with relatively stable secondary structures across a broad range

of sequence lengths.

Potential concerns arise given that the Byte Pair Encoding (BPE) tokenizer was trained on a

dataset of one million sequences, possibly leading it to learn common nucleotide arrangements

and merge these nucleotide combinations into individual tokens. This could inadvertently

result in the learning of RNA motifs, which are sequence and secondary structure-related fea-

ture patterns in RNA [66]. To investigate whether this was a contributing factor to the

Fig 3. a. Radar charts depicting the 3-mer nucleotide distribution of sequences generated under different sampling strategies, where each axis of the

radar chart represents a specific 3-mer (e.g., AAA, AAU, etc.). The charts are accompanied by the KL divergence, which compares these distributions to

those of natural sequences. b. Examples of generated sequences. a. b. Greedy search tends to generate RNA with repetitive fragments, as highlighted,

and its 3-mer distribution significantly differs from that of natural sequences (KL divergence = 0.0959). Beam search partially alleviates this issue.

However, the nucleotide distribution in its generated RNA still deviates from that observed in natural sequences (KL divergence = 0.0115). The

nucleotide distribution in sequences under random sampling closely aligns with that of natural sequences (KL divergence = 0.00134).

https://doi.org/10.1371/journal.pone.0310814.g003
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observed lower MFEs, we conducted an experiment where the token sequences output by the

model were shuffled prior to being decoded back into nucleotide sequences. In this approach,

while the nucleotide combinations within the same token stayed adjacent post-decoding, the

overall global context was entirely disrupted. We generated 1,000 sequences in this manner,

designated as the Token-level-shuffled Group. For comparison, we further shuffled these

sequences completely, maintaining the length distribution and base composition unchanged,

and denoted these as the Character-level-shuffled Group. As shown in Fig 4e., there was no

statistically significant difference in the MFE distribution between these two groups (two-

sided Mann-Whitney U test, p-value = 0.811). This outcome dispels our initial concerns and

substantiates that the lower MFEs of the generated sequences are primarily attributed to the

contextual information learned by GenerRNA rather than the BPE tokenizer having learned

inherent nucleotide patterns.

3.3 Generated RNAs are distanced from existing sequences

To assess the novelty of the sequences generated, a homology search was conducted against a

comprehensive database of known sequences. The metric employed for this evaluation was

identity, defined as the proportion of matching positions in the aligned subsequences. Addi-

tionally, an e-value of 0.1 was set as the threshold for determining the reliability of the align-

ments. The e-value threshold of 0.1 is higher than that commonly used in sequence searches,

Fig 4. Statistical analysis of generated sequences. a. This plot displays the distribution of minimum free energy among four groups: Natural Group,

Generated Group, Shuffled Group, and Random Group. There is no significant difference in the MFE distribution between generated and natural

sequences, whereas the MFE of generated sequences is significantly lower than that of shuffled and random sequences. b. MFE distribution among

different collections with sequences length set at 250 nt. c. Proportion of generated sequences that exhibit a lower MFE compared to their respective

shuffled sequences at diverse length intervals. The proportion across all intervals is greater than 0.5, indicating that GenerRNA is able to generate

sequences with lower MFE across a variety of length ranges. d. The BPE tokenizer, which learns common nucleotide patterns in RNA, might also

unintentionally capture motifs that affect the stability of secondary structures. e. When the token sequences generated by the model are shuffled prior to

decoding into nucleotide sequences, the MFE distribution of these sequences showed no statistically significant difference compared to the sequences

shuffled at the character level. This indicates that the doubt raised in d does not hold, or at least does not have a significant impact.

https://doi.org/10.1371/journal.pone.0310814.g004
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indicating more sensitive searching and more hits.

Identity ¼
nidentical

nalign

 !

