
Animal Models of Generalized Dystonia

Robert S. Raike,* H. A. Jinnah,* and Ellen J. Hess*†

*Departments of Neurology and †Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287

Summary: Dystonia is a prevalent neurological disorder char-
acterized by abnormal co-contractions of antagonistic muscle
groups that produce twisting movements and abnormal pos-
tures. The disorder may be inherited, arise sporadically, or
result from brain insult. Dystonia is a heterogeneous disorder
because patients may exhibit focal or generalized symptoms
associated with abnormalities in many brain regions including
basal ganglia and cerebellum. Elucidating the pathogenic
mechanisms underlying dystonia has therefore been challeng-
ing. Animal models of dystonia exhibit similar heterogeneity
and are useful for understanding pathogenesis. The neurochem-
ical and neurophysiological abnormalities in rodents with id-

iopathic generalized dystonia suggest that dysfunctional output
from basal ganglia, cerebellum, or from multiple systems is the
cause of motor dysfunction. Findings from drug- or toxin-
induced dystonia in rodents and nonhuman primates mirror the
genetic models. The parallels between dystonia in humans and
animals suggest that the models will continue to prove useful in
determining pathogenesis. Furthermore, detailed characteriza-
tion of the existing models of dystonia and the development of
new models hold promise for the identification of novel ther-
apeutics. Key Words: Basal ganglia, striatum, cerebellum, in-
ferior olive, mice, rat.

Dystonia is the third most common movement disor-
der behind essential tremor and Parkinson disease. Dys-
tonia is characterized by involuntary twisting movements
and abnormal postures, which are caused by simulta-
neous contractions of opposing muscle groups. Dystonia
can be classified in terms of etiology; it may be inherited
or arise sporadically (primary cases), or follow brain
trauma or insult (secondary cases). However, it is esti-
mated that approximately two thirds of all dystonia cases
are not associated with identifiable pathology and are
therefore deemed idiopathic. Dystonia may also be clas-
sified by the distribution of affected muscle groups. Fo-
cal or segmental forms of the disorder involve a small
number of muscles, such as those of the hand in writer’s
cramp or of the neck in torticollis. In contrast, general-
ized dystonia, the focus of this review, is characterized
by involvement of muscles throughout the body as ob-
served in DYT1 (early onset torsion) dystonia. The eti-
ological and phenotypic diversity of disorders classified
as dystonia underscores its heterogeneity.

Movement disorders are often attributed to dysfunc-
tion of the basal ganglia (e.g., chorea and bradykinesia)

or the cerebellum (e.g., ataxia and tremor). In particular,
dystonia has traditionally been considered to be a disor-
der of the basal ganglia because patients with secondary
dystonia commonly exhibit lesions within basal ganglia
structures, including caudate, putamen, globus pallidus,
and thalamus1; functional imaging demonstrates that
these types of lesions are associated with metabolic ab-
normalities within basal ganglia and premotor cortex.
Further, DOPA-responsive dystonia almost certainly re-
sults from basal ganglia dysfunction.2–4 However, sub-
stantial evidence also implicates cerebellar dysfunction
in cases of both primary and secondary dystonia. Several
studies reveal hypermetabolic signals within premotor
cortex and cerebellum associated with primary dystonias,
such as hemidystonia, exercise-induced paroxysmal dys-
tonia, and DYT1 dystonia.4–7 Moreover, patients with
secondary cervical dystonia most commonly exhibit le-
sions within cerebellum or its afferents.8 Thus, these
clinicopathologic correlations suggest dysfunction of the
basal ganglia, cerebellum, or both regions as potential
sources of dystonia in humans.

Animal models are essential to investigate the neuro-
biological basis of disease pathogenesis because idio-
pathic dystonias are functional disorders. Several models
of generalized dystonia exist, including those exhibiting
dysfunction of the basal ganglia, cerebellum, or both
systems. Dystonia in animals may result from inherited
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mutations (primary) or be experimentally introduced
(secondary). Hence, animal models of dystonia exhibit a
heterogeneity that parallels the human disorder. Given
the inherent limits associated with conducting experi-
ments in patients, spontaneous and derived animal mod-
els are valuable tools for discerning the neuroanatomical,
biochemical, and physiological basis of dystonia, and for
testing potential therapeutics.

