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Temporal asymmetries in inferring
unobserved past and future events

Xinming Xu 1, Ziyan Zhu2, Xueyao Zheng3 & Jeremy R. Manning 1

Unlike temporally symmetric inferences about simple sequences, inferences
about our own lives are asymmetric: we are better able to infer the past than
the future, since we remember our past but not our future. Here we explore
whether there are asymmetries in inferences about the unobserved pasts and
futures of other people’s lives. In two experiments (analyses of the replication
experiment were pre-registered), our participants view segments of two
character-driven television dramas and write out what they think happens just
before or after each just-watched segment. Participants are better at inferring
unseen past (versus future) events. This asymmetry is driven by participants’
reliance on characters’ conversational references in the narrative, which tend
to favor the past. This tendency is also replicated in a large-scale analysis of
conversational references in natural conversations. Our work reveals a tem-
poral asymmetry in how observations of other people’s behaviors can inform
inferences about the past and future.

What we experience in the current moment tells us about now– but
what does it tell us about the past or future? And does the current
moment tell us, as human observers,more about the past or about the
future? One way of examining these questions is to consider highly
simplified scenarios that are artificially constructed in the laboratory
(e.g.,1). At one extreme, for deterministic sequences with known rules,
knowing the current state provides the observer with sufficient infor-
mation to exactly reconstruct the entire past and future history of the
stimulus. At another extreme, for purely random sequences, observing
the current state provides no information about the past or future.

Sequences generated by stochastic processes fall somewhere
between these two extremes. For Markov processes, where each state is
solely dependent on the immediately preceding state, Shannon entropy
may be used to quantify the uncertainty of the past and future states,
given the present state. Cover (1994)2 showed that, for any stationary
process (i.e., processes in equilibrium),Markovor otherwise, the present
state provides equal information (i.e., mutual information) about past
and future states (also see3,4). Further, there is some evidence that
humans are similarly adept at inferring themost likely previous and next
items in sequences governed by stochastic Markov processes5.

Deterministic, random, and probabilistic sequences (in equili-
brium) are all symmetric: the present state of these sequences is

equally informative about past versus future states. In contrast, our
subjective experience in everyday life is that we knowmore about our
ownpast thanour future (e.g.,6).Wehavememories of our past thatwe
carry with us into the present moment, but we do not have memories
of our yet-to-be-experienced future. This temporal asymmetry impo-
ses an “arrow of time” on our subjective experience, known as the
psychological arrow of time (e.g.,7).

Although the psychological arrow of time implies that we should
be better able to infer our past thanour future, howgenerally does this
temporal asymmetry hold? And does the asymmetry hold only for our
own experiences (due to ourmemories), or is the asymmetry a general
property of any real-life event sequence? In real-world situations (and
narratives) where we are equally ignorant of the past and future, as for
other people’s lives where we lack memories of the relevant past, are
our inferences about the past and future symmetric or asymmetric?
For example, imagine that you aremeeting a stranger for the first time.
At the moment of your meeting, you lack both memories of their past
and knowledge about what they might do in the future. After that first
encounter with the stranger, would you be able to more accurately or
easily form inferences about what had happened in their past (retro-
diction) or what will happen in their future (prediction; Fig. 1)? Or
suppose you started watching a movie partway through. Again, you
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would enter the moment of watching without memories of prior parts
of the movie. Given your observations in the present, would your
guesses about what had happened before you started watching be
more (or less) accurate than your guesses about what will happen
next? In general, when the past and future areboth unobserved, arewe
better at inferring the past or the future in real-world settings? Nar-
rative stimuli, such as stories andmovies, can provide a useful testbed
for exploring several of these questions.

Although narratives are unlikely to be confused with one’s own
experiences, narratives mirror some of the structure of real-world
experiences. Character behaviors and interactions are often designed
in a way that helps the audience connect with or relate to the char-
acters. Events in narratives also unfold in ways that are intended to
build rapport or engagement with the audience. This might be
accomplished by having events follow a believable structure that is
reminiscent of real-world experiences, or by designing the audience’s
experiences in ways that communicate clear “rules” or “features” that
help to immerse the audience in the narrative’s universe. The char-
acters in a realistic narrative can also be written to behave in ways
reminiscent of real-world people. These same aspects of narratives
that authors use to drive engagement with events and characters can
lead narratives to replicate some core aspects of real-world experi-
ences that are typically lost or overlooked in traditional sequence
learning paradigms. Narratives can drive the audience to build situa-
tion models8,9 of the narrative’s universe or to form a theory of mind
andmakepredictions about the characters10,11. Events in narrativesmay
unfold in a consistent or logical way, but they also exhibit complex and
meaningful interactions across events reminiscent of real-world
experiences (but not necessarily the simple sequences traditionally
used in the statistical learning literature).

One key difference between simple artificial sequences and more
naturalistic (real or narrative) sequences is that naturalistic sequences
often incorporate other people. Despite the past and future being
equally unknown to the observer prior to the current moment, other
people and realistic characters in narratives, have their own psycho-
logical arrows of time. Specifically, they have memories of their own
pasts. Other people’s asymmetric knowledge about their own pasts
and futures might affect their behaviors (e.g., conversations). In turn,
this might provide time-asymmetric clues that favor the past (e.g.,
other people might talk more about their own pasts than their
futures;12). If observers leverage these clues from other people’s
asymmetric knowledge, then observers should also be better at
inferring the past (versus the future) of other people’s lives. Alter-
natively, inferences about other people’s lives may be more like
inferences about artificial statistical sequences (e.g., perhaps solely
relying on statistical regularities like event schemas, scripts, or situa-
tion models;8,9,13–15). If so, then the accuracy of inferences about the

past and the future of others’ lives should be approximately equal.
We note that the aforementioned authors make no specific claims
about temporal symmetries or asymmetries. Rather, we claim that
statistical regularities might imply symmetry (e.g., if you are on step n
of an unfolding schema, this suggests you may have just completed
step n − 1 and that you may next encounter step n + 1).

Here, we designed a naturalistic paradigm for exposing partici-
pants to scenarios where the past and future were equally unobserved.
We asked our participants to watch a series of movie segments drawn
from a character-driven dramatic television show. Across the condi-
tions and trials in the experiment, participants made free-form text
responses to either retrodict what had happened in the previous seg-
ment, predict what would happen in the next segment, or recall what
happened in the just-watched segment. We used manual annotations
and sentence-level natural languageprocessingmodels to characterize
participants’ responses. To foreshadow our results, we find that par-
ticipants are overall better at retrodicting the past than predicting the
future. This asymmetry appears to be driven by twomain factors. First,
characters more often refer to past events than future (e.g., planned)
events, and these references are leveraged by participants to make
inferences. Second, associations and dependencies between tempo-
rally adjacent events enable participants to form estimates about
nearby events (e.g., a past or future event referenced in an observed
conversation). We also ran a replication study with pre-registered
analyses to show that these findings generalize to another television
show and group of participants. Finally, we ran a large-scale analysis
using natural language processing to estimate the prevalence of
references to past and future events in hundreds ofmillions of dialogs
drawn from television shows, popular movies, novels, and written and
spoken natural conversations. Taken together, our work reveals a
temporal asymmetry in how observations of other humans’ behaviors
inform us about the past versus the future.

Results
Participants in ourmain experiment (n=36)watched segments from two
storylines, drawn from the CBS television show “Why Women Kill”. Each
storyline comprised 11 segments (mean duration: 2.05 min; range:
0.97–3.87min, Supplementary Table S1). We asked participants to use
free-form (typed) text responses to retrodict what had happened in the
segment prior to a just-watched segment, predict what would happen in
the next segment, or recall what they had just watched (Fig. 2, Task
design). We referred to the to-be-retrodicted, to-be-predicted, or to-be-
recalled segment as the target segment for each response. We system-
atically varied whether participants watched the segments in forward or
reverse chronological order, and how many segments they had seen
prior tomaking a response (seeTask designandprocedure).We also ran a
replication study with a similar design, where participants (n=37) wat-
ched segments from the Netflix television show “The Chair”, comprising
13 segments (mean duration: 1.97min; range: 0.58–4.30min, Supple-
mentary Table S2). The analyses of the replication experiment were pre-
registered, although the replication experiment itself was not pre-
registered (some of the data were collected before pre-registration).

