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ABSTRACT: Curved cellular membranes are both abundant and functionally relevant. While
novel tomography approaches reveal the structural details of curved membranes, their
dynamics pose an experimental challenge. Curvature especially affects the diffusion of lipids
and macromolecules, yet neither experiments nor continuum models distinguish geometric
effects from those caused by curvature-induced changes in membrane properties. Molecular
simulations could excel here, yet despite community interest toward curved membranes, tools
for their analysis are still lacking. Here, we satisfy this demand by introducing CurD, our novel
and openly available implementation of the Vertex-oriented Triangle Propagation algorithm to
the study of lipid diffusion along membranes with mean and/or Gaussian curvature. This
approach, aided by our highly optimized implementation, computes geodetic distances
significantly faster than conventional implementations of path-finding algorithms. Our tool,
applied to coarse-grained simulations, allows for the first time the analysis of curvature effects
on diffusion at size scales relevant to physiological processes such as endocytosis. Our analyses
with different membrane geometries reveal that Gaussian curvature plays a surprisingly small role on lipid motion, whereas mean
curvature; i.e., the packing of lipid headgroups largely dictates their mobility.

State-of-the-art molecular simulations have reached physio-
logically relevant length or time scales,1−6 and the next

challenge is to visit both frontiers in a single simulation.
Notably, many key functions related to these membranes
encapsulating either the entire cell or its organelles involve
significant local membrane curvature.7 The plasma membrane
has specific invaginated signaling platforms,8 the complex and
dynamic topography of the mitochondrial inner membrane is
involved in numerous biological processes,9 and the cells store
energy in lipid droplets that bud into the cytosol from the
membrane surrounding the endoplasmic reticulum.10 In these
processes, curvature is generated by both lipids11 and
proteins.12 Moreover, they can both also sense curvature,
leading to spatial sorting with functional implications.13,14

Adequate modeling15,16 and analysis17−20 of such nonplanar
lipid bilayers requires the development of algorithms that take
into account the geometry of the membrane.6 A particularly
fascinating property impacted by membrane curvature is the
lateral diffusion of membrane components, which has a direct
influence on the interpretation of experimental results obtained
from techniques such as Fluorescence Correlation Spectros-
copy (FCS) and Single Particle Tracking (SPT) that often
assume planar geometries.21−23 Notably, the effects of the
underlying curvature can be falsely interpreted as slowed-down
or even anomalous diffusion,23−25 calling for further
clarification by alternative approaches such as computer
simulations.
Biological membranes undergo thermal fluctuations, affect-

ing their curvature. These fluctuations are generally considered

to decrease the experimentally observed mobility by increasing
the membrane thickness or extending the geometric path.26

Taking the dynamic membrane fluctuations into account
would require the treatment of changing surfaces.27 Instead,
here, we restrain ourselves to work in the limit of static
membrane shape,28 which is an excellent approximation for
endocytic vesicles and structures such as the cristae in the
endoplasmic reticulum (ER) or auditory outer hair cells.29,30

Moreover, even membranes undergoing endocytic budding on
the time scale of minutes seem static for lipids diffusing across
their typical size in a matter of milliseconds. Another aspect of
the classification of membrane surfaces is their curvature. The
curvature of a surface can be completely described by two
scalar fields, the Gaussian curvature K(r) and the mean
curvature H(r). Caveolae and budding vesicles with nonzero
Gaussian curvature have radii of a few dozen to a hundred
nanometers.31 Tubular structures such as those in the
mitochondrion are examples of developable surfaces; that is,
they only have nonvanishing mean curvature.32 The ER is also
of great interest due to its complex membrane topology of
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folded membranes with highly curved regions and due to being
the site of lipid droplet biogenesis.33−35

Several studies employing continuum methods have
investigated the effect of both mean and Gaussian curvature
on biological membranes,28,36−38 resulting in two major
conclusions. First, at the continuum level, the surface mobility
of particles can depend only on Gaussian curvature K and not
on mean curvature H. This is related to the fact that
developable surfaces�surfaces with vanishing K�are iso-
metric to a plane.36 Obviously, this is true only for diffusion
along the surface, whereas any curvature, K or H, will affect the
observed motion of the particle in experiments that assume a
planar membrane. Second, on surface regions with K > 0
(elliptic paraboloids) mobility is thought to decrease, while on
region with K < 0 (hyperbolic paraboloids) it is increased.36,37

