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Mutualistic relationships with photosynthetic organisms are common in
cnidarians, which form an intracellular symbiosis with dinoflagellates in
the family Symbiodiniaceae. The establishment and maintenance of these
symbionts are associated with the suppression of key host immune factors.
Because of this, there are potential trade-offs between the nutrition that
cnidarian hosts gain from their symbionts and their ability to successfully
defend themselves from pathogens. To investigate these potential trade-
offs, we utilized the facultatively symbiotic polyps of the upside-down
jellyfish Cassiopea xamachana and exposed aposymbiotic and symbiotic
polyps to the pathogen Serratia marcescens. Symbiotic polyps had a lower
probability of survival following S. marcescens exposure. Gene expression
analyses 24 hours following pathogen exposure indicate that symbiotic
animals mounted a more damaging immune response, with higher levels
of inflammation and oxidative stress likely resulting in more severe
disruptions to cellular homeostasis. Underlying this more damaging
immune response may be differences in constitutive and pathogen-induced
expression of immune transcription factors between aposymbiotic and
symbiotic polyps rather than broadscale immune suppression during
symbiosis. Our findings indicate that in facultatively symbiotic polyps,
hosting symbionts limits C. xamachana’s ability to survive pathogen
exposure, indicating a trade-off between symbiosis and immunity that has
potential implications for coral disease research.

1. Introduction
Throughout the metazoan phylogeny, several taxa have evolved photosym-
biosis or mutualistic relationships with photosynthetic organisms [1]. In these
mutualisms, the symbionts provide their hosts with photosynthates, which
often account for the bulk of the hosts’ nutrition, in exchange for nutrients
such as nitrogen and the protection of being housed within the host [2,3].
Photosymbiosis is common throughout the cnidarian phylogeny, with the
vast majority of symbiotic cnidarians forming an intracellular symbiosis with
dinoflagellates in the family Symbiodiniaceae [2,4]. This symbiosis is best
known for its vital role in coral reef ecosystems, as the nutrition provided by
the symbionts allows the cnidarian hosts to live in oligotrophic environments
that would otherwise be uninhabitable for them if they relied upon heterotro-
phy alone [5,6].

The extent to which the cnidarian host is reliant upon their symbionts for
nutrition varies. This symbiosis can be obligate, as seen in tropical reef-build-
ing corals, facultative, as seen in some anemones and soft corals, or both
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depending on the life stage, as seen in the scyphozoan genus Cassiopea [5,7–9]. While all algal symbionts are housed intracellu-
larly in a specialized acidic organelle called the symbiosome, the cell type in which the symbionts reside is variable [2,7,8].
This is likely owing to the complex evolutionary history of the cnidarian–algal symbiosis, which has independently evolved
several times [4,9,10]. Members of the classes Hexacorallia and Octocorallia, which account for the vast majority of symbiotic
cnidarians, house their symbionts in the gastrodermis [2,7]. This is in contrast to the more distantly related scyphozoans whose
symbionts are housed in mobile cells called amoebocytes within the mesoglea [8].

The complete mechanisms of symbiosis establishment and maintenance within cnidarians are still unknown and may vary across
the independently evolved symbioses [7,11]. Recognition of the algal symbionts likely occurs via pattern recognition receptors
(PRRs), though many different classes of these receptors have been implicated [11]. However, there is evidence in soft and hard corals
that lectins opsonize the symbionts prior to phagocytosis [7,12–14]. Following phagocytosis, non-compatible symbionts are expelled
from the symbiont-hosting cells via vomocytosis, while compatible symbionts are retained to establish their intracellular niche
[15]. The establishment of compatible symbionts is strongly associated with the suppression of the cnidarian hosts’ innate immune
system [11,16–18]. Studies indicate that this immune suppression likely occurs via the suppression of the master immune regulator
and transcription factor nuclear-factor kappa B (NFκB) or through the suppression of pathways upstream of NFκB [15,19,20]. This
immune suppression persists in the symbiont-hosting cells in order to retain their symbionts [17–19].