We asked participants in our main experiment to generate four
types of responses after watching each video segment: uncued
responses, character-cued responses, updated responses and recalls
(Fig. 2, Data overview). To generate uncued responses, we asked par-
ticipants to either retrodict (uncued retrodiction; u-R) what happened
shortly before or predict (uncued prediction; u-P) what happened
shortly after the just-watched segment. To generate character-cued
responses, we asked participants to retrodict (character-cued retro-
diction; c-R) or predict (character-cued prediction; c-P) what came
before or after the just-watched segment, but we provided additional
information to the participant about which character(s) would be
present in the target (to-be-retrodicted or to-be-predicted) segment.
We hypothesized that character-cued responses should be more

Fig. 1 | Retrodiction, retrospection, and prediction. In one’s own life, one may
draw on memory to retrospect (i.e., review or re-evaluate) the past or predict the
future. This process is time-asymmetric since our own past is (typically) observed,
whereas our future is not. When we make inferences about strangers' lives, how-
ever, weoftenhave uncertainty about both their past and future, sincewemayhave
observed neither. We may retrodict the unobserved past and predict the unob-
served future of strangers' lives.
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accurate than uncued responses, to the extent that participants
incorporate the character information we provided to them into their
retrodictions and predictions. To generate updated responses, we
asked participants to watch an additional segment that came just prior
toor just after the target segment and then toupdate their retrodiction
(c-RP) or prediction (c-PR) about the target segment. The updated
retrodiction/prediction conditions were intended to test the hypoth-
esis that access to more information leads to better retrodiction/pre-
diction performance. However, because this hypothesis is not directly
related to the main questions about temporal symmetry we examined
in this paper, we do not report on these updated responses in this
manuscript. Finally, we also askedparticipants to recall whathappened
in the just-watched segment. We labeled these responses according to
which other segments participants had watched prior to the just-
watched target. Retrodiction-matched recall (re(R)) responses were
made during the retrodiction sequences (B1 and B2; Fig. 2), whereas
prediction-matched recall (re(P)) responses were made during the
prediction sequences (A1 and A2; Fig. 2). Whereas retrodiction and
prediction responses reflect what participants estimate they would
remember after watching the (inferred) target segment, recall
responses provide a benchmark for comparison by measuring what
they actually remember about the target segment. Our replication
experiment (Supplementary Fig. S1) used a similar design but did not
have participants generate recall responses.

We used two general approaches to assess the quality of partici-
pants’ responses (see Response analyses, Text embeddings of partici-
pants’ responses, Fig. 3A). One approach entailed manually annotating
events in the video and counting the number of matched events in
participants’ responses. We identified a total of 117 unique events
reflected across the 22 video segments in ourmain experiment (range:
3–9per segment), and a total of 71 events across the 13 segments inour
replication experiment (range 1–16; see Video annotation, Supple-
mentary Tables S1, S2).We assigned one “point” to each of these video
events. We also identified a number of additional events (main
experiment: 23; replication experiment: 17) in participants’ responses
that were either summaries of several events or that were partial
matches to the manually identified video events. We assigned 0.5
points to each of these additional events. This point system enabled us
to compute the numbers and proportions (hit rates) of correctly ret-
rodicted, predicted, and recalled events contained in each response.
Our second approach entailed using a natural language processing
model16 to embed annotations and responses in a 512-dimensional
feature space. This approach was designed to capture conceptual
overlap between responses that were not necessarily tied to specific
annotated events. To quantify this conceptual overlap, we computed
the similarities between the embeddings of different sets of responses.
We constructed two measures, precision and convergence, to char-
acterize different aspects of participants’ responses. First, we defined

Fig. 2 | Task overview. Participants in our main experiment watched segments of
two storylines from the television series “Why Women Kill”. They made free-form
text responses to either retrodict what had happened in the previous segment,
predict what would happen in the next segment, or recall what happened in the
just-watched segment. Across four counterbalanced sequences, we systematically
varied whether participants watched the segments in forward or reverse chron-
ological order, whether (or not) responses were cued using the main characters in

the target segment, and which other segments participants had watched prior to
making a response. For each segment,wecollected several retrodiction, prediction,
and/or recall responses across different experimental conditions. Experiment time
is denoted along the vertical axis, storyline segment orders are indicated along the
horizontal axis, and the colors denote experimental tasks (conditions). For an
analogous depiction of our replication experiment’s design, see Supplemen-
tary Fig. S1.
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precision as the median cosine similarity between the embedding
vector of a participant’s retrodiction or prediction response to a target
segment, and the embedding vectors for all other participants’ recalls
of the target segment (main experiment), or the similarity between
that response’s vector and the embedding vector for an online plot
synopsis (obtained via Screen Spy; www.screenspy.com/the-chair-
season-1-episode-1) of the target segment (replication experiment). In

this way, precision is intended to capture the degree to which parti-
cipants’ inferences about the target segment reflected the actual
content in that segment. Next, we defined convergence as the mean
cosine similarity between the embedding of a participant’s retro-
diction, prediction, or recall of a target segment and the embeddings
of all other participants’ responses (of the same type) to the same
segment. In this way, convergence is intended to capture the degree of
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similarity across participants’ responses of a given type, to the given
target segment. We analyzed the data using generalized linear mixed
models, with participant and stimulus (e.g., target segment) identities
as crossed random effects (see Statistical analysis).

No evidence that retrodiction and prediction performance on
target events exhibit temporal asymmetry
First, we sought to validate the main effect of response type (i.e.,
uncued responses, character-cued responses, and recalls), irrespective
of the temporal direction (retrodiction versus prediction). Across
these three types of responses, participants have access to increasing
amounts of information about the target segment. Therefore, across
these response types, we hypothesized that participants’ responses
should become both more accurate and more convergent across
individuals. Consistent with this hypothesis, participants’ character-
cued retrodictions and predictions were associated with higher target
event hit rates than uncued retrodictions and predictions in our main
experiment (odds ratio (OR): 2.65, Z = 4.24, p < 0.001, 95% confidence
interval (CI): 1.69 to 4.16; Fig. 3B). These character-cued responses
were also more precise (b =0.13, t(18.1) = 9.43, p <0.001, CI: 0.10 to
0.16; Fig. 3C) and convergent across individuals (b =0.11, t(18.6) = 6.21,
p <0.001, CI: 0.07 to 0.15; Fig. 3D). Relative to character-cued
responses, participants’ recalls showed higher target event hit rates
(OR = 21.83, Z = 10.61, p <0.001, CI: 12.35 to 38.59) and were more
convergent across individuals (b =0.20, t(19.4) = 9.10, p <0.001, CI:
0.16 to 0.25). These results are consistent with the common-sense
notion that access to more information about a target segment yields
better performance (i.e., higher hit rates, precision, and convergence
across individuals). These findings also held for our replication
experiment (target event hit rates of character-cued vs. uncued
responses: OR: 18.63, Z = 4.26, p < 0.001, CI: 4.85 to 71.58, Fig. 3E;
precisions of character-cued vs. uncued responses: b =0.26,
t(11.70) = 9.87, p <0.001, CI: 0.20 to 0.31, Fig. 3F; convergence of
character-cued vs. uncued responses: b = 0.25, t(11.98) = 8.93,
p <0.001, CI: 0.19 to 0.31, Fig. 3G).