In addition to these observations, the ratio of the real and
projected long-time diffusion coefficients are shown to closely
follow a so-called area-scaling law28 under a broad range of
conditions. Details about the area-scaling law can be found in
the Supporting Information (section 3.3).
A general drawback of mesoscale simulations of elastic

membrane models is their inability to account for nonflat free-
energy landscapes due to lipid packing effects, or the inclusion
of proteins or other membrane heterogeneities. These effects
carry the possibility of mean curvature influencing surface
diffusion through heterogeneous membrane structures.38

While such effects are explicitly inherent in molecular
simulations, their analyses present another kind of challenge.
Namely, the majority of the current analysis tools fall short of
dealing with the changing membrane normal in curved
membranes.39 Another issue is that in Gaussian-curved
membranes fairly complex algorithms are required for the
calculation of the shortest distances along the curved surface
(geodesics), yet these geodesics are essential for any diffusion
analyses. Unfortunately, no currently available tools for the
analysis of biomembrane simulations implement such algo-
rithms, and hence, the relationships between membrane

curvature, lipid packing, and lateral diffusion remain unre-
solved.
Here, we fill this fundamental gap by implementing,

adapting, and optimizing an existing algorithm from another
field to analyze lipid motion. Our software, coined CurD,
allows for the first time the calculation of Mean Square
Displacement (MSD) along curved membranes from trajecto-
ries generated using molecular simulations and thus provides
novel insights into the curvature dependencies of lipid
diffusion. We apply the method to coarse-grained Martini
240,41 simulations of phospholipid bilayers forming a vesicular
bud-like membrane protrusion (“Budded”) and an undulating
wave-like surface (“Wave”). For the complete list of simulated
systems, see section 1 of the Supporting Information. Although
slightly overemphasized, the mean and Gaussian curvatures of
our simulated systems are not far from those present in some
biological systems. All relevant details of the simulations can be
found in section 2 of the Supporting Information. The
simulated systems and their curvatures are listed in Figure 1.
The membrane in the “Wave” system has only mean curvature,
H, and hence it is isomorphic to a plane. This is not true for
the lipid bilayer in the “Budded” system, as it also possesses a
Gaussian curvature, K. An important attribute of Gaussian
curvature is its insensitivity to the orientation of the
constituents (lipids or membrane proteins) of the bilayer. A
bowl-shaped (saddle-shaped) region always has positive
(negative) Gaussian curvature, irrespective of whether the
membrane bulges into the cytoplasmic or the extracellular
space (and similarly for membranes other than the plasma
membrane). The curvatures (bottom panels of Figure 1), while
properly capturing the topology of the system, exhibit some
irregularities due to the use of mesh surfaces (see section 3 the
Supporting Information). Even though their relative sign
depends on the chosen leaflet, a strong correlation between the
magnitudes of H and K is clearly apparent.
The actual displacements of particles constrained to move

on a surface are accurately described using geodetic distances
d(ri(t2), ri(t1)),

36,37 where ri(t) denotes the position of the ith

Figure 1. Top: Snapshots of the simulated “Wave” (left) and “Budded” (right) systems. Bottom: Average mean (H, smooth lines) and Gaussian (K,
dashed lines) curvatures as a function of the position along the y axis of the “Wave” and the distance from the center of the bud, respectively. Blue
line: upper leaflet. Red line: lower leaflet. The leaflet normal vector was always taken to point from the acyl chains toward the headgroups. The
arrows indicate regions of a given curvature. For a developable surface such as the “Wave” system, H(y) = (2Ry(y))−1 is the inverse of the diameter
of the osculating cylinder of radius Ry(y) to the surface at the corresponding value of y.
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particle at time t. Geodetic distances can be efficiently
computed on mesh surfaces using specialized methods, even
without explicitly storing or constructing the corresponding
shortest path.42 One such algorithm is the relatively recent
Vertex-oriented Triangle Propagation (VTP) of Qin et al.43