ANIMAL MODELS IMPLICATING BASAL
GANGLIA DYSFUNCTION

The dtsz hamster
Motor dysfunction. The dtsz motor disorder was iden-

tified within an inbred line of Syrian hamsters and orig-
inally described as a recessively inherited epileptic dis-
order.9 However, further analysis of the dtsz hamster
phenotype reveals that it bears a close resemblance to
generalized paroxysmal dystonia in humans; stress-in-
duced dtsz hamster attacks of dystonia can last for hours
and vary in severity, progressing from the head to the
extremities.10,11 Generally, attacks begin with ear flat-
tening and facial contortions, followed by stiffening of
the hind limbs, gait abnormalities and frequent falling,
and culminating with limb hyperextension and severe
truncal torsion and flexion.10

Attacks in dtsz hamsters are age dependent because
they are observable after the second week, peak in se-
verity between the fourth and sixth week, and disappear
sometime after the eighth week of life.12 Although dtsz

hamsters lose the susceptibility to attack during pubes-
cence, male or female gonadectomy does not preclude
remission.13 In fact, the dtsz phenotype is not entirely
transient because late-term pregnant and nursing female
dtsz hamsters may exhibit the dystonic attacks.9,13 Thus,
dystonia in adult dtsz hamsters is likely modified but not
determined by hormonal fluctuations.

Neuropathology. Upon gross histological examina-
tion, the dtsz hamster brain appears relatively normal.14

However, a reduction in parvalbumin immunoreactivity
is observed throughout the dtsz hamster striatum, sug-
gesting a marked deficit in the number of GABAergic
interneurons and implicating the basal ganglia as the
source of dystonic attacks.15

Pharmacological findings further support the notion of
aberrant basal ganglia GABAergic neurotransmission as
a factor in the dtsz hamster disease pathogenesis. Sys-
temic administration or intrastriatal injection of agents
that increase GABAergic transmission either ameliorate
or block dtsz attacks.10,16,17 In contrast, systemic or local
application of GABA receptor antagonists worsens the
dystonia.10,16,17 The improvement observed with drugs
that promote GABA release likely occurs by offsetting
the significant deficit of GABAergic striatal interneu-
rons, which predicts disinhibition of striatal efferents.15

These defects in GABAergic regulation within the stri-
atum suggest the dtsz disorder may be pathogenically related
to some forms of idiopathic paroxysmal dyskinesia in hu-
mans because dystonia in mutant hamsters and patients
responds to similar pharmacological treatments, such as
systemic administration of benzodiazepines.10,17,18

Mutant hamsters also exhibit abnormal striatal dopa-
mine regulation. Although interictal levels are normal,
attacks of dystonia are associated with transient but sig-
nificant increases in striatal dopamine overflow.19 Fur-
thermore, intrastriatal coadministration of D1 and D2
dopamine receptor antagonists prevents dtsz attacks, sug-
gesting that increased dopamine overflow is necessary
for the expression of dystonic symptoms.20

Pathophysiology. The dtsz hamster basal ganglia ex-
hibit several neurophysiological abnormalities. Baseline
EEG recordings from asymptomatic animals reveal
highly irregular patterns of electrical activity within cau-
date, putamen, and globus pallidus.21 Furthermore, field
and single unit recordings of evoked and spontaneous
activity within the dtsz striatum suggest these irregulari-
ties may stem from significant increases in corticostriatal
and striatopallidal excitability.22,23 These abnormalities
appear to have profound effects within the entopeduncu-
lar nucleus, which is the equivalent of the internal seg-
ment of the globus pallidus in humans. In the absence of
dystonic attacks, recordings of single unit activity dem-
onstrate significant reductions in spontaneous discharge
rate and irregular burst morphology within the dtsz entope-
duncular nucleus, suggesting physiological abnormalities
observed within striatum result in increased entopeduncular
inhibition.15,24 Interestingly, entopeduncular physiological
abnormalities are age dependent and are detectable only in
attack-prone animals.12,24 Thus, the aberrant neurophysio-
logical activity detected within the dtsz basal ganglia point
to dysfunctional output from the entopeduncolothalamic
pathway in the generation of dystonia.

Dystonia induced by 3-nitropropionic acid
Clinical studies. Several outbreaks of noninflammatory

encephalopathy have occurred in humans as a result of
ingesting moldy sugarcane. The contaminant, arthrinium
fungus, produces 3-nitropropionic acid (3-NPA), a potent
neurotoxin that interferes with mitochondrial respiration.25

Although acute 3-NPA poisoning is characterized by severe
gastrointestinal distress, CNS symptoms such as convul-
sions or coma commonly follow.26 Shortly after conscious-
ness is regained, up to 25% of adolescent patients develop
segmental or generalized dystonia, which may be chronic or
paroxysmal.26,27

Although the distribution and character of dystonia
varies between patients, cranial imaging reveals a com-
mon neuropathology: acquired lesions of the basal gan-
glia. In particular, computed tomography scan and mag-
netic resonance imaging (MRI) demonstrate that cases of
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secondary dystonia after 3-NPA ingestion are associated
with consistent bilateral hypodensity within striatum and
globus pallidus.26,27 Subsequently, 3-NPA was adminis-
tered to nonhuman species to establish an inducible
model for dystonia.

Experimental studies. Peripheral administration of
3-NPA to rodents results in nearly selective lesions of
striatum,25,28,29 and is associated with a motor disorder
that closely resembles 3-NPA toxicity in humans. In
mouse and rat, delayed onset dystonia is characterized by
truncal and limb dystonia, the severity of which corre-
lates with the size of striatal lesions.29,30 Furthermore, as
in humans, the response of rats to 3-NPA toxicity is age
dependent, whereby younger animals are more suscepti-
ble to acquiring the dystonia.25

Nonhuman primates also exhibit late-onset dystonia
after administration of 3-NPA. Dystonic movements be-
gin several weeks after cessation of 3-NPA treatment and
generally progress until symptoms become general-
ized.31,32 Here again, MRI indicates the dystonia is as-
sociated with lesions of caudate and putamen after either
subacute or chronic doses.31–33 Moreover, as noted in
humans and rodents, the severity of dystonia observed in
nonhuman primates is consistent with the degree of stri-
atal damage induced by 3-NPA toxicity.31

Histological examination of striatal damage induced
by 3-NPA in both rodents and nonhuman primates indi-
cates a major loss of striatal projection neurons,25,29,33

coupled with increases in striatal dopamine, suggesting a
reduction in striatonigral inhibition.34 Thus, 3-NPA-in-
duced striatal lesions predict dysfunctional basal ganglia
output is the cause of dystonia.

Dystonia induced by chronic dopamine therapy
Nonhuman primate studies. Parkinson’s disease

(PD) is a progressive neurodegenerative disorder char-
acterized by a selective loss of striatal dopaminergic
innervation from substantia nigra. Patients with PD often
exhibit tremor, bradykinesia, and shuffled gait. In hu-
mans and nonhuman primates, the mitochondrial com-
plex II inhibitor with 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP) produces selective lesions of
dopamine-containing cells within the substantia nigra,
replicating the symptoms of PD.35–37 Consequently, the
MPTP-treated nonhuman primate is the most commonly
used primate model of PD.

Dopamine replacement therapy through chronic ad-
ministration of the dopamine precursor levodopa (L-
DOPA) or of dopamine receptor agonists remains the
most effective treatment for PD. However, long-term
dopamine replacement in PD has major drawbacks be-
cause dyskinesia with features of dystonia is a common
side effect in both PD patients and MPTP-treated non-
human primates, and 6-OHDA-treated rodents.38–43

Dyskinesia with dystonia also occurs in healthy nonhu-

man primates following chronic L-DOPA administration
alone.44 In all cases, the severity of dyskinesia correlates
with the amount of striatal damage preceding treatment
as well as duration and intensity of drug administra-
tion.39,40,44 Functional imaging and metabolic mapping
studies suggest dyskinesia after chronic dopamine re-
placement therapy is associated with abnormal activity
within basal ganglia, resulting in dysfunctional thalamo-
cortical input.45–47

Comment on basal ganglia dysfunction in dystonia
Animal models of generalized dystonia implicating

dysfunctional basal ganglia output are associated with
significant pathology within striatum. The dtsz basal gan-
glia exhibit widespread electrophysiological abnormali-
ties, possibly due to deficits in striatal GABAergic trans-
mission, predicting decreased output from the
entopeduncolothalamic pathway. However, the physio-
logical evidence from studies of human dystonia is not as
clear. Whereas pallidal discharge rates are reduced in
patients with dystonia, suggesting that neostriatal activity
is increased,48–51 dual recordings of globus pallidus and
putamen in dystonic patients do not support this conclu-
sion because a reduction in discharge rates is observed in
both structures.48

The dystonia associated with 3-NPA toxicity and with
long-term dopamine replacement therapy in animal mod-
els and patients suggests a role for this neurotransmitter
in the disorder. Whereas dystonia in dtsz hamsters and
3-NPA treated animals is associated with a significant
increase in striatal dopamine overflow, striatal dopamine
deficiency can also result in dystonia as observed in
DOPA-responsive dystonia.20,52–54 Although the exact
pathogenic mechanisms are not clear, primary and sec-
ondary pathological defects in basal ganglia output likely
result in aberrant thalamocortical input and disorganized
motor processing.

ANIMAL MODELS IMPLICATING
CEREBELLAR DYSFUNCTION

The dt rat
Motor dysfunction. The recessively inherited dt rat

motor disorder was first observed within a colony of
Sprague Dawley breeders.55,56 Whereas motor dysfunc-
tion is undetectable in neonates, dt rats develop general-
ized dystonia approximately 10 days after birth, with
twisting movements of the neck, paddling motions of the
limbs and postural instability.55,56 After onset of the dt
motor phenotype, symptom severity and distribution
progress rapidly; dt rats display fore- and hindlimb self-
clasping, truncal flexion, and sustained axial twisting
movements (FIG. 1A).55,56 As in human generalized dys-
tonia, motor dysfunction occurs only in waking dt rats
and subsides during rest.55
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Neuropathology. Despite the early onset of severe
symptoms, no obvious gross neuroanatomical abnormal-
ities are apparent except for an overall reduction in dt rat
brain mass.55 This reduction, which is observed in older
dystonic animals, is likely due to feeding deficits rather
than a degenerative process,55 because histological ex-
amination of striatum, cerebellum, and deep cerebellar
nuclei reveals no significant evidence of cells loss within
the dt rat brain.55,57–59 However, cytological studies
demonstrate that Purkinje cell soma are significantly
smaller in dt rat brain, implicating the cerebellum in the
motor phenotype.58,60

Although abnormal metabolic activity is detected
throughout the dt rat motor system, including striatum,61

there is little evidence to suggest that the basal ganglia
are specifically affected.55,57,62 However, several neuro-
chemical abnormalities are observed within cerebellum.
First, the concentration of norepinephrine is significantly
increased within the dt rat cerebellum55 but does not
likely factor in the dystonia.58,63 Next, both GABA syn-
thesis and concentration are significantly elevated in dt
rat Purkinje cells, but not in basal ganglia.64–66 In con-
trast, cells of the deep cerebellar nuclei (DCN), where
Purkinje cell axons terminate, exhibit a substantial re-

duction in GAD activity and GABA receptor densi-
ty.62,65 Because the development of the GABAergic ab-
normalities parallels the progression of the disease,64,67

and because diazepam provides relief,55,64 GABAergic
dysregulation likely contributes to the expression of the
dystonia.

The biochemical perturbations observed within dt rat
cerebellum may result from abnormal Purkinje cell in-
nervation by climbing afferents from the inferior olive
(IO). Dystonic rats are insensitive to the tremorogenic
effects of harmaline, which potentiates climbing fiber
input.60 In contrast, dt rats are hypersensitive to trem-
orogenic effects induced by the serotonergic agonist qui-
pazine, which also stimulates IO activity.68 Serotonergic
regulation appears normal elsewhere in dt rat brain,62,63

suggesting defects specific to the olivocerebellar path-
way are associated with the dystonia.

Pathophysiology. The olivocerbellar network is also
the site of neurophysiological irregularities including ab-
normal spontaneous activity from the dt rat IO, Purkinje
cell layer, and DCN.59,69,70 Single unit recordings from
dt rat Purkinje neurons reveal a reduced rate of complex
spiking and abnormal patterns of simple spike bursting.71

In addition, the increase in complex spike activity nor-
mally observed in response to harmaline is absent in dt
rat Purkinje cells,60,71 which is consistent with the failure
of harmaline to induce tremor in these animals. Neurons
within the dt rat lateral and interpositus DCN display
increased rhythmic bursting, with the most severe alter-
ations in patterned activity detected in older animals with
advanced dystonia.72 Hyperpolarizing current injections
or artificial stimulation of Purkinje cell input exerts sim-
ilar effects in preparations from normal brain,73 suggest-
ing that rhythmic bursting within the dt rat DCN is a
consequence of aberrant Purkinje cell input. Taken to-
gether, the data implicate defective climbing fiber inner-
vation of Purkinje cells and predict dysfunctional output
from cerebellum. Perhaps the most compelling evidence
for the involvement of the cerebellum is that either re-
moval of the cerebellum or lesions of the DCN alleviate
symptoms in dt rats, indicating cerebellar output is nec-
essary for dystonia.74,75

The Cav2.1 calcium channel mouse mutants
Human and mouse mutations. Cav2.1 (P/Q-type)

calcium channels regulate neurotransmitter release and
neuronal firing patterns throughout the brain. However,
these voltage-gated channels are expressed abundantly
within Purkinje cells of the cerebellum, where they are
located presynaptically on axon terminals76 and postsyn-
aptically on dendrites and soma.77 Several human neu-
rological diseases characterized by cerebellar dysfunc-
tion including episodic ataxia type 2, familial hemiplegic
migraine, and spinocerebellar ataxia type 6, result from
mutations within the CACNA1A gene,78,79 which en-

FIG. 1. Typical dystonic postures observed in dt rats (A), tot-
tering mice (B), and kainate-induced dystonia (C).
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codes the pore-forming �12.1 subunit of Cav2.1 calcium
channels. In addition to the signs for which each disorder
was named, patients may also suffer from dystonia.80–86

Mice bearing mutations within the Cacna1a gene are
models of dystonia arising from cerebellar dysfunction;
dystonia is a prominent feature of the tottering87 and
leaner (as observed by authors) mouse motor pheno-
types. Both Cacna1a mutations associated with the tot-
tering and leaner motor disorders, Cacna1atg and
Cacna1atg-la, arose spontaneously and result in abnormal
Cav2.1 calcium channel function.88–90 Moreover, mice
carrying targeted disruptions of Cacna1a, which elimi-
nate Cav2.1 currents entirely, also exhibit a motor disor-
der reminiscent of generalized dystonia in humans.91,92

Motor dysfunction. Tottering is a recessively inher-
ited motor disorder where mice experience highly ste-
reotyped paroxysmal episodes of motor dysfunction,
which last 20–60 min and are precipitated by stress,
caffeine, and ethanol.93 Attacks in tottering mice usually
begin with hindlimb posturing, then spread and become
generalized to include truncal and neck flexion, forelimb
posturing and facial contortion (FIG. 1B).93–95 At the
most advanced stages of attack, tottering mice typically
assume prolonged twisting postures involving the entire
body, including the ears, eyes and jaw.93,94 Between
attacks, tottering exhibit a mild, but noticeable ataxia.
Although the tottering mouse phenotype was initially
described as a motor seizure disorder,96 no epileptiform
activity is associated with the motor dysfunction,95,96

and the sustained and asynchronous movements ob-
served during attacks more closely resemble those of
paroxysmal dystonia in humans.

The motor disorders of leaner mice and the Cav2.1
null mutants are recessively inherited and are chronic.
Beginning approximately 2–3 weeks after birth, progres-
sive and debilitating dystonia develops, which in wean-
lings causes death indirectly by inhibiting feed-
ing.91,92,97,98 Whereas the leaner disorder was originally
classified as an ataxic disorder, dystonic extension of the
limbs on one side of the body actually causes these mice
to lean and ultimately fall (as observed by authors).
Furthermore, the motor dysfunction in leaner is wide-
spread with involvement of the tongue and jaw muscles,
suggesting that it is a model of generalized dystonia
rather than ataxia. The Cav2.1 null mutant phenotype is
very similar to the leaner mouse, but more severe.

Neuropathology. Although neuronal degeneration is
not observed in tottering mice,94,96 total cerebellar vol-
ume is significantly less than in wild-type mice.99 A
reduction in Purkinje cell size may account for the atro-
phic tottering mouse cerebellum; abnormalities in den-
dritic and axonal morphology also suggest altered con-
nectivity within cerebellar circuitry.98–100 In contrast,
widespread cerebellar atrophy occurs in leaner mice and
the Cav2.1 null mutants with progressive degeneration of

granule, golgi, and Purkinje neurons.91,92,101,102 In fact,
by 1 year of age, only about 20% of the original popu-
lation of Purkinje cells remains in leaner mice.102 Addi-
tionally, Purkinje cells in both tottering and leaner mice
exhibit ectopic expression of tyrosine hydroxylase103–105

that is likely due to an increase in Cav1.2 (L-type) chan-
nel expression resulting from the reduction in Cav2.1
activity.106 In general, the neuropathology observed in
these mice points to dysfunctional Purkinje cells without
obvious striatal dysfunction.

Pathophysiology. Tottering mouse Purkinje cells ex-
hibit an approximate 40% reduction in Cav2.1 calcium
current density.88 The reduced Cav2.1 current density in
tottering triggers compensatory mechanisms to maintain
calcium homeostasis, such as the upregulation of Cav1.2
channels.87 Indeed, these secondary effects may contrib-
ute to the dystonia because blockers of Cav1.2 activity
prevent dystonic attacks in tottering mice, whereas the
Cav1.2 channel activator Bay K8644 induces stereotypic
episodes in tottering mice.87 Additionally, an apparent
shift to reliance on Cav2.2 (N-type) channels for neuro-
transmission107,108 may underlie the reduced electrical
coupling between granule and Purkinje cells synapses
and the increased sensitivity to modulation by G proteins
detected in tottering cerebellum.109,110

The reduction and absence of Cav2.1 currents in
leaner mice and the null mutants, respectively,89–92,105

also trigger compensatory changes in calcium handling.
In mice without Cav2.1 currents, increased expression of
both Cav1.2 and Cav2.2 channels is observed.91,92 Fur-
thermore, studies of leaner Purkinje cells demonstrate
that diminished Cav2.1 activity is associated with de-
creased expression of calcium-binding proteins, lessen-
ing the ability to properly buffer intracellular calcium.111

Whereas mouse mutants with reduced or abolished
Cav2.1 currents exhibit significant cerebellar pathophys-
iology, the exact mechanisms of dystonia are not clear.
In tottering mice, dystonia is associated with activation
c-fos expression within the entire olivocerebellar net-
work and its efferent targets, but not within basal gan-
glia.112 Moreover, genetic, chemical or surgical lesions
that partially or completely eliminate cerebellar output
alleviate dystonic attacks in tottering mice,113,114 sug-
gesting that the cerebellum is necessary for the expres-
sion of dystonia.

Dystonia induced by kainate
Microinjection studies. Low-dose microinjections of

the glutamate receptor agonist kainate into the cerebellar
vermis induce dystonia in normal mice.115 Approxi-
mately 10–20 min after injection, abnormal movements
begin with the hindlimbs, but shortly thereafter symp-
toms become more generalized to include the trunk and
forelimbs (FIG. 1C). Similar to dystonia in tottering,
kainate-induced dystonia in normal mice is associated
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with increased c-fos expression within cerebellum.112,115

Only cerebellar injection of glutamatergic agonists but
not antagonists results in dystonia, clearly demonstrating
involvement of kainate or AMPA receptor activation115

Microinjection of kainate into basal ganglia does not
induce motor dysfunction, nor does it induce dystonia
when injected into the cerebella of mice lacking Purkinje
cells, indicating that output from cerebellum is necessary
for expression of the dystonia.115

Comment on cerebellar dysfunction in dystonia
Models of idiopathic and secondary generalized dys-

tonia in mouse and rat implicate the cerebellum in this
movement disorder. Dystonia is a movement disorder
characterized by disrupted timing and coordination of
antagonistic muscle contractions, and one that has been
traditionally viewed as being associated with dysfunc-
tional basal ganglia output. Neurological disorders orig-
inating from cerebellum, such as ataxia, are normally
associated with loss of function. However, evidence
from clinical studies implicates abnormal cerebellar ac-
tivity in dystonia, which can be viewed as a gain of
function lesion similar to epilepsy in the cerebral cortex.
Along with the expected metabolic increases in the cau-
date, lentiform nuclei, and supplementary motor areas,
positron emission tomography (PET) detects hyperme-
tabolism within the cerebella of patients suffering from
DYT1, an early-onset idiopathic torsion dystonia.116,117

Similarly, in acquired hemisdystonia, which affects one
side of the body, PET reveals hypermetabolism within
ipsilateral cerebellum and several contralateral cortical
motor areas.4 Moreover, patients with exercise-induced
paroxysmal dystonia exhibit increased cerebellar perfu-
sion and reduced cortical and basal ganglia perfusion
during motor attacks.118 Taken together, findings from
animal and clinical studies demonstrate that dysfunc-
tional cerebellar output is sufficient for the expression of
generalized dystonia.

SUMMARY AND CONCLUSIONS

Dystonia is a prevalent movement disorder in humans,
generally characterized by the simultaneous contraction
of opposing muscle groups. The circumstances of dys-
tonia are variable, manifesting in paroxysmal or chronic
symptoms with focal or generalized patterns of distribu-
tion. Whereas initial clinical studies implicated pathol-
ogy within basal ganglia as the principal source of idio-
pathic and acquired dystonias, substantial evidence
identifies cerebellar dysfunction as another common
cause of the disorder.

Clearly, the heterogeneity exhibited by human dysto-
nia is represented in animal models of the disorder. Sev-
eral demonstrate that dysfunctional output from the basal
ganglia can result in dystonia. In these models, abnormal

nigrostriatal dopaminergic neurotransmission19,20,39,40,44

accompanied by neurophysiological irregularities predict
disorganized thalamocortical signaling that may drive
the dystonia.22,24,119 In contrast, the models of dystonia
implicating the cerebellum predict abnormal cerebellar
signaling, including Purkinje cells and deep cerebellar
nuclei, with involvement of the entire olivocerebellar
system.56,59,115 Moreover, selectively eliminating cere-
bellar output in these cases blocks the dysto-
nia.74,75,113,114 Considering that both systems serve to
modulate movement, the notion that simultaneous dys-
function of basal ganglia and cerebellum may be in-
volved in different manifestations of dystonia is not un-
reasonable.

However, it is unlikely that the pathogenesis in all
dystonias is simply due to either basal ganglia or cere-
bellar dysfunction. Dystonia may be associated with neu-
ronal dysfunction that is widespread. Dystonia musculo-
rum is a mouse motor disease resembling generalized
dystonia in humans. The disorder results from mutations
of the Bpag1 gene, which encodes a protein important in
the cytoskeletal organization of all neurons.120,121 As a
consequence, mice with dystonia musculorum exhibit
lesions within several brain regions, including basal gan-
glia, cerebellum and sensory neurons.122,123 The dysto-
nia evoked by Cav1.2 (L-type) calcium channel activa-
tion also implicates widespread neuronal dysfunction. In
normal animals, administration of Bay K 8644 or FPL
64179, both L-type calcium channel agonists, induces
generalized dystonia that is associated with extensive
neuronal activation throughout brain, including striatum,
cerebellum, hippocampus, and cortex.124,125 Elucidating
the pathophysiology that ultimately generates the dysto-
nia in such models may be particularly challenging.

The evidence emerging from both clinical and animal
studies demonstrates that dystonia may be associated
with dysfunction of broad networks or with defects in the
basic components of motor control. Moreover, animal
models clearly support the idea that dystonia may in-
volve pathology within single or multiple motor path-
ways. Given the clinical heterogeneity of the disorder,
these implications are not surprising. That the animal
models of dystonia mirror the human findings is prom-
ising, but the complexity of the disorder in both cases
suggests that a single defining mechanism of pathogen-
esis is unlikely. The development of therapeutics may
therefore necessitate novel strategies targeting broad cat-
egories of dystonia. Animal models of dystonia hold
potential for such an approach whereby therapeutics ef-
fective in several different models will provide strong
evidence for clinical efficacy.
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