� 100% ð3Þ

Our findings revealed that 3.9% of the analyzed sequences exhibited 100% identity with

those in the database, with an e-value less than 0.1, signifying a perfect match of all nucleotides

in the aligned subsequences for these cases. Nonetheless, another 69.9% of the generated

sequences aligned with known sequences (The identity distribution of those sequences can be

found in S5 Fig in S1 File), meanwhile the aligned subsequences were not identical, and 26.2%

of the sequences did not align significantly with any known sequences at an e-value threshold

of 0.1. Also, 70.6% of the generated sequences could be assigned to an existing RNA family. As

demonstrated in Fig 5a., in cases where sequences did not show substantial alignments or had

less than 90% identity, the majority still exhibited lower compared to their shuffled ones. This

Fig 5. a. The ratio of sequences exhibiting lower MFE compared to their corresponding shuffled sequences at diverse

identity levels. b. Distribution of affinity scores with the target protein (ELAVL1) at varying identity levels and with a

randomly shuffled group (Results for SRSF1 are shown in S6 Fig in S1 File). a.&b. It is observed that numerous

instances of RNA with stable secondary structures or high affinity scores can be found even among sequences with an

identity of less than 90% or those that are non-hits.

https://doi.org/10.1371/journal.pone.0310814.g005
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suggests that GenerRNA generates novel RNA sequences that maintain a significant level of

secondary structure, even when diverging from known sequences.

3.4 Fine-tuned GenerRNA generates protein-binding RNAs

In natural language processing, fine-tuning a pre-trained model on specific tasks boosts task-

specific performance or generates articles in a particular style while retaining a general under-

standing of language syntax, grammar, and semantics. Such a procedure necessitates relatively

fewer data and computational resources. In our study, we fine-tuned the GenerRNA using

RNA data binding to specific proteins, and estimated the affinity scores between the generated

sequences and target proteins using in silico computational methods.

As depicted in Fig 6, sequences generated by GenerRNA exhibit a pronounced specificity

toward the target protein. For both examined proteins, the affinity scores of the generated

sequences not only significantly exceed those of the negative test set but also marginally sur-

pass the mean scores observed in the positive test set. Specifically, for ELAVL1, the average

affinity score of generated RNAs was 0.872 compared to 0.850 in the positive test set, and for

SRSF1, it was 0.720 versus 0.713. Furthermore, homology searches reveal that only a small frac-

tion of the RNA sequences generated by GenerRNA that bind to ELAVL1 and SRSF1 proteins

formed identical alignments with binding sequences, with 2.20% for ELAVL1 and 1.30% for

SRSF1. Notably, a majority of the sequences, 70.9% for ELAVL1 and 67.2% for SRSF1, were

not aligned with any known binding sequences (The identity distribution of aligned sequences

can be found in S7 Fig in S1 File). As illustrated in Fig 5b., many instances of RNA with high-

affinity scores were observed even among sequences with less than 90% identity or those that

did not form alignments. It is important to mention that the tool adopted for our homology

analyses is highly sensitive, and we have intentionally set more relaxed thresholds to bolster

the detection sensitivity for alignments.

Furthermore, we performed a comparative analysis of RNA sequences generated by RNA-

GEN (S1 Note in S1 File). On the ELAVL1 dataset, RNAGEN produced sequences that, while

Fig 6. a.&b. Illustrate the affinity scores of the sequences generated by GenerRNA, along with the positive and negative test sequences, in relation to

their respective target proteins (ELAVL1, SRSF1). The affinity scores of the sequences produced by GenerRNA were significantly higher than those of

the negative control group, and were comparable to the positive group.

https://doi.org/10.1371/journal.pone.0310814.g006
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more closely resembling the training data, exhibited slightly lower average affinity scores com-

pared to those generated by GenerRNA (0.773 vs 0.872). As for the SRSF1 protein, we were

unable to successfully train a model capable of generating effective binding sequences. How-

ever, it is important to note that RNAGEN’s complete workflow includes an additional indirect

optimization targeting specific proteins. However, we opted not to utilize this approach for

two main reasons: first, RNAGEN depends on existing trained DeepBind models to target pro-

teins, but the repository hosting these models has been inaccessible for an extended period;

second, optimizing RNAGEN with DeepBind and subsequently evaluating the sequences

using similar computational models could undermine the objectivity of our evaluation, as it

would not accurately reflect the generative model’s performance under standard conditions.

Thus, although our comparison does not fully exploit RNAGEN’s capabilities, it demonstrates

that in the absence of external knowledge, GenerRNA’s Transformer-based model more effec-

tively captures the critical features of RNA sequences.

Finally, we conducted an ablation study of the impact exerted by large-scale pre-training on

tasks related to generating RNA sequences in downstream applications. The ablation model,

which is devoid of pre-training, exhibited a slightly higher validation loss compared to the

fine-tuned GenerRNA on the ELAVL1 dataset, recording values of 4.11 and 3.81, respectively.

Similarly, the ablation model trained on SRSF1-binding RNAs achieved its optimal validation

loss at 4.65, which was marginally higher than the 4.35 achieved by the fine-tuned GenerRNA

(S8 and S9 Figs in S1 File). However, despite exhibiting a closer but slightly higher validation

loss compared to GenerRNA, the ablation model could only produce sequences characterized

by a lack of originality. These sequences predominantly mirrored existing data, indicating a

tendency towards mere replicating training data rather than a genuine generation (as demon-

strated in Table 1). We speculate that the pre-training on extensive datasets typically empowers

the model to internalize a wide range of features and patterns inherent to the RNA data, which

offers a robust starting point that enhances the model’s capacity for fine-tuning on specific

tasks. This leads to improved generalization and the ability to generate RNA sequences that

are not only novel but also adhere to the “grammar” of RNA.

4 Discussion

4.1 Implication

Biological sequences harbor a wealth of information, covering evolutionary history, survival

strategies, and even blueprints for future development. AI language models serve as translators

for reading and writing this enigmatic language. The ever-increasing number of RNA

sequences in public databases, coupled with advancements in natural language model architec-

tures, provides a foundation for constructing models proficient in generating biological

sequences.

Our development of GenerRNA marks the first instance of a large-scale. Our model learns

RNA from a linguistic perspective to gain the ability to “speak” this language. Compared to

Table 1. Comparison of sequence novelty in ablation model and fine-tuned GenerRNA: The fine-tuned GenerRNA generates a greater number of novel RNAs

unaligned with known RNAs and fewer sequences identical to known RNAs.

ELAVL1 SRSF1

Identity No Hits Identity No Hits

Ablation Model 90.9 0.11 85.7 1.12

Fine-tuned GenerRNA 2.20 70.9 1.30 67.2

https://doi.org/10.1371/journal.pone.0310814.t001
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existing RNA generation models, our approach offers several advanced features, including the

ability to function without relying on predefined secondary structures or any external prior

knowledge, the flexibility to be fine-tuned for various tasks and datasets, and the capability to

handle longer sequences.

Experimental results show that GenerRNA can generate RNA with secondary structural

stability similar to known sequences, while maintaining distinctiveness from them. The gener-

ated sequences include many novel yet “RNA-grammar-compliant” sequences, which broaden

our sampling of the RNA space. Additionally, to demonstrate that GenerRNA holds promise

as a versatile platform for RNA generation, we validated that a fine-tuned GenerRNA can gen-

erate RNA sequences with high binding affinity to target proteins, while preserving their

uniqueness from existing sequences.

4.2 Limitations and future work

GenerRNA represents the initial advancement of large-scale generative language models in the

realm of RNA. However, several issues remain to be explored to develop more advanced lan-

guage models tailored for RNA sequences. For example, GenerRNA utilizes a BPE tokenizer to

compress sequences, which helps reduce computational costs, but it may also overlook impor-

tant chemical interactions that occur between individual nucleotide pairs. Another instance is

that mRNA was absent in our pre-training dataset, while the generation of the untranslated

region of mRNA is considered a promising direction. Moreover, RNA has yet to experience its

“AlphaFold moment” [67, 68]. High-quality datasets and computational methods in RNA

research are relatively absent compared to protein realm, meaning there is no golden dataset

or a widely accepted benchmark for us to comprehensive compare our models with others,

including qualitative or quantitative assessments of RNA secondary and tertiary structures.

Looking ahead, we anticipate that future developments in RNA generative language models

will also cover numerous directions yet not be confined to them. One promising avenue is to

explore downstream applications of generative RNA language models. These include the gen-

eration of functional RNAs, aiding in the design of RNA vaccines, and the development of

nucleic acid therapeutics. Another direction involves scaling. Similar advances in protein-

related fields have shown that models with larger parameter sizes generate novel protein struc-

tures more effectively and may demonstrate emergent abilities in specific tasks [69, 70]. This

potential scalability could further utilize the ability of the RNA language model, warranting

further investigation. Lastly, controlled generation is also a valuable field in which to develop.

Techniques such as prompt tuning [71] could be instrumental in directing these models to

generate sequences that belong to specific families or possess desired characteristics.

Supporting information

S1 File. Supplementary information. This file includes additional supplementary, tables, and

notes.
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