Next, we carried out a series of analyses specifically aimed at
characterizing temporal direction effects— i.e., the relative quality of
retrodictions versus predictions across different types of responses.
We hoped that these analyses might provide insights into our central
question about whether inferences about the past and future are
equally accurate. Across both uncued and character-cued responses in
our main experiment (Fig. 2), retrodictions had numerically higher hit
rates than predictions (Fig. 3B). However, these differences were only
statistically significant for character-cued responses (uncued respon-
ses: OR = 1.17, Z = 0.35, p =0.729, CI: 0.47 to 2.92; character-cued

responses: OR= 1.93, Z = 2.15, p =0.032, CI: 1.06 to 3.52). We observed
a similar pattern of results for the precisions of participants’ responses
(Fig. 3C). Specifically, their responses tended to be numerically more
precise for retrodictions versus predictions, but the differences were
only statistically significant for character-cued responses (uncued
responses: b = 0.03, t(20.9) = 1.09, p = 0.287, CI: −0.03 to 0.10;
character-cued responses: b =0.06, t(20.8) = 3.01, p = 0.007, CI: 0.02
to 0.11). We also consistently observed numerically higher con-
vergence across participants for retrodictions versus predictions
(Fig. 3D), but neither of these differences was statistically significant
(uncued responses: b =0.03, t(17.9) = 0.75, p =0.464, CI: -0.05 to 0.11;
character-cued responses:b =0.04, t(17.4) = 1.46, p = 0.163, CI: -0.02 to
0.09). In our replication experiment, as in our main experiment, most
of these differences were not statistically significant (target event hit
rates for uncued responses: OR =0.11, Z = − 1.92, p = 0.054, CI: 0.01 to
1.04; target event hit rates for character-cued responses: OR = 1.42,
Z = 0.62, p = 0.533, CI: 0.47 to 4.23, Fig. 3E; precision for uncued
response: b = −0.06, t(15.86) = − 1.85, p =0.083, CI: −0.12 to 0.01;
precision for character-cued responses: b = − 0.04, t(25.02) = − 2.28,
p = 0.032, CI: -0.08 to 0.00, Fig. 3F; convergence for uncued respon-
ses: b = −0.03, t(12.15) = −0.55, p =0.592, CI: −0.13 to 0.07; con-
vergence for character-cued responses: b = −0.05, t(13.68) = − 1.78,
p =0.097, CI:−0.11 to 0.01, Fig. 3G). Taken together, our results from
both experiments suggest that when we focus our analyses solely on
the target segments, there is no statistical evidence that there are
asymmetries in participants’ inferences about the past and future.

Retrodiction and prediction performance on events across
temporal distances exhibit temporal asymmetry
The above analyses were focused solely on the target segment (i.e.,
retrodiction of segment n after watching segments (n + 1)…N, or pre-
dictionof segmentn afterwatching segments 1…(n − 1)).Wewondered
whether participants’ responses might also contain information about
more temporally distant events beyond the target segment. In order to
carry out this analysis properly, we reasoned that participants might
reference past or future events that were implied to have occurred
offscreen but not explicitly shown onscreen. For example, a character
in location A during one scene might appear in location B during the
immediately following scene. Although it wasn’t shown onscreen, we
can infer that the character traveled between locations A and B
sometime between the time intervals separating the scenes17. In all, we
manually identified a set of 74 implicit offscreen events in our main
experiment’s stimuli that were implied to have occurred given what
was (explicitly) depicted onscreen (Fig. 4A), plus one additional partial
event and one additional summary event. We applied the same

Fig. 3 | Retrodiction, prediction, and recall performance on target segmentsby
experimental condition in our main and replication experiments. A Methods
schematic. For each retrodiction, prediction, and recall response, we calculated
the hit rate for events in the target segment (see Response analyses), the response
precision (see Text embeddings of participants' responses), and the response con-
vergence across participants. B Target event hit rate (main experiment). Mean
proportions of target events thatwerecontained inparticipants' (n = 36) responses,
for each response type, averaged across target segments (n = 20). Linear mixed
models revealed no statistically significant difference between uncued retro-
dictions and predictions (p =0.729), and higher target event hit rates in character-
cued retrodictions than predictions (p =0.032). C Response precision (main
experiment). Mean precisions of participants' responses, for each response type,
averaged across target segments. The horizontal lines denote the mean pairwise
semantic similarities (see Text embeddings of participants' responses) across recall
responses (re(R): orange; re(P): blue). Linearmixedmodels revealed no statistically
significant difference between uncued retrodictions and predictions (p =0.287),
and higher response precision in character-cued retrodictions than predictions
(p =0.007. D Response convergence (main experiment). Mean (across-partici-
pant) convergence of participants' responses, for each response type, averaged

across target segments. Linear mixed models revealed no statistically significant
difference between uncued retrodictions and predictions (p =0.464), and no sta-
tistically significant difference between character-cued retrodictions and predic-
tions (p =0.163). E Target event hit rate (replication experiment). Mean
proportions of target events thatwere contained in participants' (n = 37) responses,
for each response type, averaged across target segments (n = 12). Linear mixed
models revealed no statistically significant difference between uncued retro-
dictions and predictions (p =0.054), and no statistically significant difference
between character-cued retrodictions and predictions (p =0.533). F Response
precision (replication experiment). Same format as Panel (C). Linear mixed
models revealed no statistically significant difference between uncued retro-
dictions and predictions (p =0.083), and lower response precision in character-
cued retrodictions than predictions (p =0.032). G Response convergence (repli-
cation experiment). Same format as Panel (D). Linear mixed models revealed no
statistically significant difference between uncued retrodictions and predictions
(p =0.592), and no statistically significant difference between character-cued ret-
rodictions and predictions (p =0.097). All panels: error bars denote bootstrapped
95% confidence intervals. Asterisks indicate significance in the (generalized) linear
mixed models: * denotes p <0.05, and ** denotes p <0.01.
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procedure to our replication experiment’s stimuli and identified 66
implicit offscreen events, plus two additional partial events and one
additional summary event. We defined the just-watched segment as
having a lag of 0. We assigned the target segment of a participant’s
retrodiction or prediction (i.e., the immediately preceding or pro-
ceeding segment) a lag of − 1 or + 1, respectively. The segment fol-
lowing the next was assigned a lag of + 2, and so on. We tagged
offscreen events using half steps. For example, an offscreen event that

occurred after the prior segment but before the just-watched segment
would be assigned a lag of −0.5.

Because there is no “ground truth” number of offscreen events,
we could not compute the hit rates for offscreen events. Instead, we
counted up the absolute number of retrodicted or predicted events as
a function of lag. In other words, given that the participant had just
watched segment i, we asked how many events from segment i + lag
they retrodicted or predicted, on average, given that they were aiming
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to retrodict or predict events at lags of ± 1. We also counted the
number of unmatched events in participants’ responses that did not
correspond to any events in the relevant segments of the narrative.We
focused specifically on uncued retrodictions and predictions, which
we hypothesized would provide the cleanest characterizations of
participants’ initial estimates of the unobserved past and future (i.e.,
without potential biases introduced by additional character informa-
tion, as in the character-cued responses).

There were no statistically significant differences in the total
(combiningmatched and unmatched) numbers of uncued retrodicted
versus predicted events (main experiment: Ratio = 1.05, Z =0.75,
p =0.454, CI: 0.93 to 1.18; Fig. 4B; replication experiment: Ratio = 0.93,
Z = −0.67, p = 0.502, CI: 0.75 to 1.15; Fig. 4D; for results from the
character-cued conditions, see Supplementary Figs. S4, S5). However,
when we categorized events in participants’ responses as either mat-
ched (to an event with any lag) or unmatched, we found that there
were more matched events in retrodictions than in predictions (main
experiment: Ratio = 1.61, Z = 2.80, p =0.005, CI: 1.15 to 2.25; Fig. 4B;
replication experiment: Ratio = 4.00, Z = 4.33, p <0.001, CI: 2.14 to
7.50; Fig. 4D). We also observed that there were fewer unmatched
events (i.e., events that did not correspond to any explicit or implicit
event in the story) in retrodictions than in predictions (main experi-
ment: Ratio = 0.34, Z = − 5.05, p <0.001, CI: 0.23 to 0.52; replication
experiment: Ratio = 0.52, Z = − 4.30, p <0.001, CI: 0.39 to 0.70), sug-
gesting that participants did not hit more events in their retrodictions
solely because they made more guesses when retrodicting than pre-
dicting. We then separate matched events according to their lags.
Consistent with the hit rates results reported above, the numbers of
uncued retrodicted and predicted target (lag = ± 1) events were not
statistically significantly different (main experiment: Ratio = 0.92,
Z = −0.15, p = 0.879, CI: 0.30 to 2.84; Fig. 4B; replication experiment:
Ratio = 0.44, Z = − 1.38, p =0.169, CI: 0.14 to 1.41; Fig. 4D). However,
when retrodicting, participants in both experimentsmentioned events
with lag < − 1 more often than participants predicted events with
lag > 1; main experiment: Ratio = 9.10, Z = 3.80, p <0.001, CI: 2.92 to
28.39; Fig. 4B, C; replication experiment: Ratio = 7.98, Z = 5.50,
p <0.001, CI: 3.81 to 16.74; Fig. 4D, E). We did not find any statistically
significant differences in the numbers of offscreen events immediately
before or after the just-watched segment in our main experiment
(lag = ± 0.5;main experiment: Ratio = 0.75, Z = −0.36, p =0.715, CI: 0.15
to 3.59), but participants in our replication experiment respondedwith
more prior (versus future) immediately adjacent offscreen events
(Ratio = 26.46, Z = 2.45, p = 0.014, CI: 1.93 to 362.29). This retrodiction
advantage in thenumbers ofmatched events heldwhen controlling for
absolute lag in our main experiment (Ratio = 34.31, Z = 3.28, p =0.001,
CI: 4.16 to 283.20), although it did not hold up in our replication
experiment (Ratio > 9999, Z =0.00, p = 0.997), as participants in the
replication experiment almost never referenced offscreen events in
their predictions. The retrodiction advantage also held for onscreen
events alone in ourmain experiment (Ratio = 47.54, Z = 3.74, p <0.001,
CI: 6.27 to 360.60), but not statistically significant in our replication
experiment (Ratio = 3.86, Z = 1.86, p = 0.063, CI: 0.93 to 15.98), nor for

offscreen events alone (main experiment: Ratio = 24.76, Z = 1.71,
p =0.087, CI: 0.63 to 975.27; replication experiment: Ratio > 9999,
Z = 0.00, p =0.997). Again, one reason for the statistically non-
significant effects in our replication experimentmay be the lack of any
offscreen event responses in participants’predictions. Taken together,
these analyses show that participants retrodict past events with higher
accuracy than they predict future events.

The temporal bias in conversational references drives partici-
pants’ asymmetric retrodiction and prediction performance
What might be driving participants to retrodict further and more
accurately into the unobserved past, compared with their predictions
of the unobserved future? By inspecting the video content, we noticed
that characters frequently referencedbothpast events and (plannedor
predicted) future events in their spoken conversations, which might
provide clues about past and future events. We wondered whether
participants’ responses might be influenced by characters’ conversa-
tional references. Across all of the characters’ conversations, and
across all of the video segments from our main experiment, we
manually identified a total of 82 references to past or future events
(i.e., that occurred onscreen or offscreen before or after the events
depicted in the current segment; Figs. 5A and Supplementary Fig. S6A,
also see Reference coding). Characters in our main experiment’s sti-
mulus tended to reference the past (52 references) more than the
future (30 references), consistent with previous work12. References to
the past were also skewed to more temporally distant events com-
pared with references to the future (Figs. 5B and Supplementary Fig.
S6B). These asymmetries also held for characters in the replication
experiment’s stimulus (46 past references versus 7 future references,
Supplementary Figs. S8A, S7B). These observations indicate that the
characters in the stimuli display a “preference” for the past (versus
future) in their conversations. Might this asymmetry be driving the
asymmetries in participants’ retrodictions versus predictions?

Controlling for temporal distance (lag), past and future events
that story characters referenced in their conversationswere associated
with higher hit rates than unreferenced events in our main experiment
(uncued retrodiction: OR = 12.70, Z = 10.94, p < 0.001, CI: 8.06 to
20.03; uncued prediction: OR = 8.29, Z = 6.83, p <0.001, CI: 4.52 to
15.20; Fig. 5E). In our replication study this result held for past events
(uncued retrodiction: OR = 5.57, Z = 5.88, p <0.001, CI: 3.14 to 9.89) but
not for future events (uncued prediction: OR= 1.54, Z =0.22, p = 0.827,
CI: 0.03 to 73.36; Supplementary Fig. S8D). The failure to replicate the
“prediction” result appeared to follow from the fact that references to
future events in characters’ conversations were very rare in our repli-
cation experiment’s stimulus. These findings suggest that participants’
responses are at least partially influenced by the characters’ con-
versations. To estimate the contributions of characters’ references on
hit rates, we computed the difference in hit rates between all events
(which comprised both referenced and unreferenced events) and
unreferenced events, as a function of lag. These differences exhibited a
temporal asymmetry in favor of retrodiction (Fig. 5C and Supple-
mentary Fig. S8B). This indicates that the asymmetries in participants’

Fig. 4 | Retrodictions andpredictions of events at different temporal distances.
A Illustration of the annotation approach. For each uncued retrodiction and
prediction response, we calculated the number of (retrodicted orpredicted) events
as a function of temporal distance from the target segment, or lag. Onscreen
(explicit) events are tagged using integer-valued lags, whereas offscreen (implicit)
events are tagged using half-step lags (± 0.5, ± 1.5, etc.).BNumber of events hit in
participants' (n = 36) uncued retrodictions and predictions for each event type
(main experiment). Here we separated events we identified in participants'
responses according to whether they occurred in the target segment (lags of ± 1),
during the interval between the target segment and the just-watched segment (lags
of ± 0.5), at longer temporal distances (∣lag∣> 1), orwere incorrect (unmatchedwith
any past or future events in the narrative). The counts displayed in the panel are

averaged across just-watched segments. C Number of events hit as a function of
temporal distance (main experiment). Here the (across-segment)mean numbers
of events hit in participants' uncued retrodictions (orange) and predictions (blue)
are displayed as a function of temporal distance to the just-watched segment (lag).
Each point represents one segment (paired with a just-watched segment).D Num-
ber of events hit in participants' (n = 37) uncued retrodictions and predictions
for each event type (replication experiment). Same format as Panel (B). E
Number of events hit as a function of temporal distance (replication experi-
ment). Same format as Panel (C). Colors denote temporal direction (orange:
past; blue: future) and distance (darkest shading: target events; darker shading:
onscreen non-target events; lighter shading: offscreen events).
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retrodictions versus predictions are also at least partially influenced by
the characters’ conversations. However, these temporal asymmetries
in participants’ retrodictions and predictions persisted even for events
that characters never referenced in their conversations in both our
main experiment (hit rates of uncued retrodicted versus predicted
unreferenced events: OR = 2.00, Z = 2.40, p =0.016, CI: 1.14 to 3.51;

Fig. 5D) and replication experiment (OR = 3.67, Z = 2.61, p = 0.009, CI:
1.38 to 9.74; Supplementary Fig. S8C). When we further separated the
unreferenced events into onscreen events and offscreen events, we
found that these asymmetries held only for the onscreen events in our
main experiment (onscreen: OR = 2.65, Z = 2.59, p =0.010, CI: 1.27 to
5.54; offscreen: OR = 1.50, Z = 0.91, p =0.361, CI: 0.63 to 3.62), and only

Fig. 5 | The temporal bias in conversational references drives participants’
asymmetric retrodiction and prediction performance (main experiment). A
Illustration of the annotation approach. We manually annotated references to
events in past or future segments in characters' spoken conversations.Wematched
each such reference with its corresponding storyline event (and its corresponding
segment number for onscreen events, or half-step segment number for offscreen
events).We then tracked the hit rate separately for referenced versus unreferenced
events in participants' uncued retrodictions and predictions. BReference rate as a
function of lag. Across all possible just-watched segments (lag 0), the bar heights
denote the average proportions of events referenced in other past or future seg-
ments. CDifference in hit rates between all events and unreferenced events. To
highlight the effect of characters' references to past and future events on partici-
pants' retrodictions and predictions, here we display the difference in across-
segment mean hit rates between all events and unreferenced events, as a function
of temporal distance (lag) to the just-watched segment. D Hit rates for

unreferenced events. The average response hit rates for unreferenced events are
displayed as a function of temporal distance to the just-watched segment. Each
point represents one segment (paired with a just-watched segment). Panels (B–D):
colors are described in the Fig. 4 caption.EHit rates and counts of referenced and
unreferenced events. As a function of temporal distance to the just-watched
segment, the sub-panels display the across-segmentmeannumbers (x-axes) andhit
rates (y-axes) of referenced (red) and unreferenced (gray) events that participants
hit (darker shading) or missed (lighter shading) in their uncued retrodictions (top
sub-panel) and uncued predictions (bottom sub-panel). Intuitively, the widths of
the rectangles at each lag denote the total number of events at each possible lag.
The darker shading denotes the proportions of events that participants retrodicted
or predicted, and the lighter shading denotes the proportions of events that par-
ticipants “missed” in their responses. For an analogous presentation of results from
the replication experiment, see Supplementary Fig. S8.
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for offscreen events in our replication experiment (onscreen: OR =
0.97, Z = −0.06, p = 0.950, CI: 0.37 to 2.57; offscreen: OR = 13.88,
Z = 3.06, p =0.002, CI: 2.58 to 74.81). Taken together, these analyses
suggest that asymmetries in the number of references charactersmake
to past and future events partially explain why participants tend to
retrodict the past better than they predict the future.

Reference-adjacent events also contribute to the temporal
asymmetry
If characters’ direct references cannot fully account for the temporal
asymmetry in retrodicting the unobserved past versus predicting the
unobserved future, what other factors might explain this phenom-
enon? The results above indicate that characters’ references to specific
unobserved events in the past or future boost participants’ estimates
of these events. But might characters’ references have other effects on
participants’ responses beyond the referenced events? For example,
real-world experiences and events in realistic narratives are often
characterized by temporal autocorrelations (i.e., what is “happening
now” will likely relate to what happens “a moment from now,” and so
on). Real-world experiences and realistic narratives are also often
structured into “schemas” whereby experiences unfold according to a
predictable patternor formula that characterizes a particular situation,
such as going to a restaurant or catching aflight at the airport15. If there
are associations or temporal dependencies between temporally
nearby events in the television shows participants watched, partici-
pants might be able to pick up on these patterns in forming their
responses. This would be reflected in an inference “boost” for events
that were nearby in time to events that characters referred to in their
conversations, in addition to the referenced events them-
selves (Fig. 6A).

Because characters tended to refer to past eventsmore often than
future events, the proportions of unreferenced events that were
adjacent to referenced events should show a similar temporal asym-
metry in favor of the past. We tested this intuition by computing the
proportions of unreferenced events in the stimulus that were tempo-
rally adjacent to past or future events referenced by the characters
during a given segment. Here, we defined “temporally adjacent” as any
event within an absolute lag of one relative to a referenced onscreen
event, or within an absolute lag of 0.5 to a referenced offscreen event.
We also defined “remaining" events as unreferenced events that were
not temporally adjacent to any referenced events. In our main
experimentweobservedhigher proportions of unreferencedpast than
future events that were temporally adjacent to referenced events
(Fig. 6B). Further, these reference-adjacent events had higher hit rates
than remaining events after controlling for absolute lag (uncued ret-
rodiction: OR = 7.15, Z = 2.40, p =0.016, CI: 1.44 to 35.58; uncued pre-
diction: OR = 3.11, Z = 2.30, p =0.022, CI: 1.18 to 8.21; Fig. 6E). To
estimate the contributions of reference adjacency on hit rates, we
computed the differences in hit rates between unreferenced events
(which comprised both reference-adjacent and remaining events) and
remaining events, as a function of lag. These differences exhibited a
temporal asymmetry in favor of retrodiction (Fig. 6C). This suggests
that reference-adjacent events also contribute to participants’ retro-
diction advantage. This reference-adjacency effect did not hold in our
replication experiment (uncued retrodiction: OR = 6.46, Z = 1.58,
p =0.113, CI: 0.64 to 65.04; uncued prediction: OR =0.002, Z = 0.007,
p =0.995, CI: < 0.001 to > 9999; Supplementary Fig. S9D, B). Upon
further examination of the stimulus we used in our replication
experiment, along with participants’ responses, we noticed that the
television episode appears to comprise several interleaved storylines
(Supplementary Fig. S10A). This meant that what we had originally
labeled as “reference-adjacent” events (based solely on the temporal
order in the episode) did not necessarily correspond to the chron-
ological order in the story. For example, if (across successive seg-
ments) the narrative focuses on character A at time t in segment n, and

on character B at time t in segment n + 1, then we reasoned that
watching segment nmight not provide much insight into what would
happen in segment n + 1. However, watching segment n could provide
clues about what would happen to character A at time t + 1, which
might have been shown later on in the episode. We then corrected the
reference-adjacency labels in the replication experiment stimulus to
correspond to individual storylines, rather than solely with respect to
the episode segment orders. This correction was not pre-registered.
With this correction, we recovered the reference adjacent effect for
uncued retrodiction (OR = 7.55, Z = 2.93, p =0.003, CI: 1.95 to 29.20;
Supplementary Fig. S10E, C). We did not find a significant reference
adjacent effect in uncued prediction (OR = 1176.66, Z =0.04, p =0.972,
CI: < 0.001 to > 9999), again likely due to the limited number of
future references in the narrative. The remaining events did not exhibit
a statistically significant temporal asymmetry (main experiment:
OR =0.75, Z =0.33, p =0.739, CI: 0.14 to 4.08; Fig. 6D; replication
experiment: OR = 889.48, Z =0.03, p =0.973, CI: < 0.001 to > 9999;
Supplementary Fig. S10D). These results suggest that temporal adja-
cency can also partially account for participants’ retrodiction
advantages.

Effects of references on retrodiction and prediction perfor-
mance are directed
The preceding analyses show that when characters reference past or
future events, those referenced events and other events that are
temporally adjacent to the referenced events are more likely to be
retrodicted and predicted. In other words, referring to a past or future
event in conversation leads to a “boost” in that event’s hit rate. We
wondered whether this boost was bi-directional. In particular: when a
character refers (during a referring event) to another event (i.e., the
referenced event), does this boost only the referenced event’s hit rate,
or does the referring event also receive a boost?We labeled each event
as a “referring event,” a “referenced event,”or an “other event” (i.e., not
referring or referenced; Fig. 7A, B). We limited our analysis to refer-
ences to onscreen (explicit) events. Consistent with our analysis of the
proportions of referenced events (Fig. 5B and Supplementary Fig.
S8A), the proportions of referring events exhibited a forward temporal
asymmetry (Fig. 7C and Supplementary Fig. S11A). Controlling for
absolute lag, we found that referring eventswereassociatedwith lower
hit rates than referenced events in our main experiment (uncued ret-
rodiction: OR =0.02, Z = − 4.12, p <0.001, CI: 0.00 to 0.11; uncued
prediction: OR =0.04, Z = − 4.80, p <0.001, CI: 0.01 to 0.15; Fig. 7D)
and had no statistically significant differences in hit rates compared
with other events (uncued retrodiction: OR =0.37, Z = − 1.07,p =0.284,
CI: 0.06 to 2.28; uncued prediction: OR = 2.33, Z = 1.53, p =0.127, CI:
0.79 to 6.87). In our replication experiment, because there were very
few referenced events during prediction, which also resulted in limited
referring events during retrodiction, we had insufficient data to reli-
ably compare between referenced, referring, and other events (all
ps > 0.998; Supplementary Fig. S11). Taken together, this indicates that
only referenced events received a hit rate boost (relative to other
events), suggesting that the retrodictive and predictive benefits of
references are directed (i.e., asymmetric).

Large-scale analysis of conversational data replicates the tem-
poral bias in conversational references
The above analyses show that participants leveraged characters’
references to make inferences about the past and the future, and the
retrodiction advantage could be attributed to the fact that characters
in the television shows we used as stimuli in our main experiment and
replication experiment refer more often to the past than to the future.
But how universal is this pattern? For example, were the television
shows we happened to select for our experiments representative of
television shows more generally? Or perhaps narratives created for
entertainment purposes tend to have biases towards the past in order
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to keep the stories engaging and unpredictable. To better understand
temporal biases in conversations, we carried out a large-scale analysis
using extracted conversationdata from12datasets, comprisingover 17
million documents. The data comprised transcripts from television
shows and popular films, novels, and spoken and written utterances
from natural conversations. These datasets were chosen partly for
convenience, and partly to sample from a variety of different types of

conversations. Nine of the datasets we examined were from Con-
voKit (https://convokit.cornell.edu/documentation/datasets.html;18).
Using the category labels proposed by ref. 19, the conversations we
analyzed included “constrained,” “scripted,” and “spontaneous”
human-human conversations. A summary of the data we analyzed,
including brief descriptions of each dataset, may be found in Supple-
mentary Table S3. We used natural language processing to identify

Fig. 6 | Reference-adjacent events also contribute to the temporal asymmetry
(main experiment). A Illustration of the annotation approach. We extended the
annotation procedure depicted in Fig. 5A to also label unreferenced events that
were either temporally adjacent to (i.e., immediately preceding or proceeding) a
referenced event (reference-adjacent events) or not (remaining events). B Adja-
cent reference rate for unreferenced events as a function of lag. Across all
possible just-watched segments (lag 0), the bar heights denote the average pro-
portion of unreferenced events in other past or future segments that were tem-
porally adjacent to any referenced event. C Difference in hit rates between
unreferenced events and remaining events. To highlight the effect of reference
adjacency on retrodiction and prediction of unreferenced events, here we display
the difference in across-segment mean hit rates between unreferenced events and
remaining events, as a function of temporal distance (lag) to the just-watched

segment. D Hit rates for remaining events. Participants (n = 36) across-segment
mean response hit rates for unreferenced events that were not temporally adjacent
to any referenced events are displayed as a function of temporal distance to the
just-watched segment. Each point represents one segment (paired with a just-
watched segment). Panels (B–D): colors are described in the Fig. 4 caption. E Hit
rates and counts of referenced, reference-adjacent, and remaining events. As a
function of temporal distance to the just-watched segment, the sub-panels display
the numbers (x-axes) and proportions (y-axes) of referenced (red), reference-
adjacent (purple), and remaining (gray) events that participants hit (darker shad-
ing) or missed (lighter shading) in their uncued retrodictions (top sub-panel) and
uncued predictions (bottom sub-panel). For an analogous depiction of results from
our replication experiment, see Supplementary Figs. S9, S10.

Article https://doi.org/10.1038/s41467-024-52627-5

Nature Communications |         (2024) 15:8502 10

https://convokit.cornell.edu/documentation/datasets.html
www.nature.com/naturecommunications


references to past or future events in each conversation (see Large-
scale analysis of conversational data).

In all, across all of the datasets we examined in our analysis, we
identified a total of 24,040,006 references to past or future events. A
total of 13,471,984 (56.04%) of these were references to past events,
and the remaining 10,568,022 (43.96%) were references to future
events. For each dataset, we tested whether the proportion of refer-
ences to past events was higher than that of references to future
events. In 11 of the 12 datasets, there were higher proportions of
references to past events than future events (all ps< 0.001). In one
dataset, “Persuasion for Good,” which comprised natural conversa-
tions between pairs of Amazon Mechanical Turk workers wherein one
participant tried to convince the other participant to donate to a
charity in the future, references to the future were significantly more
common than references to the past (χ2(1) = 422.31, p <0.001). This
latter example provided a nice sanity check for verifying that our

general approachwas not itself biased in favor of the past, e.g., even in
conversations that were actually biased towards the future.

Weused ameta-analysis-like approach to test if therewere reliably
more references to past events than to future events across all of the
datasets (Fig. 8). For each dataset, we used as our effect size the Past/
Future ratio, defined as the proportion of references to past events (in
all sentences) divided by the proportion of references to future events
(commonly known as the “risk ratio”). In this way, effect sizes greater
than 1 reflect a bias toward the past, whereas effect sizes of less than 1
reflect a bias toward the future. We fit a random-effects model to the
log-transformed ratios. For the 12 datasets we included in this analysis,
the observed ratios ranged from 0.76 to 2.09, with the majority of
estimates being greater than one (92%). The estimated average ratio
based on the random-effects model was μ = 1.44 (95% CI: 1.23 to 1.69).
Therefore, the average outcome differed significantly from zero
(z = 4.57, p < 0.001). According to Cook’s distances, none of the studies

Fig. 7 | Effects of references on retrodiction and prediction performance are
directed (main experiment). A Illustration of the annotation approach. We
extended the annotation proceduredepicted in Fig. 5A to also labelwhich events in
our main experiment’s stimuli contained references to events in other segments. B
Referenced versus referring events. During event i, when a character makes a
reference to another event (j), we define i as the “referring” event and j as the
“referenced” event. C Refers to the rate as a function of lag. Across all possible
just-watched segments (lag 0), the bar heights denote the across-segment mean
proportions of events containing references to events in other past or future

segments in our main experiment’s stimuli. The bar colors are described in the
Fig. 4 caption.DHit rates and counts of referenced, referring, and other events.
As a function of temporal distance to the just-watched segment, the sub-panels
display the numbers (x-axes) and hit rates (y-axes) of referenced (red), referring
(green), and other (gray) events that participants hit (darker shading) or missed
(lighter shading) in their uncued retrodictions (top sub-panel) and uncued pre-
dictions (bottom sub-panel). For a display of analogous results fromour replication
experiment, see Supplementary Fig. S11.
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could be considered to be overly influential. Taken together, the
results from our analysis indicate that people tend to refer to the past
more than they refer to the future, across a wide variety of situations
(including in both fictional and real conversations). Although (as in the
Persuasion for Good dataset) there may be specific exceptions to this
bias, it seems that a bias in favor of the past is a common element of
many (and perhaps even most) human-human conversations.

Discussion
We asked participants in our main experiment to watch sequences of
movie segments from a character-driven television drama and then
either retrodict what had happened prior to a just-watched segment,
predict what would happen next, or recall what they had just watched.
We found that participants tended to more accurately and more
readily retrodict unobserved past events than predict unobserved
future events. We traced this temporal asymmetry to (a) characters’
tendencies to refer to past events more than future events in their
ongoing conversations, and (b) associations between temporally
proximal events (Fig. 9). Essentially, associations between temporally
proximal events serve to enhance asymmetries in inferences driven by
conversational references (light orange and blue bars in Fig. 9). Our
findings show that other peoples’ psychological arrows of time can
affect external observers’ inferences about the unobserved past and
future. In a replication study with pre-registered analyses, we

replicated our main findings of (a) an asymmetry in participants’
inferences of past and future events and (b) the factors contributing to
this asymmetry. We also carried out a large-scale analysis of tens of
millions of utterances from television shows, movies, novels, and
natural spoken andwritten conversations.We found that the tendency
to refer more often to the past than the future appears to be a wide-
spread characteristic of human conversation.

There exists a fundamental knowledge asymmetry such that we
know more about our own past than the future since we remember
our past but not our future. A number of prior studies have examined
other temporal biases, such as how much people focus on the past,
present, and future in their spontaneous thoughts20–22, everyday
conversations12, and social media messages23. Several of these studies
found that, on average, people’s spontaneous internal thoughts tend
to bemore future-oriented than past-oriented20,21. In contrast, people’s
external communications tend to focus more on the past12,23.

When people communicate through language or other obser-
vable behaviors, they can transmit their knowledge and memories to
others24–27. A consequence of this sharing across people is that biases
or limitations in one person’s knowledge and memories may also be
transmitted to external observers. Although people can communicate
their intentions and future plans (i.e., information about their future),
because people know more about their pasts than their futures, the
knowledge transmitted to observers is inherently biased in favor of the

Fig. 8 | Large-scale analysis of conversational data replicates the temporal bias
in conversational references. We used natural language processing to auto-
matically identify references to past or future events across a variety of datasets.
The “type” labelwas applied following19. For each dataset, we calculated the ratio of
references to past events and references to future events. We performed a large-

scale analysis of the ratios with a meta-analysis-like approach using a random
effects model. Data are presented as ratios ± 95% CI, with a summary estimate
based on the random effects model. Dataset descriptions may be found in Sup-
plementary Table S3.
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past (Fig. 9;12). Since observers leverage communicated knowledge to
reconstruct the unobserved past and future, this explains why obser-
vers’ inferences about observed people’s lives also favor the past.

People’s knowledge asymmetries are not always directly obser-
vable. For example, in a conversation where someone talks exclusively
about their future plans, a passive observer might gain more insight
into the speaker’s unobserved future than their unobserved past.
However, because the speaker is also guided by their own psycholo-
gical arrow of time, the “upper limit” of knowledge about their past is
still higher than that of their future. Therefore, after accounting for
knowledge that could be revealed through active participation in the
conversation, the seemingly future-biased conversation masks an
underlying knowledge asymmetry in favor of the past. This hypothe-
sized “unmasking” effect of interaction implies that the influence of
other people’s psychological arrows of time should be more robust
when the receiver is an active participant in the conversation. Other
social dimensions, such as trust, motivation or level of engagement,
personal goals, and beliefs, might serve to modulate the effective
“gain” of the communication channel– i.e., how much the speaker’s
knowledge influences the observer’s knowledge.

In typical statistical sequences used in laboratory studies, there is
no temporal asymmetry, either theoretically2–4 or empirically5. What
makes narratives and real-world event sequences time-asymmetric?Of
course, there are many superficial differences between simple
laboratory-manufactured sequences and real-world experiences. As
one example, real-world experiences often involve other people who
have their own memories and goals. Some recent work (e.g.,28,29) sug-
gests that people might gain insights into other people using “mental
simulations”of how theymight respond in particular situations (e.g., in
the future), or of which sorts of prior experiences might have led
someone to behave a particular way in the present. But at a higher
level, are our subjective experiences essentially more complicated
versions of laboratory-manufactured sequences? Or are there funda-
mental differences? One possibility is that real-life event sequences are
not stationary (i.e., not in equilibrium;2). For example, real-life events
might start from a special low-entropy initial condition2,30,31 and pro-
ceed through a series of transitions from low-entropy to high-entropy
states, thus exhibiting an arrow time. When we retrodict, it is possible
thatwe only consider possible past events that are compatiblewith the
low-entropy initial state32,33. For example, whenwe see a broken eggwe
might infer that the egghadbeen intact at somepoint in thepast. But it

would be difficult to guess what states or forms the broken egg might
take in the future32,33. In other words, the procession from low entropy
to high entropy might result in better retrodiction performance
compared with that of (implicitly less-restricted) prediction tasks. The
low-entropy initial statemight also explain whywe remember the past,
but not the future. Some recent work suggests that the psychological
arrowof timemight be explained by a related concept in the statistical
physics literature, termed the “thermodynamic” arrow of time34,35.
However, the relation between the thermodynamic and psychological
arrows of time is still under debate36,37.

Beyond forming inferences about unobserved past and future
events, our work also relates to prior studies of how people perceive
time38–42, andhowwe “move” through time inourmemories of our past
experiences43–50 or in our imagined (past or future) experiences51–54.
For example, a well-studied phenomenon in the episodic memory lit-
erature concerns how remembering a given event cues our memories
of other events that we experienced nearby in time (i.e., the contiguity
effect;48). Across a largenumber of studies, there appears to be anearly
universal tendency for people to move forward in time in their mem-
ories,whereby recalling an “event” (e.g., awordon apreviously studied
list) is about twice as likely to be followed by recalling the event that
immediately followed as compared with the event immediately pre-
ceding the just-recalled event55. Superficially, our current study
appears to report the opposite pattern, whereby participants display a
backward temporal bias. However, the two sets of findings may be
reconciled when one considers the frame of reference (and current
mental context; e.g.,56) of the participant at the moment they make
their response. In our study, participants observe an event in the
present, and they make guesses about what happened in the unob-
served past or future, relative to the just-observed event. (Our findings
imply that participants are more facile at moving backward in time
than forward in time, relative to “now.”) In contrast, the classic con-
tiguity effect in episodic memory studies refers to how people move
through time relative to a just-remembered event. The forward
asymmetry in the contiguity effect follows from the notion that the
moment of remembering has greater contextual overlap with events
after the remembered event from the past, including the moment of
remembering, than events that happened before it (for review also
see57,58). In other words, our current frame of reference appears to
exhibit a sort of “pull” on our thoughts, such that thoughts about
recent experiences still lingering in our minds drag us towards the
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Fig. 9 | How much information about the past and future can be inferred by
observing the present? By definition, let us say that the present moment (lag 0)
contains all information about itself (dark gray). Given learned statistical regula-
rities, onemight extrapolate from the presentmoment into the past or future (light
gray). As illustrated in this schematic, the information contained in the present
about othermoments in time falls offwith absolute lag. This falloff is approximately

time-symmetric. References in the present to past events (dark orange) or future
events (dark blue) provide additional information about those referenced
moments in time, beyondwhat could be inferred solely from statistical regularities.
This additional information about those referenced moments can also be extra-
polated to other moments that are temporally nearby to them (light orange and
blue). The data in this schematic are hypothetical.
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recent past, but after thinking about the more distant past, we are
dragged (relatively) forward in time back to “now.”

Weacknowledge several limitations in the current study. First, our
experimental sample sizes are limited in the number of participants
and stimuli. We addressed this limitation by running a replication of
our main experiment with pre-registered analyses to verify that the
main behavioral findings were held in a new cohort of participants and
in a new set of stimuli.We also used ameta-analysis approach to count
the numbers of past versus future references in millions of natural
conversations, which (in our experiments) appeared to be a major
factor in participants’ inferences.We found that, as in the experimental
stimuli, references to the past consistently outnumbered references to
the future in the conversations we examined. However, although this
large-scale analysis shows that the conversational asymmetries we
observed in the experimental stimuli are commonplace across many
conversations, we acknowledge that we did not directly ask partici-
pants to form inferences about the past or future fromobservations of
those conversations. Future studies could select a wider range of sti-
muli to see whether the retrodiction advantage holds in different
scenarios. Second, while we selected narrative stimuli that seemed
“realistic” in an attempt to elicit behaviors that might generalize to
“real life,” there are some important differences between narratives
and everyday experiences in real life that are worth noting. Compared
with everyday experiences, narratives might have different statistical
properties. For example, narratives often incorporate deliberate causal
associations across events59 that may not be present or obvious in real
experiences. In real life, we also often have access to traces of the past
beyond conversational references. For example, we can rely on arti-
facts like photos, letters, notes, digital records, etc., to infer what likely
happened in the past. Future studies could incorporate a variety of
ways to study how we make inferences about the past. Another dif-
ference between narratives and real-world experiences is that we
typically consume narratives through passive listening and viewing,
whereas real-world experiences are interactive. An important question
for future work will be to clarify the role of active participation in how
we understand the present and howwe form inferences about the past
and future.

In our study,weexplicitly designed participants’ experiences such
that both the past and future were unobserved. How representative is
this scenario of everyday life? For example, we might try to speculate
about the unobserved future when making plans or goals, but when
might we encounter situations where the past is unobserved but still
useful for us to speculate about? Real-life events have long-range
dependencies. In general, because the future depends on what hap-
pened in the past, discovering or estimating information about the
unobserved past can help us form predictions about the future. We
illustrate this point in Fig. 9 by showing that the additional information
contributed by a referenced past event can also extend into the future
(light orange bars at lags > 0). This might explain why humans devote
substantial effort and resources to attempting to figure out what
happened in the unobserved past: history, anthropology, geology,
detective and forensic science, and other related fields are each pri-
marily focused on understanding, retrodicting, or reconstructing
unobserved past events.

Methods
All protocols (main experiment, replication experiment, and large-
scale analysis) were approved by the Committee for the Protection of
Human Subjects at Dartmouth College. Participants gave written
consent to enroll in the two experiments.

Participants
Main experiment. A total of 36 participants (25 female, mean age
21.47 years, range 19–50 years) were recruited from the Dartmouth
College community for our main experiment. No statistical method

was used to predetermine the sample size. We had no a priori
hypotheses about gender differences in this study, thus we did not
conduct any gender-based analysis. All participants had self-reported
normal or corrected-to-normal vision, hearing, andmemory, and had
not watched any episodes of “Why Women Kill” before the experi-
ment. Participants received course credit ormonetary compensation
for their time. Two participants completed only the first half of the
study and one participant’s data from the second half of their testing
session was lost due to a technical error. All available data were used
in the analyses.

Replication experiment. A total of 37 participants (21 female, mean
age 22.24 years, range 19–30 years) were recruited from the Dart-
mouth College community for our replication experiment. No statis-
tical method was used to predetermine the sample size. All
participants had self-reported normal or corrected-to-normal vision,
hearing, and memory, and had not watched any episodes of “The
Chair” before the experiment. Participants received monetary com-
pensation for their time. For two participants, one segment was not
played due to a technical error, resulting in four unregistered trials. All
available data were used in the analyses. Analyses of the replication
experiment were pre-registered on May 24th, 2023 (https://
aspredicted.org/8e4ad.pdf). Some of the data were collected before
pre-registration.

Stimuli
Main experiment. The stimuli used in our main experiment were
segments of the CBS television series “WhyWomen Kill” Season 1. The
TV series contained three distinct storylines depicting three women’s
marital relationships. The three storylines, which took place in the
1960s, 1980s, and 2019, were shown in an interleaved fashion in the
original episodes. The first 11 segments from the 1960s and 1980s
storylines, across thefirst and secondepisodes,wereused inour study.
Segments were divided based on major scene cuts, which primarily
corresponded to storyline shifts in the original episodes. The mean
length of the segments was 2.05min (range 0.97–3.87min). We chose
this TV series based on its strictly linear storytelling (within each
storyline) and its realistic settings where most events depict everyday
life. The plots were focused on the main characters (Beth in storyline 1
and Simone in storyline 2), who were present in all the segments in the
corresponding storylines.

Replication experiment. The stimuli used in our replication experi-
ment were segments of the first episode of the Netflix television show
“The Chair”, Season 1. The TV series depicts the life of a professor who
is the English department chair at a major university. The first episode
was used in our study and was divided into 13 segments. Segments
were divided based on major scene cuts and were minimally edited.
The mean length of the segments was 1.97min (range 0.58–4.30min).
We chose this TV series based on its strictly linear storytelling and its
realistic settingswheremost events depicted everyday life on a college
campus.

Task design and procedure
Main experiment. Our experimental paradigm was divided into two
testing sessions. In each session, participants performed a sequence of
tasks on segments from one storyline (Fig. 2). For each storyline, there
were four different task sequences: two forward chronological order
sequences and two backward chronological order sequences. Partici-
pants completed one task sequence in forward chronological order for
one storyline, and one in backward chronological order for the other
storyline. The order of the two sessions (forward chronological order
sequence first or backward chronological order sequence first), and
the pairing of task sequences with storylines, were counterbalanced
across participants. The experiments were not randomized.
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The Investigators were not blinded to allocation during experiments
and outcome assessment.

Tasks in each sequence alternated between watching, recall, and
retrodiction or prediction, with the specific order of tasks differing
across the four sequences. For example, in sequence A1, participants
first watched segment 1, followed by an immediate recall of segment 1.
Then they predicted what would happen in segment 2 (first uncued
and then character-cued). Participants then watched segment 3 and
recalled segment 3. After that, participants guessed what happened in
segment 2 again, which we termed “updated prediction”. Then they
watched segment 2, recalled segment 2, and so on, as depicted in
Fig. 2. This procedure was repeated to cover all possible segments.We
also note several edge cases at the start and end of the narrative
sequences. Since no segments precede the first segment, participants
could never make “prediction” responses with the first segment as
their target. For analogous reasons, participants never made “retro-
diction” responses with the last segment as their target. Another edge
case occurred in task sequences B2 and A2 (Fig. 2). In the A1 and
A2 sequences, participants experience the narrative in the original
(forward) order, predictingone segment ahead along theway. In theB1
and B2 sequences, participants experience the narrative in the reverse
order, retrodicting one segment ahead along the way. However,
becauseA2 and B2 are offset fromA1 and B1 by one segment, the initial
A2 responses are retrodictions, and the initial B2 responses are pre-
dictions (i.e., they conflict with the temporal directions of the
remaining responses in those conditions). We, therefore, excluded
from our analysis those initial retrodiction responses from the A2
condition and the initial prediction responses from the B2 condition.

Before watching each segment, participants were given the fol-
lowing task instructions. After watching the video, participants were
instructed to type their responses (retrodiction, prediction, or recall)
in 1–4 sentences. Participantswere also asked to specify the characters’
names in their responses, i.e., avoiding the use of characters’ pro-
nouns. For the recall task, the names of the characters in the recall
segment were displayed, and participants were asked to summarize
the major plot points in the present tense. For the retrodiction and
prediction tasks, participants were instructed to retrodict or predict
the major plot points of the segment (also in the present tense), as
though they had watched the segment and were writing a plot
synopsis. They were also instructed to avoid speculation words (e.g., “I
think Beth will...”). For the uncued retrodiction and prediction tasks,
participants made retrodictions or predictions without any cues pro-
vided, so they had to guesswhichof the characterswouldbepresent in
the segment. For character-cued retrodictions and predictions, the
characters in the target segment were revealed on the screen, along-
side participants’ previous responses. Participants were instructed to
include or incorporate those characters into their character-cued
responses if their previous responses did not contain all the characters
provided. They were also told that the characters were not necessarily
listed in their order of appearance in the segment and that only the
main characters would be given. Also, the characters given did not
necessarily interact with each other in that segment, and they could
appear in successive events in that segment. If participants’ previous
responses included all the characters given, then they could directly
proceed to the next task without updating their responses. For each
retrodiction and prediction, participants were asked to generate at
least one, and not more than three, responses that constituted “the
sorts of things [the participant would] expect to have remembered if
[they] hadwatched the [target] segment.”Theywere asked to generate
multiple responses only if those additional responses were (in their
judgment) of equal likelihood to occur. On average, participants in our
main experiment generated 1.08 responses per prompt; therefore, we
chose to consider only participants’ first (“most probable” or “most
important”) responses to each prompt. Each response (including
recall) was followed by a confidence rating on a 1–5 point scale.

However, these confidence data were not analyzed in the
present study.

Before their first testing session, participants were given a prac-
tice session, where they watched the first segment of storyline 3, fol-
lowed by a recall trial, an uncued prediction trial, and a character-cued
prediction trial. Participants’ responses were checked by the experi-
menter to ensure compliance with the instructions. To provide parti-
cipants with sufficient background information about the storyline
(especially for the backward chronological sequences), at the begin-
ning of each session, participants were shown the time, location, and
the main characters (with pictures) of the storyline. The first session
was approximately 1.5 hours long, and the second session was
approximately 1 hour long. We allowed participants, at their own dis-
cretion and convenience, to sign up for two consecutive testing time
slots (i.e., with their testing sessions occurring in immediate succes-
sion) or for testing sessions on two different days. The mean inter-
session interval was 0.73 days (range: 0–4 days). The experiment was
conducted in a sound- and light-attenuated testing room. Videos were
displayed using a 27-inch iMac desktop computer (resolution:
5120× 2880), and sound was presented using the iMac’s built-in
speakers. The experiment was implemented using jsPsych60 and
JATOS61.

Replication experiment. The design and procedure of the replication
experiment were similar to the main experiment, other than the fol-
lowing differences. In the replication experiment, we used only one
storyline, and therefore, participants performed only one task
sequence (either chronological or backward chronological), in one
session (Supplementary Fig. S1). Tasks alternated between watching,
and retrodiction or prediction. Some segments contained multiple
scenes with different characters. For these segments, characters for
each scene were shown in the cued conditions, and participants were
asked to guess what would happen in each scene between these
characters. For each retrodiction and prediction, participants were
asked to generate only one response. No confidence ratings were
collected. No practice sessions were provided. At the beginning of the
experiment, participants were shown the main characters (with pic-
tures) in the TV show. The experiment was ~ 1 hour long and was
implemented using Qualtrics.

Video annotation
Main experiment. Events in the first 11 segments of the two storylines
were identified by the first author (X.X.), corresponding to major plot
points (total: 117; mean: 5.32 per segment; range 3–9). In addition, 74
offscreen events were identified. Of these 74 offscreen events, 43
events were identified from references in conversations during onsc-
reen events. Another 16 eventswere identifiedbasedon the characters’
impliedmovements and travels. For example, if in segment 1 character
A was in place A and in segment 2 she was in place B, then the transit
from place A to B for character A would be identified as an offscreen
event. The remaining 15 offscreen events were identified based on
logical inferences. For example, if a photograph was shown in an
onscreen event (but not the act of the photograph being taken), then
the action that someone took the photograph would be identified as
an offscreen event. Offscreen events always occur between two con-
tiguous segments, or before the first segment. The purpose of identi-
fying offscreen events was to match participants’ responses to video
events; thus, our identification of these offscreen events was not
intended to be exhaustive.

Replication experiment. Events in the 13 segments were identified by
the authors (X.X. and X.Z.), corresponding to major plot points (total:
71; mean: 5.46 per segment; range 1–14). In addition, 66 offscreen
events were identified. Of these 66 offscreen events, 47 events were
identified from references in conversations during onscreen events.
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Another one event was identified based on the characters’ implied
movements and travels. The remaining 18 offscreen events were
identified based on logical inferences.

Response analyses
Participants’ retrodiction, prediction, and recall responses were mini-
mally processed to correct obvious typos (e.g., in characters’ names)
and remove speculation descriptions (e.g., “I predict that...”). We dis-
carded a small number (main experiment: n = 20, replication experi-
ment: n = 6) of character-cued responses that did not contain
references to all cued characters, along with one additional response
due to the participant’s misunderstanding of the task instructions
during that trial in the main experiment. We carried out our analyses
on the remaining 1781 retrodiction, prediction, and recall responses in
themain experiment, and878 retrodiction andprediction responses in
the replication experiment.

All responses were manually coded and matched to events from
the video annotations. Retrodiction and prediction responses were
coded by two coders (main experiment: X.X. and Z.Z.; replication
experiment: X.X. and X.Z.). Recall responses were coded by one coder
(X.X.). While many responses were clearly identifiable as either
matching specific storyline events or not matching any storyline
events, several ambiguous cases arose. First, some responses com-
bined or summarized over several (distinct) storyline events. Second,
some responses lacked any specific detail (e.g., “character A andB talk”
without describing the specific topic(s) of conversation or providing
other relevant details). