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Brain tumor, a leading cause of uncontrolled cell growth in the central nervous system, presents 
substantial challenges in medical diagnosis and treatment. Early and accurate detection is essential 
for effective intervention. This study aims to enhance the detection and classification of brain 
tumors in Magnetic Resonance Imaging (MRI) scans using an innovative framework combining 
Vision Transformer (ViT) and Gated Recurrent Unit (GRU) models. We utilized primary MRI data 
from Bangabandhu Sheikh Mujib Medical College Hospital (BSMMCH) in Faridpur, Bangladesh. Our 
hybrid ViT-GRU model extracts essential features via ViT and identifies relationships between these 
features using GRU, addressing class imbalance and outperforming existing diagnostic methods. We 
extensively processed the dataset, and then trained the model using various optimizers (SGD, Adam, 
AdamW) and evaluated through rigorous 10-fold cross-validation. Additionally, we incorporated 
Explainable Artificial Intelligence (XAI) techniques-Attention Map, SHAP, and LIME-to enhance the 
interpretability of the model’s predictions. For the primary dataset BrTMHD-2023, the ViT-GRU 
model achieved precision, recall, and F1-score metrics of 97%. The highest accuracies obtained with 
SGD, Adam, and AdamW optimizers were 81.66%, 96.56%, and 98.97%, respectively. Our model 
outperformed existing Transfer Learning models by 1.26%, as validated through comparative analysis 
and cross-validation. The proposed model also shows excellent performances with another Brain 
Tumor Kaggle Dataset outperforming the existing research done on the same dataset with 96.08% 
accuracy. The proposed ViT-GRU framework significantly improves the detection and classification of 
brain tumors in MRI scans. The integration of XAI techniques enhances the model’s transparency and 
reliability, fostering trust among clinicians and facilitating clinical application. Future work will expand 
the dataset and apply findings to real-time diagnostic devices, advancing the field.

Keywords Brain tumor, Deep learning, Pre-processing, ViT-GRU , Explainable Artificial Intelligence, 
Attention map

The human brain consists of billions of neurons, synapses, and nerve cells that control many essential bodily 
functions. Like other bodily organs, some problems may arise in the brain, such as growths known as brain tumor. 
These tumors occur when cells grow abnormally in various regions of the brain and can lead to significant neu-
rological complications and have significant consequences on a patient’s quality of  life1. Brain tumors are widely 
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acknowledged as among the most lethal diseases on a global scale, imposing considerable impact on mortality 
rates across all age groups. This condition brings challenges in terms of medical diagnosis and  treatment2. These 
tumors manifest in various forms, including glioma, meningioma, pituitary, and cases with no tumor. With 
almost 120 varieties of tumors found to date, their diverse characteristics and dimensions make them difficult to 
detect, complicated by the intricate structure of the  brain3. The identification and exact segmentation of tumor-
ous areas, which include edema, necrotic centers, and tumorous tissues, is critical for accurate diagnosis and 
therapy  planning4. The significance of the automatic detection and classification of medical images, particularly 
in brain tumor diagnosis, cannot be overstated. Early detection and categorization of brain tumors are critical 
for rapid treatment and improved patient outcomes. Traditional manual procedures for locating and classifying 
brain tumors in large medical image databases are time-consuming and resource-intensive5. Medical imaging 
modalities, including Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and Positron Emis-
sion Tomography (PET) scans, are indispensable in the detection of brain tumors. MRI is the approach that is 
most frequently utilized in the investigation of brain structures. Therefore, MRI was selected as the preferred 
modality for our study due to its widespread utilization and efficacy in examining brain structures. Despite its 
ability to effectively model regions of interest, MRI has difficulties in accurately distinguishing tumors due to the 
volatility in intensity levels caused by varying machine settings. Multimodal MRI scans, including T1-weighted, 
T2-weighted, T5-weighted, and Fluid Attenuation Inversion Recovery (FLAIR) images, provide supplementary 
profiles for various glioma sub-regions, allowing for more accurate information  extraction6,7. The manual seg-
mentation of 3D MRI images conducted by health care professionals relies on the expertise as well as the experi-
ence of the physician. Even with the advancement in medical imaging approaches, automatically dividing brain 
tumors in multimodal MRI scans remained among the hardest issues in medical image processing. To prevent 
user-based difficulties, automatic classification techniques can be employed in medical images due to their 
measurable nature and ability to deliver dependable  outcomes8. Brain tumor identification has been explored 
utilizing many machine-learning approaches and imaging types throughout the  years9,10. In this context, Deep 
Learning (DL) approaches are up-and-coming brain tumor classification and segmentation tools. Their applica-
tion in computer-aided systems for diagnosing brain tumors aims to provide accurate and reliable information 
regarding tumor presence, location, and type.

Existing brain tumor identification models face significant challenges, including performance issues, data 
handling inefficiencies, and limitations in model robustness and interpretability. Encouraged by these drawbacks, 
this study aims to develop an innovative approach for brain tumor identification using a combination of Vision 
Transformer (ViT) and Gated Recurrent Unit (GRU)  models11. Our proposed ViT-GRU model addresses these 
issues by achieving higher accuracy, balancing data representation, and enhancing interpretability with Explain-
able Artificial Intelligence (XAI) techniques such as Shapley Additive Explanations (SHAP), Local Interpretable 
Model-Agnostic Explanations (LIME), and Attention  mapping12. Additionally, it processes diverse data sources, 
which improves adaptability and relevance across various demographics and imaging methods. Thus, the hybrid 
ViT-GRU model addresses the limitations of previous models by utilizing the spatial attention mechanisms of 
ViTs and the temporal modeling capabilities of GRUs, providing a more robust and effective solution for brain 
tumor identification.

This study is motivated by the severe consequences of brain tumors, including death and costly, risky treat-
ments. In Southern Bangladesh, particularly Faridpur, patients endure significant pain and adverse outcomes, 
highlighting the urgent need for improved detection and classification methods. To make a meaningful impact, 
the focus is on primary data collection, engaging directly with the community and healthcare providers to obtain 
specific information about brain tumor cases. The objective of this study is to implement a hybrid DL approach 
to enhance precision in detection and classification, addressing the challenges in brain tumor management. This 
comprehensive approach seeks to increase performance accuracy, facilitate early interventions, and improve the 
quality of life for individuals affected by brain tumors in Faridpur and similar regions.

In this research, the study tried to fulfill some research questions, including, How to increase the detection 
and classification accuracy of brain tumors?, How to enhance the overall performance of the proposed model?, 
How to reduce the training approach or model training time without compromising accuracy?, and How to make 
the model’s decision-making process more transparent and reliable?

In this system, the model’s structure incorporates multiple layers and adjustable parameters. Each MRI 
image goes through a series of ViT layers first, then through GRU layers for  processing13,14. By integrating these 
components, we aim to improve feature representation and temporal modeling for robust decision-making in 
the final stage, making it a comprehensive and effective tool for accurate brain tumor detection and classifica-
tion in medical imaging.

In this research, we achieved the following major contributions:

• Our study uses hospital-based primary MRI data to analyze brain tumor patients and improve diagnosis.
• We developed a hybrid ViT-GRU model that demonstrated superior results on our dataset, thereby enhancing 

the effectiveness of brain tumor diagnosis.
• Additionally, we applied several preprocessing techniques on our primary dataset to optimize the perfor-

mance of our proposed ViT-GRU model.
• Finally, we employed three XAI techniques-Attention Map, SHAP, and LIME to offer interpretable and 

understandable explanations for the predictions made by the proposed model.

The structure of the rest of the paper is organized as follows: Section “Challenges of brain tumor disease detec-
tion with AI” describes the challenges associated with the identification of neurodegenerative diseases using AI. 
Section “Literature review” represents a thorough review of the most recent studies on identifying and classifying 
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brain tumor disease. The comprehensive description of the materials and method employed in this study is 
presented in reference section “Materials and method”. Sections “Results” and “Discussion” provide an in-depth 
evaluation of the outcomes and findings in our study described as results and discussion. Section “Conclusion 
and future work” provides an extensive summary of the entire study.

Challenges of brain tumor disease detection with AI
The efficient integration of Artificial Intelligence (AI) into healthcare necessitates both transparency and efficacy, 
despite its immense potential. The utilization of primary MRI data in conjunction with Machine Learning (ML) 
and DL algorithms to detect brain tumors poses several challenges. Here are important considerations for brain 
tumor detection and classification associated with our whole research procedure.

• Complexity of Diverse Data: Multi-modal MRI datasets contain DWI, FLAIR, T1, T2, and T1 Fat-Sat images 
for brain information. Integrating these data types is complicated and requires study.

• Data Preprocessing and Feature Extraction: In the case of preprocessing of primary MRI data, we face obsta-
cles, including the need to standardize imaging protocols, mitigate artifacts, and reduce inter-subject vari-
ability. Feature extraction itself is challenging, requiring cautious selection to capture meaningful tumor 
characteristics.

• Limited Availability of Annotated MRI data: Annotating primary MRI scans is a laborious and time-intensive 
technique. The lack of well-annotated data for training models may limit the development of robust algo-
rithms for MRI datasets.

• Class Imbalance and Tumor Rarity: The rarity of brain tumors in comparison to normal brain tissue within 
MRI datasets leads to class imbalance. This imbalance might result in biased models struggling to effectively 
detect the minority class (tumors), impacting overall performance.

• Ethical and Legal Considerations in MRI Studies: The implementation of AI-based medical diagnostic systems 
employing MRI scans poses ethical and legal problems, including difficulties relating to patient privacy, per-
mission, and potential biases in the algorithms. These concerns demand cautious attention and resolution.

Literature review
Early and precise identification of brain tumors is essential for optimal treatment. MRI scans play a crucial part 
in this procedure, however this might present challenges to interpret. DL has emerged as an efficient tool for 
brain tumor detection, and recent advances in the desire to automate and enhance the accuracy of brain tumor 
diagnosis are mentioned below.

An innovative Internet of Things (IoT) computational system in Ref.15 integrates a hybrid Convolutional Neu-
ral Network (CNN) and Long Short Term Memory (LSTM) approach for brain tumor detection and classification 
in MRI images which outperforms traditional CNN models, demonstrating superior accuracy in experiments 
conducted on a Kaggle dataset with 3264 MRI scans. Minimizing a lengthy training approach can increase the 
efficacy of this study. The  authors16, introduce an innovative real-time intraoperative brain tumor diagnosis 
using stimulated Raman histology (SRH) and CNNs, obtaining a notable 94.6% accuracy, significantly reducing 
diagnosis time to under 150 seconds. The study suggests incorporating spectroscopic detection and investigat-
ing SRH’s role in molecular diagnosis. Researchers in Ref.17 proposed a cutting-edge, entirely automatic brain 
tumor segmentation and classification approach employing a multiscale Deep Convolutional Neural Network. 
Achieving a remarkable 97.3% accuracy on a dataset of 3064 MRI slices, which outperforms existing methods. 
However, dataset diversity, alternative architecture, and assessing the model may improve the results. According 
to the concept of Ref.18 this study represents a DL-based semantic segmentation method for automatic brain 
tumor segmentation on 3D BraTS datasets. Achieving a mean prediction ratio of 91.718% and excellent scores in 
IoU and BF metrics, the method exhibits accurate tumor prediction and 3D imaging. The authors in Ref.19 have 
comprehensively reviewed 147 recent studies on ML and DL approaches for detecting Alzheimer’s, brain lesions, 
epilepsy, and Parkinson’s. Analyzing 22 datasets, the study offers insights into effective methods of diagnosis, 
emphasizing future research directions and unresolved issues in brain disease diagnostics. This study highlights 
significant results, offering a foundational framework for future developments in the discipline. The author of 
the  study20 explored glioma utilizing multimodal MRI scans, employing three 3D CNN architectures. This study 
obtained 5th place for segmentation and 2nd place for survival prediction in the 2018 MICCAI BraTS challenge 
among 60+ teams, obtaining a significant 61.0% accuracy in classifying survival categories. Diverse network 
architectures and training strategies may affect the further refinement of this study. The  study21 employed a DL 
CNN model to automatically detect brain tumors using augmented MRI data from the Br35H dataset, achieving 
98.99% accuracy. Future research could explore advanced architectures and integrate multimodal data to improve 
the interpretability of this study for more robust clinical applications in brain tumor diagnostics.

In Ref.22, the author of this study employs artificial intelligence (AI) techniques and pre-trained models (Xcep-
tion, ResNet50, InceptionV3, VGG16, MobileNet) to enhance MRI-based brain tumor classification, accomplish-
ing F1-scores ranging from 97.25% to 98.75%. Investigating biases, fine-tuning strategies, investigating hyperpa-
rameters, and expanding datasets may improve the efficiency of the study. The author of this  paper23 proposed 
a CNN-based DL model for brain tumor classification using MRI images, achieving high accuracies of 96.13% 
and 98.7% across two studies. Improving model generalizability, benchmarking against existing methods, and 
enhancing interpretability for clinical applications may increase the efficacy of this study. Researchers introduce 
a  strategy24 employing 3D U-Net Design and ResNet50 models for accurate brain tumor segmentation in MRI 
and CT scans, achieving high accuracies of 98.96% and 97.99%. Future work in this paper suggests that model 
enhancement, real-time training, and addressing class imbalance scenarios may yield better results. The  paper1 
presents a hybrid model for precise brain tumor classification in MRI images, integrating a novel CNN model 
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with optimized ML algorithms. Achieving an exceptional mean accuracy of 97.15%, the proposed hybrid model 
outperforms advanced CNN models, exhibiting higher time efficiency. Exploring diverse ML algorithms and DL 
models and validating the hybrid model on larger and more diverse datasets may lead to better performance. 
In Ref.25, the author represented a modified U-Net structure for accurate brain tumor segmentation in MRI 
images, incorporating shuffling and sub-pixel convolution. Achieving notable accuracy of 93.40% and 92.20% 
on BraTS Challenge datasets, the proposed model outperforms existing approaches. Larger datasets and smooth 
computational assessment may assist in investigating the model’s generalizability and may become more efficient 
for diverse medical image segmentation tasks. The author of this  paper26 utilized feature fusion and majority 
voting by introducing a class-weighted focal loss and working on imbalanced brain tumor classification datasets, 
yielding substantial improvements over conventional CNNs. Alternative fusion techniques and computational 
efficiency can overcome challenges in class weight determination and increase accuracy. In  study7, the authors 
presented a robust brain tumor segmentation framework utilizing four MRI sequence images and an optimized 
CNN model. Demonstrating superior performance on the BRATS 2018 dataset with notable precision, recall, 
and Dice Score, the proposed method underscores its efficacy. Addressing additional pre-processing strategy 
exploration, scalability issues, and clinical challenges may contribute to an improvement in the model’s perfor-
mance. The author of the  study27 presented a DL fusion model for brain tumor classification, leveraging MRI 
images with a notable accuracy of 98.98%. The model incorporates features extracted from VGG16, ResNet50, 
and convolutional deep belief networks (CDBNs). However, enhancing data augmentation strategies and evalu-
ating the model’s applicability across various clinical datasets and imaging techniques could further enhance 
its efficacy. In this  paper28, the authors utilized the FPCIFHSS model to assess brain tumor susceptibility with 
complex intuitionistic fuzzy numbers (CIFNs), offering a versatile approach for managing diagnostic uncer-
tainties, especially beneficial in resource-limited settings. Future studies should simplify the model for practi-
cal clinical application and validate its effectiveness through thorough comparative analyses with established 
diagnostic methods. The  paper29 proposed two models: XGBoost achieved 98.620% accuracy in differentiating 
cancer stages using multi-omics data from the Cancer Genome Atlas, while a cascading Deep Forest ensemble 
accurately identified cancer subtypes from the METABRIC dataset (83.45% for five subtypes, 77.55% for ten). 
These advancements highlight the potential of AI in omics data analysis. However, future research should focus 
on refining AI algorithms, improving preprocessing techniques, validating models across diverse datasets, and 
conducting rigorous clinical trials for robust validation.

Previous models for identifying brain tumors have challenges such as low accuracy, class imbalance, large 
computing demands, poor interpretability, and limited generalizability. Our ViT-GRU model overcomes these 
difficulties, delivering greater accuracy and addressing class imbalance while enhancing interpretability using 
XAI techniques like LIME, SHAP, and Attention mapping. It also handles data from diverse sources, making it 
more adaptable and relevant across varied demographics and imaging methods.

Materials and method
The methodology employed in this research consists of a meticulous and methodical process, which is depicted 
in Fig. 1, which provides a comprehensive description of the research methodology utilized in this study.

Dataset collection
In this research, we compiled a dataset named Brain Tumor MRI Hospital Data 2023 (BrTMHD-2023), con-
sisting of 1166 MRI scans collected at Bangabandhu Sheikh Mujib Medical College Hospital (BSMMCH) in 
Faridpur, Bangladesh, over the period from January 1, 2023, to December 30, 2023. Our BrTMHD-2023 dataset 
contains different kinds of tumors and normal conditions, with images acquired from a Siemens Magnetom 

Fig. 1.  Flowchart of the proposed methodology illustrating the distinct phases involved in the research 
approach.
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Skyra MR scanner for clarity and quality across Diffusion-Weighted Imaging (DWI), FLAIR, T1-weighted 
(T1), T2-weighted (T2), and T1 Fat-Sat categories. Legal regulations were followed, and informed consent was 
obtained from patients. Though the sharing of data is restricted for privacy, it is available upon request with 
ethical approval to assist in advancing brain tumor diagnosis and treatment. Furthermore, we confirm that all 
data collection and analysis methods adhered to the Declaration of Helsinki and Bangladesh Medical Research 
Council (BMRC) ethical guidelines.

A few samples of each category DWI, FLAIR, T1, T2- weighted, and T1 Fat-Sat from the dataset are shown 
in Fig. 2. This research also utilized an additional publicly available Brain  Tumor  Kaggl e Datas et consisting 256 
MRI images to evaluate the proposed model.

The dataset specifications are shown in Table 1.
The dataset employs multimodal imaging protocol MRI scans, which ensures a consistent and standardized 

data acquisition approach. This makes the data in this research more relatable and trustworthy.

Data preparation
After acquiring MRI data from the medical facility, the samples were assembled using image reconstruction 
approaches and then optimized acquisition parameters for T1, T2-weighted, and other multimodal  images30. 
We transformed DICOM files to JPG using MicroDicom for compatibility with image-processing tools and then 
performed enhancement and  denoising31. Qualified radiologists classified the images into tumor and non-tumor 
types, ensuring high-quality data for ML training. Noise reduction techniques like filtering and advanced recon-
struction were implemented to enhance the signal-to-noise ratio and image quality for accurate  diagnosis32,33.

Data preprossessing
Preprocessing MRI images elevates their quality for DL analysis while retaining their integrity. We employed 
motion correction, data resizing, data normalization, data augmentation, and conversion to numerical  data34. 
Motion artifacts were handled Utilizing retrospective and prospective motion correction  approaches35. Dimen-
sionality reduction enhances the computing efficiency and our model  performance36. Pixel normalization 
between 0 and 1 improved feature extraction accuracy. To address the data imbalance caused by the unequal 
ratio of diseased to normal MRI images, we employed data augmentation techniques. This expanded our dataset 
to 2,190 MRI images, mitigating the scarcity and improving the learning and performance of our proposed model. 
Converting grayscale photos to RGB representation allowed us to apply pre-trained models, enhancing perfor-
mance. These preprocessing methods assure the optimal results in the following image classification  tasks37,38.

Fig. 2.  Sample images of the BrTMHD-2023 Dataset.

Table 1.  Datasets of brain tumor disease utilized in this study.

Dataset
Label of the 
dataset

Number of 
total collected 
patient

No of disease 
patient

No of MRI 
image

No of MRI 
image after 
augmentation

Male tumor 
patient

Female tumor 
patient

Total MRI 
image

Total MRI 
image after 
augmentation

BrTMHD-2023
Normal patient

232
163 945 1210 61 102

1166 2190
Tumor patient 69 221 980 45 24

 Brain tumor
Kaggle dataset

Normal
–

– 156 – – –
256 –

Tumor – 100 – – –

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
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Proposed ViT-GRU model
The proposed model called the hybrid ViT-GRU model, is for analyzing brain tumor detection and classification 
as illustrated in Fig. 3. Particularly in its utilization of ViT, this hybrid DL technique for classifying brain tumors 
exhibits an apparent connection to the original Transformer  architecture39.

ViT for feature extraction
This study builds upon the sophisticated ViT framework, which is renowned for its proficiency in acquiring 
visual data employing self-attention mechanisms; this architecture has been specifically fine-tuned to identify 
brain tumors from MRI scans. By exploiting the ViT backbone, our model excels at extracting hierarchical 
representations that show valuable patterns characteristic of brain tumors. Compared to traditional CNNs, the 
ViT utilizes self-attention mechanisms, which allow it to capture long-range dependencies and global context 
more effectively. To improve the ViT encoder for this purpose, we introduced strategic modifications. Firstly, 
we removed the Multi-Layer Perceptron (MLP) layer to increase computational efficiency and introduced layer 
normalization to accelerate convergence and stabilize  training13. This adjustment contrasts with CNNs, where 
the dense layers are often a source of high computational load. Then, we added a dropout layer that reduces 
overfitting and enhances generalization. Finally, Incorporating a “flatten” layer improves the model’s ability to 
distinguish varied visual patterns in MRI data. These adjustments jointly increase the model’s reliability and 
effectiveness in brain tumor  identification40,41.

GRU for temporal analysis
In this approach to the temporal analysis of brain MRI images, we incorporate a GRU, a specialized form of the 
neural network, after the extraction of critical features from the images. GRUs, which were initially proposed 
by Ref.42, can be likened to an enhanced iteration of conventional Recurrent Neural Networks (RNNs). They 
are capable of recognizing patterns and establishing relationships within data sequences. GRUs have these neat 
features called update and reset gates that help them manage information better. By using a GRU with 1024 units 
in our architecture, we take advantage of its ability to comprehend changes over time in brain MRI images. This 
allows us to identify better and classify brain tumors. The GRU was chosen over other RNNs like LSTM for its 
simpler architecture and faster training while maintaining comparable performance in capturing dependencies. 
LSTM represents a type of RNN architecture with two crucial components: an input gate and a forget gate. These 
components play a vital role in regulating the flow of information within the network. The input gate determines 
which input information is stored in the memory cell, while the forget gate decides which information should 
be discarded. GRUs, which have an essential function in a variety of Natural Language Processing (NLP) opera-
tions such as recognition of speech, machine translation, and language modeling, play an indispensable part in 
our methodology, which allows the model to distinguish and categorize brain tumors with improved precision 
and  efficacy43.

Classification head
Once the feature extraction phase from the ViT and sequential data analysis of GRU architectures are finished, 
the final prediction is generated incorporating a classification head. The ViT-GRU-based process utilizes the 
final hidden state of the GRU unit as the input for a series of fully connected layers. The process of converting 
the hidden information into a probability distribution over the available categories is carried out by these layers 
through a sigmoid activation function. By utilizing the extracted features, the incorporation of this classification 
head substantially improves the model’s ability to generate precise predictions, which allows efficient classifica-
tion within ViT-GRU frameworks.

Fig. 3.  Architecture of the hybrid ViT-GRU model showing the interconnected components and their 
functional relationship in the proposed model.
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Hyperparameters settings
In this study, we trained models with various configurations that enabled us to adapt how the model works in 
various manners. Our main focus was on hyperparameter tuning, a crucial phase for optimizing model perfor-
mance. This involved finding the best hyperparameter values for our model, using a mix of usual settings, and 
trying out new approaches to make our model better at evaluating and predicting things. To compare the model 
parameters, we initially set them sequentially, adjusting one at a time while keeping others constant. After this 
systematic process, we identified the best-fitting parameters based on performance metrics. These optimized 
parameters were then used for our final analysis. Table 2 presents a comprehensive list of all the hyperparameters 
that were used in our ViT-GRU model. Pre-trained transfer learning model parameters were also selected using 
the same procedure.

The training was carried out on Google Colab by using a GPU with 12 GB of RAM.

Evaluation metrics
The proposed model’s performance is evaluated using various metrics, including accuracy, precision, recall, and 
F1-score. These measurements are calculated from the data provided in the confusion matrix, like True Positive, 
True Negative, False Positive, and False Negative, showing the model’s progress. We have used the following 
equations for measuring the performance of our proposed ViT-GRU model:

Explainable artificial intelligence
XAI is important for transparent and understandable AI systems and crucial in healthcare where AI judgements 
impact patient  results44. As a pioneer in medical image categorization, XAI facilitates human interpretation of 
complex AI decisions. Particularly in brain tumor detection, techniques such as LIME, SHAP, and Attention Maps 
improve the interpretability of DL  models13. In our study, we integrated XAI techniques into the proposed model 
to enhance its interpretability and provide valuable insights into its decision-making process. This integration 
allows healthcare practitioners to understand how the model arrives at its predictions, thereby building trust 
and facilitating better diagnostic and treatment decisions.

LIME as XAI
LIME interprets ML model choices, particularly advantageous for “black box” DL  architectures45. Its fundamental 
function lies in providing perceptive heatmaps, emphasizing crucial locations affecting model predictions. The 
application of LIME resulted in intuitive heatmaps that highlighted key regions within MRI images critical for 
the model’s predictions, thereby enhancing the interpretability of our DL model. These heatmaps enabled us 
to visualize significant areas influencing the model’s predictions, providing valuable insights into its decision-
making process. This integration facilitated a clearer understanding of the model’s decisions, thereby supporting 

(1)Precision =
True Positives

True Positives + False Positives

(2)Recall =
True Positives

True Positives + False Negatives

(3)F1− Score = 2×
Precision× Recall

Precision+ Recall

(4)Accuracy =
True Positives + True Negatives

Total Number of Samples

Table 2.  Hyperparameters of our proposed ViT-GRU model with their values.

Hyperparameters Values

Epochs 35

Batch size 64

Image size 224×224×3

Learning rate 0.0001

Weight decay 0.0001

Optimizer AdamW, Adam, SGD

Loss function Categorical cross-entropy

Patch size 8

Number of patches 256

Projection dimension 64

Number of parallel self-attention heads 4

Number of transformer encoder layers 8
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more informed clinical judgments by healthcare professionals. By assigning relevance scores to pixels or image 
areas, LIME delivers a thorough comprehension of the key characteristics guiding categorization necessary for 
grasping intricate model  behavior46. This process can be expressed by the following formula:

• f(x) is the interpretable model’s projection for the image instance x.
• N(x) shows the immediate vicinity of the image x.
• L(.) is a loss function assessing the difference between the estimates of the interpretable model f(x) and the 

original model’s estimate π in the surrounding area N(x).
• �(f ) is a normalization term.

SHAP as XAI
SHAP elucidates ML model outputs, specifically applying Shapley values to clarify feature contributions. Crucial 
for medical image categorization, SHAP indicates critical regions within images vital for model  judgments47. We 
integrated SHAP into the model to calculate Shapley values for each pixel in the MRI images, identifying and 
visualizing the most critical regions influencing classification results. It graphically depicts essential feature values, 
which is helpful in predicting particular categories. Our application in brain tumor detection gave insights into 
critical brain areas, combining LIME explanations for a thorough comprehension of data patterns.

Attention map as XAI
Attention maps depict DL model focus areas in input pictures, boosting interpretability by illuminating key 
 regions48. In medical image identification, they are essential for detecting tumor-impacted brain regions. We 
integrated attention maps by leveraging the multi-head attention layer in the proposed model, which highlights 
areas with high activation that contributed to the final classification. Leveraging the last multi-head attention 
layer to generate attention maps provided crucial insights into the model’s decision-making by highlighting key 
image regions and enhancing interpretability, thus emphasizing the need for further refinement to maximize 
patient care  improvements49. Visualizing these maps considerably bolsters comprehension of DL model opera-
tions in sophisticated AI-driven assessments in healthcare.

Results
We conducted three experiments to assess our model’s performance. In experiment 1, We employed the primary 
BrTMHD-2023 dataset and applied a rigorous 10-fold cross-validation technique to verify the efficacy of our 
model during our evaluation. Experiment 2 involved a holdout analysis, on the BrTMHD-2023 dataset without 
k-fold validation. Finally, in experiment 3, we validated our model on an additional Brain Tumor Kaggle dataset 
to demonstrate its generalizability.

In experiment 1, our proposed model obtained the highest average accuracy of 98.97%, an average preci-
sion score of 97%, highlighting its accuracy in identifying positive instances. The model’s efficacy in accurately 
distinguishing true positives and minimizing false negatives was also demonstrated by its 97% average recall 
rate. The model’s dependable performance was affirmed by the F1-score, which achieved an exceptional average 
value of 97% by balancing precision and recall. Furthermore, we introduced various pre-trained transfer learn-
ing models into our study to investigate the training and performance capabilities of ML models. The results, 
summarized in Table 3, indicate that our model performed exceptionally well. Figure 4 illustrates the training 
accuracy and loss curves across various folds, highlighting the model’s learning trajectory. Figure 5 depicts the 

(5)f (x) = argminf
∑

xi∈N(x)

L(f ,π(xi))+�(f )

Table 3.  Results of 10-fold cross-validation in our proposed ViT-GRU model. Significant values are in bold.

Number
of fold

Precision
(%)

Recall
(%)

F1-score
(%)

Training loss
(msec)

Test loss
(msec)

Training acuracy
(%)

Test accuracy
(%)

1 98 98 98 0.0042 0.0107 100 100

2 98 97 97 0.0082 0.0307 99.9 99.15

3 100 100 100 0.0026 0.0688 100 97.44

4 97 97 97 0.0098 0.0378 99.81 99.15

5 98 97 97 0.0021 0.0153 100 100

6 96 96 96 0.0044 0.0478 100 98.29

7 96 96 96 0.0042 0.0374 99.81 99.14

8 99 99 99 0.0034 0.0097 99.9 100

9 96 96 95 0.0035 0.0562 100 98.28

10 96 96 96 0.0139 0.0591 99.9 98.28

Average 97 97 97 0.0056 0.0374 99.93 98.97

STDEV 0.014 0.013 0.015 0.004 0.021 0.079 0.884
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AUC-ROC contours for each fold, demonstrating the model’s class discrimination capability. Figure 6 presents 
the confusion matrices, providing a detailed analysis of each fold’s classification performance.

In experiment 2, we adopted three different optimizers into our proposed ViT-GRU model, with the AdamW 
optimizer attaining the highest accuracy of 98.97%. This high mean test accuracy underscores the model’s 
precision in classifying data. Table 4 contrasts the results of multiple models with our proposed model using 
distinct optimizers. Additionally, Table 5 provides a comprehensive comparison of important approaches used 

(a) Accuracy curve (b) Loss curve

Fig. 4.  Accuracy and loss curves for 10-fold cross-validation of the proposed ViT-GRU model.

(a) Fold 1 (b) Fold 2 (c) Fold 3 (d) Fold 4 (e) Fold 5

(f) Fold 6 (g) Fold 7 (h) Fold 8 (i) Fold 9 (j) Fold 10

Fig. 5.  AUC-ROC curves for 10-fold cross-validation of the proposed ViT-GRU model.

(a) Fold 1 (b) Fold 2 (c) Fold 3 (d) Fold 4 (e) Fold 5

(f) Fold 6 (g) Fold 7 (h) Fold 8 (i) Fold 9 (j) Fold 10

Fig. 6.  Confusion matrices for 10-fold cross-validation of the proposed ViT-GRU model.
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for classifying brain tumors that focus on important factors such as the dataset used, number of classes, clas-
sification algorithm applied, image count, and performance measures.

Here, the model we used demonstrated consistently high performance, achieving a precision, recall, and 
F1-score of 97% each.

Our proposed model’s accuracy and loss curves are represented in Fig. 7. Visual analyses provided in Fig. 9a 
extend deeper into the confusion metrics details, and Fig. 9b displays the AUC-ROC curves. These visuals col-
lectively emphasize the model’s exceptional performance across diverse testing circumstances.

In experiment 3, the model demonstrated exceptional results, achieving an accuracy of 96.08%, a precision 
of 97%, a recall of 96%, and an F1 score of 96% on the Brain Tumor Kaggle dataset as presented in Table 5. This 
evaluation’s accuracy and loss curves are presented in Fig. 8. Also, the confusion matrices and the AUC-ROC 
curve are illustrated in Fig. 10.

Discussion
This study provides a new framework combining a ViT with a GRU network for brain tumor assessment in 
MRI images. The hybrid ViT-GRU model employs ViT for regional feature extraction and GRU for temporal 
contextual assessment, increasing classification accuracy by collecting both spatial and temporal properties.

In our study, 10-fold cross-validation enhanced the model’s robustness and reliability, achieving an average 
98.97% accuracy due to high-quality data, effective preprocessing, hyperparameter tuning, resulting in high 
precision, recall, and F1-scores of 97% respectively. In experiment 2, our proposed model showed excellent clas-
sification accuracy (98.97% with AdamW, 96.56% with Adam, and 81.66% with SGD). This study also evaluates 
our dataset using various pre-trained transfer learning models, including DenseNet121, ResNet18, and VGG19. 
After completing the necessary preprocessing techniques and parameter tuning, these models achieved the high-
est accuracies of 97.71%, 96.86%, and 94.29%, respectively. Our proposed model beat these pre-trained models 
in important parameters such as precision, recall, and F1-score and significantly shows 1.26% better accuracy 
than the highest performed TL models. We enhanced these models with hyperparameter adjustments and layer 
alterations. In addition, we presented and assessed our suggested model, which performed better than any other 
model in every metric. Table 4 presents the comparative results for AdamW, Adam, and SGD optimizers. The 
impact of each optimizer on the model’s performance is compared, and AdamW achieves higher accuracies 

Table 4.  Comparing the results of pre-trained transfer learning models with the proposed ViT-GRU on the 
AdamW, Adam, and SGD optimizer.

Model Optimizer Precision (%) Recall (%) F1-score (%) Training loss Validation loss
Trainig time
(s) Training accuracy (%) Test accuracy (%)

ResNet18

AdamW 91 91 90 0.0113 0.1577 5.83 99.88 94.29

Adam 94 93 93 0.0124 0.1193 6.07 99.88 96.86

SGD 65 81 72 1.4124 1.4792 5.63 81.25 80.57

ResNet50

AdamW 91 91 91 0.0435 0.2218 12.94 98.65 91.43

Adam 92 92 92 0.0524 0.2454 13.03 98.65 92.86

SGD 63 79 70 0.5341 0.5443 12.64 81.74 79.43

VGG16

AdamW 91 92 91 0.0588 0.1521 18.41 97.43 93.71

Adam 93 93 93 0.0547 0.1415 18.9 99.02 94

SGD 72 81 75 0.5593 0.5347 17.73 78.55 81.43

VGG19

AdamW 92 91 91 0.0540 0.1755 20.92 98.28 94.29

Adam 91 91 91 0.0540 0.1755 20.92 98.9 94.29

SGD 72 79 73 0.5951 0.5601 20.55 78.8 78.29

EfficientNet_V2_l

AdamW 91 91 91 0.0723 0.1646 17.36 96.56 92.65

Adam 89 89 89 0.1131 0.2954 14.61 95.83 91.71

SGD 68 76 72 6.0248 6.0263 14.57 50.86 51.14

MobileNet_V2

AdamW 85 86 85 0.2885 0.3368 6.43 90.2 85.14

Adam 80 83 80 0.2819 0.3643 6.54 88.97 83.71

SGD 74 84 77 3.6244 2.5056 11.82 82.27 84.86

DenseNet121

AdamW 97 97 97 0.0182 0.0892 13.87 99.88 97.71

Adam 93 93 93 0.0311 0.1541 13.93 99.88 96.29

SGD 72 83 73 2.7244 2.6056 13.82 80.27 82.86

AlexNet

AdamW 86 87 86 0.1983 0.2656 4.57 92.89 89.43

Adam 89 89 88 0.1451 0.2399 4.05 96.08 91.14

SGD 71 84 77 6.8541 6.8497 4.29 79.78 84

ViT-GRU 

AdamW 97 97 97 0.0056 0.0374 47.93 99.93 98.97

Adam 96 95 95 0.0089 0.1025 49.28 99.75 96.56

SGD 66 81 73 0.4695 0.4606 48.3 81.02 81.66
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by decoupling weight decay from gradient updates, enhancing model generalization, and allowing for better 
control over learning rates and regularization, resulting in improved overall metrics. Additionally, this study 
comprehensively compares existing technologies and previous work, which is shown in Table 5 with a detailed 
state-of-the-art comparison, highlighting how our hybrid model achieves better results across various metrics. 
The proposed model achieved high AUC-ROC scores of 96% on the BrTMHD-2023 dataset and 97% on the 

Table 5.  Performance evaluation of existing state-of-the-art models and the proposed model.

Study Year Model Dataset Image modalities Number of classes Number of images Performance XAI

Choudhury et al.50 2020 CNN Brain tumor
Kaggle dataset MRI 2 –

Accuracy: 96.08%
Precision: 94.87%
Recall: 98.63%
F1-score: 97.36%

Not used

Saleh et al.22 2020 Pre-trained DL
models

Brain tumor
Kaggle dataset MRI 4 4480

Accuracy: 97.25-
98.75%
Precision: –
Recall: –
F1-score: 100%

Not used

Bhanothu et al.51 2020 Faster R-CNN Brain tumor
Figshare dataset MRI 3 2406

Accuracy: –
Precision: 77.6%
Recall: 80%
F1-score: –

Not used

Waghmare et al.52 2021 fine-tuned
VGG-16 CNN

Brain tumor
Kaggle dataset MRI 3 3664

Accuracy: 95.71%
Precision: –
Recall: 83.28%
F1-score: –

Not used

Díaz-Pernas et al.17 2021 DCNN BRATS 2013 MRI 3 3064
Accuracy: 97.3%
Precision: –
Recall:
F1-score:

Not used

Khairandish et al.53 2022 CNN-SVM BRATS 2015 MRI 2 230
Accuracy: 98.49%
Precision: –
Recall: –
F1-score: –

Not used

Mohan et al.54 2022 DLBTDC-MRI BRATS2015
dataset MRI 4 42,470

Accuracy: 98.145%
Precision: 95.134%
Recall: 97.348%
F1-score: 96.25%

Not used

Srinivas et al.55 2022 VGG-16 Kaggle
dataset MRI 2 256

Accuracy: 96%
Precision: 94%
Recall: 100%
F1-score: 98%

Not used

Montaha et al.56 2022 TD-CNN-LSTM
BraTS 2018,
BraTS 2019
and BraTS 2020

MRI 2 978
Accuracy: 98.90%
Precision: 98.95%
Recall: 98.78%
F1-score: 98.83%

Not used

Hossain et al.24 2022 ResNet50 TGCA-GBM
dataset

MRI and
CT scans 3 3064

Accuracy: 98.96%
Precision: 98.67%
Recall: 99.12%
F1-score: 98.87%

Not used

Vankdothu et. al.15 2022 CNN-LSTM Brain tumor
kaggle dataset MRI 4 3264

Accuracy: 92%
Precision: 96%
Recall: 98.5%
F1-score: –

Not used

Rasheed et al.57 2023 CNN Brain tumor
Kaggle dataset MRI 3 3064

Accuracy: 98.04%
Precision: 98%
Recall: 98%
F1-score: 98%

Not used

Abdusalomov et al.58 2023 YOLOv7 Brain tumor
Kaggle dataset MRI 4 10,288

Accuracy: 99.5%
Precision: 99.5%
Recall: 99.3%
F1-score: 99.4%

Not used

 Meena, Gaurav, et al.21  2024  InceptionV3  kaggle –  2  228
 Accuracy: 98%
Precision: –
Recall: –
F1-score: –

 Not used

BrTMHD-2023 MRI 2 1166
Accuracy: 98.97%
Precision: 97%
Recall: 97%
F1-score: 97%

Used

Proposed study 2024 ViT-GRU  Brain Tumor Kaggle 
Dataset  MRI  2  256

 Accuracy: 96.08%
Precision: 97%
Recall: 96%
F1-score: 96%

 Not used
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(a) accuracy curve (b) loss curve

Fig. 7.  Accuracy and loss curves analysis obtained from the proposed ViT-GRU model for BrTMHD-2023 
dataset.

(a) accuracy curve (b) loss curve

Fig. 8.  Accuracy and loss curves analysis obtained from the proposed ViT-GRU model for Brain Tumor Kaggle 
Dataset.

(a) Confusion matrice s of our propose d ViT-GRUmodel. (b) AUC-ROCcurves of our propose d ViT-GRUmodel.

Fig. 9.  Confusion matrices and AUC-ROC curves of our proposed ViT-GRU model for BrTMHD-2023 
dataset.
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Brain Tumor Kaggle Dataset, demonstrating its robust effectiveness in brain tumor detection and classification, 
which is shown in Figs. 9b and 10b, respectively.

The innovativeness of this research lies in leveraging primary data with the development of the hybrid model, 
offering distinct advantages, including enhanced model interpretability through XAI techniques like LIME, 
SHAP, and Attention maps. This increased transparency supports clinicians in understanding the model’s judg-
ments, thereby aligning our model with clinical expertise and improving its applicability in healthcare settings. 
Using XAI approaches like LIME, SHAP, and Attention maps, we increased model interpretability, emphasizing 
crucial aspects like white matter lesions and cortical atrophy, thereby supporting clinicians in comprehending 
the model’s judgments. The corresponding radiologist ensures and provides positive feedback about our model’s 
decision-making ability with the integration of XAI, allowing them to understand and trust the process that 
ensures the reliability and compatibility of the model. This transparency creates confidence and assures alignment 
with clinical expertise, boosting real-world application in healthcare. Our results, shown in numerous figures, 
support the model’s capacity to appropriately reflect brain tumor pathophysiology.

The results are shown in Fig. 11a, where each figure represents the LIME analytical assessment of our pro-
posed model using sample images. Furthermore, SHAP analysis findings are shown in Fig. 11c, which again aligns 
with our suggested model and includes sample images. Lastly, sample images from the attention map analysis 
are used in Fig. 11b to demonstrate the results.

Despite the promising results, this study faces several limitations. The complexity of integrating multi-modal 
MRI data, challenges in data preprocessing and feature extraction, and the limited availability of well-annotated 
MRI scans impact the robustness of our model. Additionally, class imbalance due to the rarity of brain tumors 
and ethical and legal considerations related to AI implementation in medical diagnostics necessitate careful 
attention. Addressing these limitations in future research could further enhance the accuracy and applicability 
of AI-based brain tumor detection systems.

Conclusion and future work
In summary, this study introduces and examines the effectiveness of our newly developed ViT-GRU model 
for the detection and classification of brain tumors. We assessed our model’s performance by benchmarking it 
against several pre-trained models employing transfer learning using three distinct optimizers. Our ViT-GRU 
model achieved a remarkable accuracy of 98.97% using a 10-fold cross-validation technique. When tested on 
the BrTMHD-2023 dataset without cross-validation, it outperformed the top transfer learning model by 1.26% 
in accuracy. Additionally, in another Kaggle benchmark dataset, our model achieved an accuracy of 96.08%, 
exceeding previous results for this dataset. These results demonstrate that our model surpasses these existing 

(a) Confusion matrices (b) AUC-ROC curves

Fig. 10.  Confusion matrices and AUC-ROC curves of our proposed ViT-GRU model for Brain Tumor Kaggle 
Dataset.

(a) LIME (Top three features). (b) Attention map. (c) SHAP visualization.

Fig. 11.  Visualization of XAI Techniques.
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models in accuracy, precision, recall, and F1-score metrics for MRI image analysis. The proposed model combines 
the regional feature extraction capabilities of ViT with the temporal contextual assessment strengths of GRU, 
leading to superior performance in comparison to several pre-trained models such as ResNet and VGG. Our 
model demonstrated exceptional accuracy, precision, recall, and F1-score metrics, particularly when optimized 
with the AdamW algorithm, achieving an accuracy of 98.97%. These theoretical advancements underscore the 
potential of hybrid models in enhancing diagnostic accuracy by integrating spatial and temporal data features. 
The practical implications of our research are further supported by extensive visual analyses, including accuracy 
and loss curves, confusion matrices, and AUC-ROC curves, which collectively highlight the model’s robust 
performance and reliability in diverse testing scenarios. Moreover, this study utilizes XAI techniques to increase 
the interpretability and transparency of the ViT-GRU model. We further illustrated the performance of our 
proposed model through accuracy and loss curves, confusion matrices, and AUC-ROC curves. The research 
incorporated primary MRI data collected from a hospital, which underwent preprocessing to prepare for analysis. 
Our approach combines the ViT with GRU and integrates the latest developments in Graph Neural Networks 
to effectively categorize brain tumor, deliver clinicians with essential information, and lead the way for efficient 
clinical implementations. The proposed study of this research demonstrates potential in facilitating a prompt 
response and enhancing the quality of life through early and precise diagnosis of brain tumor.

Future research should focus on expanding the dataset to improve model performance and generalizability 
across diverse patient populations and clinical settings. Additionally, integrating the ViT-GRU model into real-
time diagnostic devices should be investigated to assess its practical utility in clinical environments, potentially 
transforming diagnostic workflows. Lastly, applying the model to other medical imaging tasks can validate its 
versatility and robustness, extending its utility beyond brain tumor classification.

Data availability
The BrTMHD-2023 dataset used to support the findings of this study is available from the corresponding author 
upon request. Additionally, the study utilized the Brain Tumor Kaggle Dataset, which is publicly accessible online.
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