that simultaneously computes all distances from a source
vertex to all other vertices on the mesh. Therefore, as the first
step of our approach, we created a triangular mesh surface
from each of the leaflets of the simulated membranes, using the
center of mass of the lipid as a proxy for the center of diffusion.
For the generation of the mesh, we used our custom code.
Then, we used the position of the closest vertex as an
approximation of the true surface position of the lipid center of
mass. For sufficiently fine meshes, the error introduced by this
discretization is negligible, as shown in section 3 of the
Supporting Information. To make full use of the VTP
algorithm and avoid multiple evaluation of the individual
source vertices, we invented a scheme where we group the
displacements in a particular way. Importantly, for any kind of
MSD evaluation, one needs to know the initial and final
positions of the diffusing particle along with the time taken to
cover the path, also known as lag time, denoted by Δ. We write
triplets of integers (start vertex, end vertex, and lag time)
representing the paths of particles to a binary file and suitably
sort these triplets. By performing the sorting, all paths starting
or ending at a given vertex form a contiguous block,
irrespective of the lag time. Then, a single call of the VTP
algorithm on the source vertex i is sufficient to evaluate one
complete block, as all of the paths that start or end at vertex i
are grouped together, independently of the lag time. Finally, we
assign the calculated geodetic distances to the source and end
vertices of the path, while keeping track of the lag time. Once
properly processed, the mesh contains the discretized spatial
distributions of the geodetic MSD (gMSD) values at various
lag times. Importantly, our approach is flexible enough to
handle surface meshes of arbitrary shapes2,18 subject to the
condition that they do not change in time. It is also modular,
so that the distance calculation algorithm can readily be
swapped with other existing methods. An illustration of the
major steps of our algorithm is presented in Figure 2. Details
on the creation of the surface meshes, the magnitude of the
discretization error, the handling of periodic boundary
conditions, and information about the scaling of the algorithm
can be found in the Supporting Information. Here, we used
meshes of 40,000 points with a spacing of ≈0.4 nm to cover
four periodic images, yet the algorithm scales reasonably well
to meshes at least twice this size, corresponding to membranes
with over 10,000 lipids. Independent calls of the VTP
algorithm for different source vertices allow for a further
increase in studied system size through the implemented trivial
parallelization. For the sake of simplicity, the computed gMSD
curves are interpreted by assuming a free diffusion model at
each point of the surface, Dgeo = gMSD/4Δ. The free diffusion
model neglects the appearance of drift terms due to the nonflat
free energy landscape,44 that is, the nonuniform lipid density.
However, the inclusion of these effects is beyond the scope of
the present work.
To investigate the differences between the various diffusion

measurement methods, we evaluated both the conventional
Mean Square Displacement (by projecting the motion of the
particles onto the macroscopic plane of the membrane) and
the gMSD as presented above. The conventional and gMSD
values as a function of the position along the y axis and the

radial distance in the case of the “Wave” and “Budded”
systems, respectively, are shown at a few selected lag times in
Figure 3 and Figure 4.
In both systems, using the conventional MSD has a major

effect on the apparent motion of the molecules due to ignoring

Figure 2. Illustration of the main steps of calculating the geodetic
Mean Square Displacements. After surface meshing, all particle
displacements, that is, initial and final particle positions (white circles)
separated by a lag time, Δ, are mapped onto the surface, ensuring that
both the starting and end points are on the mesh, as close to the
origin as possible (gray circles). The resulting (vi, vj) pairs of mesh
vertices are written to a binary file along with the corresponding lag
time, Δ. For efficiency, all pairs are ordered so that the lower vertex
index appears first (see for example the numbers highlighted in blue)
and subsequently ordered along the first column, so that all particle
displacements involving a given vi appear as a single contiguous block.
Finally, the VTP algorithm needs to be called on each source vertex vi
only once to evaluate all of the distances in the block. These
evaluations are independent and therefore readily parallelized, as done
in the current implementation. The computed displacements are
assigned to both vertices while also taking account of the associated
lag time.