Because symbiotic cnidarians suppress their immune systems while maintaining populations of intracellular symbionts,
there is a potential trade-off between the nutrition these animals get from their symbionts and their ability to respond to
pathogens. With recent increases in the frequency and severity of coral disease outbreaks, it is pertinent to understand how
hosting symbionts influences cnidarians’ ability to defend themselves against pathogens [21–24]. Aposymbiotic Exaiptasia
diaphana have been shown to be less susceptible to Serratia marcescens infection relative to their symbiotic counterparts [25].
This species has also shown marked differences in gene expression between symbiotic and aposymbiotic animals in response
to Vibrio coralliilyticus [26]. However, it has not been established whether immune suppression and the subsequent trade-off
between symbiosis and immunity are shared across independent evolutions of the cnidarian–algal symbiosis, given the
differences in the symbiont housing cell type. Therefore, we tested the infection outcomes and responses of aposymbiotic
and symbiotic Cassiopea xamachana to the known cnidarian pathogen S. marcescens. C. xamachana are benthic jellyfish that are
facultatively symbiotic in their polyp life stage [27]. This facultative symbiosis can be leveraged to disentangle the role of
symbiosis in pathogen-induced stress. We found that symbiotic C. xamachana, similar to E. diaphana, are more susceptible to
bacterial infection relative to their aposymbiotic counterparts. To further investigate the mechanisms of this trade-off between
symbiosis and immunity, we measured their acidic organelle activity and gene expression following pathogen exposure. These
data give more insights into the trade-offs between symbiosis and immunity in cnidarians by identifying core shared responses
and phenomena across the independently evolved symbioses.

2. Methods
(a) Animal husbandry
C. xamachana polyps were obtained from the Dallas Children’s Aquarium and maintained at 27°C in 35 ppt artificial seawater
(ASW). Polyps were fed Artemia nauplii and given water changes twice per week. Aposymbiotic polyps were generated by
maintaining animals in the dark for a minimum of two months. Polyps were considered aposymbiotic when they had fewer
than 10 symbionts visible via a dissecting microscope. To confirm that our aposymbiotic polyps had vastly reduced symbiont
populations relative to symbiotic polyps, we imaged 10 polyps from each symbiotic state under an enhanced green fluorescent
protein (eGFP) filter using a Zeiss imager Z2 microscope. The mean fluorescence of the bell of each polyp was quantified
in ImageJ (v.1.53 t) by subtracting the mean background fluorescence from the mean total fluorescence. A t-test was used to
confirm a significant reduction in symbiont density (figure 1a; p = 2.12 × 10−7).

(b) Survival analysis and quantification of acidic organelle activity
Polyps were fed Artemia nauplii 48 h prior to the start of all experiments. S. marcescens was cultured at 30°C for 24 h in a
general ASW media [28]. The bacteria were pelleted, washed with 0.2 µm filtered ASW and diluted down to a concentration
of 108 colony-forming units (CFU)/ml prior to placing the polyps into the solution. Survival experiments had four treatment
groups—symbiotic controls, aposymbiotic controls, symbiotic exposed and aposymbiotic exposed—and they were run at an
ambient temperature of 27°C. Polyp mortality of each group was measured every 24 h following the start of the experiment.
Mortality was defined as a polyp with the complete loss of bell structure. Differences in survival between treatment groups
were tested using a Kaplan–Meier survival analysis using the R package survival and visualized with the R package survminer
[29–31].

Acidic organelle activity was measured following 24 and 72 h of exposure to the respective treatments by incubating polyps
in the dark in a solution of 5 µl ml–1 lysotracker red (Invitrogen L7528) in 0.2 µm filtered ASW for 30 min. Following the
incubation period, animals were washed three times in 0.2 µm filtered ASW before being mounted onto slides and imaged at
5× under a red fluorescent protein (RFP) filter using a Zeiss imager Z2 microscope. Mean florescence of the bell of each polyp
was quantified using Image J by subtracting the mean background fluorescence from the mean total fluorescence. A two-way
ANOVA (mean fluorescence ~ symbiotic status × treatment) was used to test for differences in acidic organelle activity between
treatment groups at 24 and 72 h.
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(c) RNA extractions and sequencing
Thirty non-clonal polyps per treatment group were exposed to their respective treatment conditions for 24 h. Polyps were then
pooled in groups of five for a total of six replicates per treatment group, placed into 600 µl of 1× DNA/RNA shield (Zymo:
R1100) and flash frozen in liquid nitrogen. Samples were homogenized and RNA was extracted using the Zymo RNA miniprep
plus kit (R1057). Extracted RNA was sent to Novogene Co. Ltd. Following quality control, 18 samples proceeded to polyA tail
capture and cDNA library preparation. The cDNA libraries were then sequenced on an Illumina NovaSeq 6000 using 150 bp
paired-end sequencing.

(d) Data analysis
Raw reads were trimmed using fastp (v.0.23.3) and mapped to the gene models of the C. xamachana draft genome using salmon
(v.1.9.0) [32–34]. The corresponding proteome was annotated using both eggnogmapper (v.2.1.12) and STRING (taxon identifier
STRG0A63JRD) [35,36]. Previously identified C. xamachana PRRs were identified in the proteome using blast [37,38]. To confirm
that replicates hosted C. xamachana’s preferred symbiont genus, Symbiodinium, we measured the percentage of trimmed reads
per sample mapping to the C. xamachana gene models as well as to transcriptomes representing Symbiodinium, Breviolium,
Cladocopium and Durusdinium using BBsplit v.39.01 [34,39–43]. This method of determining dominant symbiont genus has been
previously utilized in reef-building corals and was verified by ITS2 data [24].
tximport was used to format the reads and correct for biases in length and GC content [44]. Outlier analyses were performed

through a principal component analysis (PCA) using PCAtools and a cluster dendrogram analysis from the wgcna R package,
resulting in the exclusion of three samples from downstream analysis (electronic supplementary material, figure S1) [45,46].
Following the exclusion of outliers, a second PCA was performed [46]. The loadings for principal component 1 (PC1) were then
used as a variable for gene ontology (GO) enrichment analysis using gomwu [47].

Differentially expressed genes (DEGs) were called using DESeq2 with the following model: ~symbiotic status + treatment
+ treatment × symbiotic status [48]. The appropriate contrasts in DESeq2 were used to separate DEGs from the following
comparisons: symbiotic controls versus aposymbiotic controls, aposymbiotic exposed versus aposymbiotic controls, symbiotic
exposed versus symbiotic controls and symbiotic exposed versus aposymbiotic exposed. The log fold change for each of these
comparisons was then used for rank-based GO enrichment analysis using gomwu.

Signed gene co-expression networks were detected using weighted gene co-expression network analysis (wgcna) with a
soft power of 9 and a minimum module size of 150 (electronic supplementary material, figure S2) [45]. Modules were then
correlated to treatment and symbiotic status, while each contig was correlated to treatment. Of the modules significantly
correlated to any given trait or combination of traits, the most significantly correlated modules to a given trait or traits were
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Figure 1. (a) Difference in symbiont density measured as mean eGFP florescence between symbiotic and aposymbiotic polyps. Points represent individual polyps’
mean eGFP florescence. *** p‐value < 0.001. (b) Kaplan–Meier survival plot comparing survival probability between symbiotic and aposymbiotic polyps following
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tested for functional enrichments. If no enrichments were found, the second most correlated module for a given trait was then
tested for functional enrichments. Functional enrichments were tested using STRING against the background of all contigs with
a mean expression >10 in the experiment [36]. Immune transcription factors were selected based on their significant differential
expression in multiple gene expression comparisons and membership within modules most significantly correlated to a given
trait or traits. A one-way ANOVA and subsequent Tukey honest significant difference (HSD) tests were run on the regularized
log (rlog) normalized expression of these transcription factors to identify significant differences in expression between the four
treatment groups.

3. Results

(a) Survival analysis and acidic organelle activity
Symbiotic polyps are significantly less likely to survive exposure to S. marcescens at a concentration of 108 CFU ml–1 relative

to their aposymbiotic counterparts (Kaplan–Meier survival analysis, p = 0.0067) (figure 1b). Only 5.9% of symbiotic polyps
survived exposure to the pathogen, as compared to 53.8% of aposymbiotic polyps. No mortality was observed in the symbiotic
control group or the aposymbiotic control group. Acidic organelle activity did not significantly vary between any of the
treatment groups 24 h following S. marcescens exposure (figure 1c). However, it significantly increased 72 h following S.
marcescens exposure (two-way ANOVA, p = 0.038), with no significant effect of symbiosis on this increase (figure 1d).

(b) Gene expression analysis
The Symbiodiniaceae transcriptome with the highest percentage of unambiguous mapped reads was Symbiodinium for

all replicates. This indicates that all samples were dominated by C. xamachana’s preferred symbiont genus. An average of
11.8 million reads per replicate mapped to the C. xamachana gene models for an average mapping rate of 55.14% (electronic
supplementary material S1). Removal of outliers resulted in 15 samples: four symbiotic control replicates, four symbiotic
pathogen-exposed replicates, four aposymbiotic control replicates and three aposymbiotic pathogen-exposed replicates, for
downstream analysis. After filtering genes with low expression in the dataset, the count data consisted of 16 989 expressed
genes.

A PCA showed distinct grouping of the replicates by the treatment group across the first two principal components (PCs)
(figure 2a). Notably, the symbiotic control replicates grouped most closely with aposymbiotic pathogen-exposed replicates
across the first PC (PC1) (figure 2a). Thirty-two biological process GO terms were significantly (padj < 0.01) positively associated
with PC1, including processes related to ion homeostasis, reactive oxygen species (ROS) metabolism and innate immunity
(electronic supplementary material, S2, figure 2b).

Four comparisons were made during differential gene expression analysis, falling into two categories: symbiotic state
comparisons and pathogen response comparisons (figure 3a). Symbiotic state comparisons test for differences between the
symbiotic states within the same treatment groups, comparing (i) aposymbiotic controls and symbiotic controls and (ii)
aposymbiotic pathogen-exposed and symbiotic pathogen-exposed. Pathogen response comparisons test the response of each
symbiotic state to S. marcescens, comparing (iii) aposymbiotic controls and aposymbiotic pathogen-exposed, and (iv) symbiotic
controls and symbiotic pathogen-exposed. There were 1157 DEGs between aposymbiotic controls and symbiotic controls, 643
of which were annotated (electronic supplementary material, S3). Of these 1157 genes, 347 were differentially expressed in both
symbiotic state comparisons, regardless of exposure to S. marcescens (figure 3b).

Significant downregulation of NFκB occurred in symbiotic controls relative to aposymbiotic controls (figure 4). Several other
genes associated with immune stress responses were significantly upregulated in symbiotic controls relative to their aposymbi-
otic counterparts, including nitric oxide synthase 1 (NOS1), interferon regulatory factor 1 (IRF1), interferon regulatory factor 4
paralog 1 (IRF4 paralog 1) and superoxide dismutase 1 (SOD1) (figure 4). Ranked GO enrichment analysis found 158 GO terms
significantly upregulated and downregulated in the symbiotic controls relative to aposymbiotic controls (figure 5a, electronic
supplementary material, S4). Several of these significantly upregulated enrichments in symbiotic controls are associated with
ion transport and the nervous system (figure 5a). Additionally, lipid catabolism was downregulated in symbiotic controls
relative to aposymbiotic controls (figure 5a).

When the aposymbiotic and symbiotic pathogen-exposed treatments were compared, there were 799 differentially expressed
genes, 418 of which were annotated (electronic supplementary material, S3). IRF1, IRF4 C. xamachana paralog 1 (IRF4 paralog 1),
nuclear respiratory factor 1 (NRF1) and SOD1 were all upregulated in symbiotic pathogen-exposed polyps relative to aposymbi-
otic polyps (figure 4). Rank-based GO enrichment analysis found evidence for a stronger immune response in symbiotic polyps
relative to aposymbiotic polyps following pathogen challenge with the upregulation of GO terms indicative of immune effector
secretion and oxidative stress (figure 5a, electronic supplementary material, S4). A total of 338 GO terms were significantly
differentially expressed in this comparison (electronic supplementary material, S4).

The aposymbiotic polyps exposed to S. marcescens differentially expressed 746 genes relative to aposymbiotic controls, 442 of
which were annotated (electronic supplementary material, S3). Many of these genes, such as IRF1, IRF4 paralog 1, SOD1 and
macrophage expressed 1 (MPEG1), have functions in innate immunity (figure 4). Rank-based GO enrichment analysis found
414 differentially expressed GO terms between pathogen-exposed aposymbiotic polyps relative to aposymbiotic control polyps,

4

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20240428



including the upregulation of terms related to phagocytosis, inflammatory immune effectors and ROS biosynthesis (figure 5b,
electronic supplementary material, S4).

Symbiotic polyps differentially expressed 1270 genes following pathogen exposure relative to symbiotic controls, 773 of
which were annotated (electronic supplementary material, S3). There were 348 overlapping genes between the aposymbiotic
pathogen response comparison and the symbiotic pathogen response comparison, including the upregulation of IRF1, SOD1
and MPEG1 (figure 4). Additionally, symbiotic polyps upregulated NFκB, catalase 2 (CAT2) and NRF1 in response to S.
marcescens (figure 4). This comparison had 515 GO enrichments. Symbiotic polyps upregulated many of the same immune
stress response terms as aposymbiotic polyps in response to S. marcescens (figure 5b, electronic supplementary material, S4).
However, the pathogen response of symbiotic polyps also involved the upregulation of terms indicative of oxidative stress and
endoplasmic reticulum (ER) stress (figure 5b).

Signed weighted gene co-expression network construction resulted in 23 modules of co-expressed genes. Of these 23
modules, seven had significant correlations to treatment, four had significant correlations to symbiotic status and two had
significant correlations for treatment and symbiotic status (electronic supplementary material, figure S3). The module most
negatively correlated to symbiosis (Green module, r = −0.9, p = 5 × 10−6) had STRING enrichments for terms related to assembly
of collagen fibrils and peptidase activity (figure 6, electronic supplementary material, S5). The module with the highest positive
correlation to symbiosis (Brown module, r = 0.92, p = 8 × 10−7) did not have any significant STRING enrichments; however, the
module with the next highest positive correlation to symbiosis (Grey60 module, r = 0.59, p = 0.02) was enriched for several terms
related to ion transport (figure 6, electronic supplementary material, S5). The module most negatively correlated to S. marcescens
exposure (Magenta module, r = −0.81, p = 3 × 10−4) was enriched for terms related to nitrogen metabolism. In contrast, the module
most positively correlated to S. marcescens exposure (Black module, r = 0.93, p = 7 × 10−7) contained the transcription factor NFκB
(module membership (mm) = 0.74, p = 0.002) and was enriched for the innate immune system and the endomembrane system
(figures 6 and 7a). The red module was negatively correlated to both symbiosis (r = −0.81, p = 3 × 10−4) and S. marcescens exposure
(r = −0.63, p = 0.01). This module contains IRF4 paralog 2 (mm = 0.85, p = 6.01 × 10−5) and was enriched for the cell cycle and
cytoskeleton organization (figures 6 and 7b). Finally, the turquoise module was positively correlated to both symbiosis (r = 0.67,
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p = 0.007) and pathogen exposure (r = 0.76, p = 0.001). This module contained two immune transcription factors, IRF1 (mm =
0.94, p = 2.93 × 10−7) and IRF4 paralog 1 (mm = 0.87, p = 2.22 × 10−5), and was enriched for the innate immune system and oxidant
production (figures 6 and 7c,d, electronic supplementary material, S5).

4. Discussion
The lower survival of symbiotic polyps following S. marcescens exposure indicates the presence of a trade-off between the
nutritional benefit of hosting symbionts and immunocompetence in facultatively symbiotic C. xamachana. We found that hosting
Symbiodiniaceae alters both constitutive and pathogen-induced C. xamachana gene expression. Symbiosis in C. xamachana
altered the constitutive expression of metabolism, ion transport and innate immunity. When exposed to S. marcescens, symbi-
otic C. xamachana upregulated a stronger ROS and immune effector response, likely disrupting protein homeostasis in the
endomembrane system and leading to low survival rates. We hypothesize that differences in constitutive and pathogen-induced
expression of immune transcription factors drive symbiotic polyps’ greater susceptibility to bacterial pathogens.

In comparing the two control groups of our study, we found several notable differences in the constitutive expression of
symbiotic and aposymbiotic C. xamachana. Several genes involved in transport and metabolism were differentially expressed
in symbiotic animals relative to their aposymbiotic counterparts. Consistent with findings in the symbiotic sea anemone E.
diaphana, our symbiotic controls downregulated lipid catabolism relative to their aposymbiotic counterparts. Previous studies
attribute these expression changes in lipid metabolism to be indicative of increased energy stores and thus characteristic of
stable symbiosis [49,50]. Interestingly, we found no evidence of constitutive shifts in symbiotic polyps’ expression of nitrogen
metabolism in any of our analyses. This is notable because shifts in nitrogen metabolism, specifically ammonium recycling via
the glutamine synthetase/glutamate synthase system, are a well-established occurrence in symbiotic anthozoans and thought
to be a mechanism of symbiont population control [9,12,17,51–54]. Isotopic studies have found that while C. xamachana’s
symbionts have limited access to nitrate in hospite, they retain access to ammonium derived from heterotrophic feeding [55,56].
Our results support this finding, as GLUL, a gene responsible for the removal of ammonium by converting it to glutamine, is
constitutively downregulated in symbiotic polyps. This same gene is upregulated in symbiotic E. diaphana and overexpressed in
the symbiont-hosting cells of Stylophora pistillata and Xenia sp. [9,12,51,57]. The lack of transcriptomic signatures of constitutive
changes to nitrogen metabolism in symbiotic C. xamachana polyps could be owing to their different symbiont-hosting cell type
and their potential use of their bacterial microbiome to limit symbiont access to dissolved inorganic nitrogen [55,56].

We found extensive evidence for the constitutive differential regulation of ion transport while in a symbiotic state, with
both the ranked GO enrichment analysis between control groups and the WGCNA module positively correlated to symbiosis
having enrichments involving the nervous system and transmembrane ion transport. Similar expression patterns have been
observed in E. diaphana, with many of the upregulated genes associated with ion transport (KCNA2, GAABRR2, CNTNAP4
in our study) functioning to decrease membrane excitability [51,58–60]. Several intracellular protozoan parasites cause similar

N
eg

at
iv

el
y
 C

o
rr

el
at

ed
P

o
si

ti
v
el

y
 C

o
rr

el
at

ed
Pathogen Exposure Symbiosis Pathogen Exposure and Symbiosis

trans-Golgi network Voltage-gated ion channel activity Vesicle
strength

strengthSLC-mediated transmembrane transport Mixed, incl. Cilium movement, and Microtubule ROS and RNS production in phagocytes
strength 0.8

0.9
Lysosome 0.5 lon channel activity RHO GTPases Activate WASPS and WAVES 0.60.8

0.4 0.7Lysosomal membrane
Inorganic molecular entity transmembrane

transporter activity
Lysosome 0.4

0.60.3 0.2Innate Immune System Homophilic cell adhesion via PM adhesion molecules 0.5
0.2

0.4

Innate Immune System

–log(FDR)
Immune System Gated channel activity Exocyst 1.4

–log(FDR) 1.6
Endosome –log(FDR) Channel activity Endosomeâ 1.82.0

Endomembrane system

Cytoplasmic vesicle

Bounding membrane of organelle

2 2.02.5Cation channel activity Distal axon
4

6

2.23.0

Calcium ion binding Cytoplasmic vesicle 2.4

2.6

black

Calcium

grey60

Arp2/3 protein complex

turquoise

SRP-dependent cotranslationalprotien targeting

to membrane SushiOrganelle organization

Ribosome biogenesis
strength

Ribosome

strength
Serine-type peptidase activity

Mitotic nuclear division

0.6DNA Replication
1.00 Serine-type endopeptidase activity

0.5
Peptide metabolic process 0.75

0.4
DNA replication

Peptidase activity

0.3Gene expression 0.50DNA Repair

Metalloprotease
Eukaryotic Translation InitiationDNA Damage Bypass

–log(FDR)
–log(FDR) Metalloendopeptidase activity

Cellular nitrogen compound metabolic process
1.5

Cytoskeleton organization
10

2.0
Endopeptidase activityCellular nitrogen compound biosynthetic process 20

2.5
Cellular response to DNA damage stimulus

30
Disulfide bond 3.0Cellular macromolecule biosynthetic process

Amide biosynthetic process

Cell division

Assembly of collagen fibrils/other multimeric

structures

Cell cycle

greenmagenta

strength

0.6

0.5

0.4

0.3

0.2

–log(FDR)

2

4

6

8

red

Figure 6. Curated set of STRING enrichments of WGCNA modules significantly correlated to symbiosis, pathogen exposure, or symbiosis and pathogen exposure. Colour
of each point corresponds to the strength of the enrichment term, and the size of each point indicates the –log false discovery rate of the enrichment term.

7

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20240428



changes to their host’s ion transport, often to prevent the host cell from producing nitric oxide [61–63]. Symbiodiniaceae may
employ similar strategies while residing intracellularly, as high levels of host-derived nitric oxide have been shown to lead
to symbiosis breakdown [64,65]. However, nitric oxide synthase is upregulated in symbiotic controls relative to aposymbiotic
controls, so the changes in expression of these ion transporters may serve a different function in the maintenance of symbionts.

Our data do not suggest that symbiotic animals have large-scale downregulation of immunity, as there were no GO terms
related to immunity that were significantly differentially expressed between the two control groups. This, along with the
PCA showing symbiotic controls grouping with the aposymbiotic pathogen-exposed replicates across PC1, which is enriched
for genes with innate immune response GO annotations, indicates that broadscale immune suppression owing to hosting
symbionts is unlikely to be driving differences in survival rates between symbiotic states as has been hypothesized in other
symbiotic cnidarians [11,16]. However, we did find several immune transcription factors with significantly different constitutive
expression between the symbiotic states. Two of these transcription factors, NFκB and IRF4 paralog 2, have significantly lower
expression in symbiotic controls relative to aposymbiotic controls. This NFκB expression pattern has been found in symbiotic
anemones [19,20]. Additionally, there is evidence that stony corals negatively regulate NFκB pathways while hosting symbionts,
indicating that NFκB downregulation is a common characteristic of the cnidarian–algal symbiosis across independent evolu-
tions of the trait [17,18].

The other two immune transcription factors differentially regulated between the control groups are IRF1 and IRF4 paralog
1, which have significantly higher expression in symbiotic controls relative to aposymbiotic controls. Interferon regulatory
factors have yet to be implicated in cnidarian symbiosis, but similar to NFκB these immune transcription factors are capable
of mounting pro-inflammatory immune responses [66,67]. IRF expression can be both constitutive, providing basal levels of
defence against microbes, and inducible, following danger-associated molecular pattern recognition [67–69]. Our data indicate
that S. marcescens exposure can induce IRF1 and IRF4 paralog 1 expression, but not IRF4 paralog 2. As such, aposymbiotic
animals are only constitutively upregulating a single immune transcription factor with S. marcescens-induced expression
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(NFκB), whereas symbiotic animals are constitutively upregulating two (IRF1 and IRF4 paralog 1). The differential regulation of
these transcription factors may underlie why symbiotic polyps are less likely to survive S. marcescens exposure.

The pathogen response of symbiotic C. xamachana shared some similarities with aposymbiotic C. xamachana. Regardless of
symbiotic state, C. xamachana polyps upregulated GO terms indicative of the secretion of immune effector proteins. One such
immune effector was MPEG1, a bactericidal protein [70,71]. However, many of these same GO terms are significantly upre-
gulated in symbiotic pathogen-exposed polyps relative to aposymbiotic pathogen-exposed polyps, indicating that symbiotic
animals are likely mounting a stronger immune effector response than their aposymbiotic counterparts. This could be owing
to the utilization of different pro-inflammatory immune pathways in the aposymbiotic and symbiotic pathogen responses.
Both aposymbiotic and symbiotic polyps are upregulating ‘response to interferon gamma’ when exposed to S. marcescens. As
cnidarians lack interferons, this GO enrichment likely suggests the upregulation of IRFs and other genes under transcriptional
control of IRFs [66,72]. This is supported by both symbiotic states upregulating IRF1 in response to the pathogen. However,
as symbiotic polyps have higher baseline expression of IRF1 and IRF4 paralog 1, symbiotic pathogen-exposed polyps have
significantly higher expression of these transcription factors relative to aposymbiotic pathogen-exposed polyps. This is further
supported by both these transcription factors belonging to the turquoise module, which is significantly positively correlated to
symbiosis and S. marcescens exposure. Additionally, symbiotic polyps are upregulating the GO term ‘regulation of IκBK/NFκB
signaling’ in response to S. marcescens as well as NFκB and one of its activators, NFκB essential modulator (NEMO). However,
symbiotic polyps are also upregulating IκBKB, the inhibitor of NFκB, in response to S. marcescens. As NFκB is often a compo-
nent of the initial immune signalling following the introduction of a stressor, this could suggest that at 24 h following S.
marcescens exposure, symbiotic polyps are transitioning to different immune stress response pathways [73,74].

Stronger pro-inflammatory immune signalling in symbiotic polyps relative to aposymbiotic polyps could explain why
gene expression signatures of oxidative stress are higher in pathogen-exposed symbiotic polyps relative to their aposymbiotic
counterparts [75]. While the pathogen response of both symbiotic states included the upregulation of the GO term ‘regulation
of ROS biosynthetic process’, only the symbiotic pathogen response included the upregulation of GO terms associated with
responding to ROS. Additionally, the turquoise module, which is positively correlated to both pathogen exposure and symbio-
sis, is enriched for oxidant production. Higher levels of oxidants in pathogen-exposed symbiotic polyps are further supported
by their significantly higher expression of the antioxidant SOD1 and the oxidative stress transcription factor NRF1 relative to
pathogen-exposed aposymbiotic polyps [76,77]. Pro-inflammatory factors can induce ROS production directly and indirectly
[78,79]. Higher demands for immune effector secretion can result in the upregulation of oxidative phosphorylation during
immune responses [80]. The upregulation of oxidative phosphorylation in symbiotic pathogen-exposed polyps relative to
their aposymbiotic counterparts may be another contributor to the higher transcriptional signatures of oxidative stress in the
symbiotic pathogen response. Together, the stronger upregulation of immune effector responses, oxidative stress responses and
oxidative phosphorylation in symbiotic polyps indicates that their immune response to S. marcescens likely results in more
severe disruptions to cellular homeostasis relative to aposymbiotic polyps [78–80].

Our gene expression data indicate that symbiotic polyps experience disruptions to endomembrane system homeostasis
and the protein folding environment within the cell. Oxidative stress, high secretory demand and immune effector proteins
are all capable of disrupting the protein folding environment within the ER and are more highly upregulated in symbiotic
pathogen-exposed replicates relative to aposymbiotic pathogen-exposed replicates [81–83]. Symbiotic polyps upregulated both
the endoplasmic-reticulum-associated protein degradation (ERAD) pathway and an unfolded protein response (UPR). These
pathways are both indicative of disruptions to protein homeostasis and ER stress [84]. The ERAD pathway is responsible for
removing misfolded or unfolded proteins from the ER. If these misfolded and/or unfolded proteins accumulate, they will
trigger the UPR [84,85]. In response to the accumulation of misfolded and/or unfolded proteins, the UPR reduces protein
synthesis and upregulates chaperonins to attempt to refold or repair the misfolded proteins [81,84]. Any proteins unable to be
folded are degraded via either autophagy or the ERAD pathway [81,82,84]. If the cell is unable to correctly repair or refold its
proteins or the misfolded proteins accumulate and are not able to be degraded, the UPR transitions into a cell death pathway
[82,86]. Given that symbiotic polyps have considerably more disruptions to protein homeostasis at 24 h following S. marcescens
exposure, they likely are transitioning to cell death pathways sooner than aposymbiotic polyps, resulting in lower survival.

Differential expression of genes associated with autophagy is a common component of cnidarian immune responses,
particularly at relatively early timepoints following pathogen exposure or in disease-resistant coral species that are not as
severely impacted by a given pathogen [87,88]. In the context of innate immunity, autophagy is cytoprotective and anti-inflam-
matory, counteracting the damage that secreted inflammatory factors can cause to mitochondria and the endomembrane system
[89]. Both symbiotic and aposymbiotic polyps significantly changed their regulation of autophagy and had increased acidic
organelle activity following exposure to S. marcescens. However, given the signatures of higher oxidative stress and ER stress in
symbiotic polyps, it is likely that upregulation of autophagy is insufficient to counteract the damage caused by their immune
response, resulting in the negative regulation of autophagy and transition to cell death pathways [86,89].

5. Conclusions
Together, our data demonstrate that there is a trade-off between photosymbiosis and immunocompetence in the facultatively
symbiotic polyps of C. xamachana. Underlying this trade-off may be the differential regulation of immune transcription factors
both constitutively and in response to S. marcescens exposure rather than broadscale immune suppression in symbiotic animals.
Symbiotic C. xamachana mount a stronger and more damaging immune response following pathogen exposure, resulting
in higher levels of oxidative stress, greater disruptions to cellular homeostasis and ultimately decreased survival rates. The
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trade-off between symbiosis and immunity seems to be shared across independent evolutions of facultative cnidarian–algal
symbiosis, as E. diaphana are also more susceptible to S. marcescens in a symbiotic state [25]. There likely are more complexities
to the nutritional aspect of this trade-off, as starvation has been shown to influence cnidarian immune gene expression
[25,90]. With the expanding threat of disease to coral reef ecosystems, this trade-off could be a major factor in coral disease
susceptibility and dysbiosis via bleaching or nutrient pollution. The cost of hosting symbionts should be investigated further
and potentially incorporated into the paradigms of coral disease research [21,91].
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