Figure 3. Two dimensional (“Flat”, discarded z coordinate, shown in
black) and geodetic (“Upper”, for upper leaflet, shown in blue) MSD
values at selected lag times (Δ = 2, 53, 453 ns from bottom upward)
as a function of the position along the y axis in the “Wave” system.
The values in the “Flat” system are averaged across both leaflets. The
“Lower” leaflet is a shifted version of the “Upper” leaflet, and as such,
it is omitted. The images on the right illustrate the distributions of
MSD values at the corresponding lag times.
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their motion along the axis perpendicular to the plane of the
membrane. The magnitude of this effect is directly related to
local orientation of the membrane segments; thus, the
projected displacements in the almost vertical regions of the
“Wave” and “Budded” membranes underestimate the actual
displacements the most. This phenomenon is purely geometric
and can have a significant impact on results obtained from
experiments. The conventional MSD profiles (Figures 3 and 4,
black lines) get progressively smoother with increasing lag time
due to the mixing of molecules originating from regions of
different curvatures. Consequently, on infinite periodically
repeating lattices such as the membranes simulated in the
current study, the influence of curvature on the projected
diffusion coefficients can be approximated in the long lag time
limit as a simple geometrical scaling of the corresponding
planar value,28 as discussed in the Supporting Information. In
the “Budded” system (Figure 4), while at small lag times the
center of the bud (r = 0) exhibits the largest conventional
MSD values, this is completely obscured by the mixing with
molecules originating from regions of lower apparent diffusion
coefficient (the sides of the bud). Such a qualitative change in
the apparent mobility of various regions has direct implications
for the interpretation of experimental results on curved
membranes, as it renders diffusion coefficients strongly time-
dependent (as well as position-dependent).
When the conventional and the gMSD results are compared,

it becomes clear that using the projected values manifests as an
artificial slowdown on surfaces of both mean and Gaussian
curvature, with a magnitude roughly proportional to the
curvature. Hence, the use of geodetic displacements enabled by
our tool is crucial for meaningful results, and when they are
used, all MSD curves shift to higher values and become
smoother as a function of spatial coordinates. In addition,
similarly to the conventional MSD, molecules originating from
regions of different curvature gradually mix as the lag time
increases, producing uniform MSD profiles at large enough lag
times. To better quantify these effects, we computed the
diffusion coefficient distributions using the conventional yet
incorrect MSD calculation method and the accurate geodesic-
based gMSD approach presented here. Furthermore, we also
decomposed the results from the latter based on local
curvature (see the Supporting Information for details). The

diffusion coefficients at the individual mesh points were
calculated at an arbitrarily chosen lag time of 53 ns instead of
separately applying linear regression to the MSD curves. It
must be noted that computing a diffusion coefficient
distribution on surface mesh points is not strictly equivalent
to the per-particle distribution, as less frequently occupied
mesh points should have a lower statistical weight. However,
the almost uniform density of lipid centers of mass (see Figures
S1 and S2) indicates that the distinction is insignificant.
Indeed, the simple division using one lag time per mesh point
MSD curve provided a very similar value to linear fits to MSD
data calculated for lipids, validating our approach. The
distributions of the diffusion coefficients in different membrane
environments, shown in Figure 5, confirm that assuming 2D

movement significantly underestimates the diffusion coefficient
of molecules moving on curved surfaces (compare “Projected”
and “Geodesic”). Additionally, while the flat region of the
“Budded” system corresponds to the “apparently fastest”
domain in the “Projected” distribution (both are around 6 ×
10−7 cm2/s), the flat part of the “Wave” is conclusively faster
than the projection. This is in agreement with the orientation
of the planar membrane regions in the two systems (Figure 1).
Contrary to continuum theories predicting the lack of

influence of mean curvature H on surface diffusion,36−38 the
“Wave” system seems to exhibit clear correlations between the
motion of particles and the mean curvature in regions with H >
0 and H < 0 based on Figure 3 and Figure S7. However, based
on Figure 5, there is essentially no difference between the

Figure 4. Two dimensional (“Flat”, discarded z coordinate, shown in
black) and geodetic (“Upper” and “Lower” leaflet, shown in blue and
red, respectively) MSD values at selected lag times (Δ = 2, 53, 453 ns
from bottom upward) as a function of the distance from the center of
the bud in the “Budded” system. The values in the “Flat” system are
averaged across both leaflets. The images on the right illustrate the
distributions of MSD values at the corresponding lag times.

Figure 5. Spatial distributions of diffusion coefficients as determined
by MSD/4Δ, Δ = 53 ns. Top: “Wave” system. Bottom: “Budded”
system. The Projected and Geodesic coefficients were determined by
the conventional 2D method and by using the geodetic distances,
respectively. The latter values were further subdivided into categories
based on their curvature (see the Supporting Information). H: mean
curvature. K: Gaussian curvature. The black dots show mean values,
and the area covered by the distributions is proportional to the
prevalence of the corresponding curvature in the simulated system.
Significance evaluated using the two-sample t test with unequal
sample sizes. ****, p < 0.0001. “n.s.” stands for “not significant”.
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average diffusion coefficients on the flat and curved parts in the
“Wave” system, thus leading to the apparent conclusion of H
not affecting lateral diffusion. Nevertheless, by further
decomposing the mean curvature into positively and negatively
curved regions, we can conclude that H > 0 indeed enhances,
while H < 0 hinders diffusion. These two effects are opposite
and equal in magnitude, giving rise to zero net change
compared to the flat domains.
The particles in regions of higher mean curvature are

generally less densely packed (see the Supporting Information)
in agreement with the results of Yesylevskyy et al.17 and hence
more mobile. The converse is true for particles in regions of
negative mean curvature, where the headgroups are more
compressed.
Because there is a fundamental asymmetry in the curvature

of its leaflets, the individual leaflets of the “Budded” system
must be treated separately in the analysis. In the case of the
upper leaflet (blue curves in Figure 4), positive Gaussian
curvature, K > 0, seems to correlate with faster diffusion, while
regions with K < 0 exhibit slower diffusion. This behavior is
verified by the analysis in Figure 5 and goes against the
conclusion drawn from continuum theories, where K > 0
results in slower diffusion and K < 0 causes faster diffusion.37

Similarly to the mean curvature, the speedup in the upper layer
can be ascribed to a less dense packing of lipids, at least at the
level of headgroups. This observed discrepancy between
continuum predictions and molecular simulations highlights
the importance of including lipid packing effects, which are
usually not included in the continuum models38 and hence
necessitate the development of tools to analyze particle-based
simulations such as the present one. Even though the
differences are minor in the systems studied here, they can
be more significant with, e.g., a more complex lipid mixture in
which the different lipid species are sorted by curvature.
Importantly, Gaussian curvature is insensitive to the

direction of the membrane normal: bowls have positive and
saddles have negative Gaussian curvature. Therefore, if the
diffusion depended only on the Gaussian curvature, one would
expect similar tendencies in both upper and lower leaflets. This
is clearly not the case, as the lower leaflet seems to follow the
theoretical prediction presented above.37 Consequently, the
theoretically predicted role of Gaussian curvature is not the
only factor determining surface diffusion in molecular systems;
mean curvature also must play an important role. What is
more, in our “Budded” system the absolute magnitude of
Gaussian and mean curvatures positively correlate, while the
mean curvature also encodes the orientation of the lipids.
Thus, the mean curvature seems sufficient to explain the
behavior observed in our simulations. Joined with the
headgroup densities, the arising picture nicely follows that of
the “Wave” system possessing only mean curvature. This line
of reasoning is further supported by Figure S8 containing the
correlations of the variables of interest (H, K, gMSD, and lipid
headgroup densities).
To conclude, we have developed and optimized a novel

algorithm and implemented it to analyze the diffusion
dynamics along curved membrane surfaces. We have applied
our method to two simulated membranes with different
topologies: one with only mean curvature and another with
additional Gaussian curvature. Our approach is the first one
able to resolve the roles of membrane curvature and lipid
packing on lipid diffusion. Our tool is readily applicable to
multi-microsecond trajectories on systems spanning dozens of

nanometers in size, i.e., to biologically relevant scales. This task
is made possible only with the efficient implementation of the
distance calculation in our algorithm. Our analysis method
reveals rich details of lateral diffusion that are otherwise
obscured by the use of conventional projected diffusion
coefficients or continuum approaches. The present results not
only shed light on the importance of lipid packing effects on
the motion of the particles but also indicate the fundamental
way by which the mean curvature H can affect diffusion. Based
on the picture emerging following the analysis, either the mean
curvature or the lateral density of lipid headgroups seems to be
a reliable indicator of changes in lateral diffusion. Of course,
the failure of the continuum models predicting the significance
of Gaussian curvature G on the length scales of our simulated
membranes is not unexpected, yet the starkness of the
qualitative differences provides a sobering demonstration of
the need to account for molecular level details; due to the high
degree of curvature, the size of the lipid themselves becomes
commensurate with the radius of curvature, increasing the
relevance of lipid packing-related effects. The fundamentally
different behavior of the upper and lower leaflets with respect
to the Gaussian curvature has a significant conceptual impact
on continuum theories36,37 and on simulations of elastic
membrane models based on the Helfrich Hamiltonian.2,45,46

State-of-the-art simulation tools such as TriMem47 and
FreeDTS48 are readily available for such simulations. Our
approach presented here will not only help to better connect
the (near) atomistic and mescoscopic simulations but will also
aid in assigning local molecular properties�such as the
diffusion coefficient, to the triangular faces.
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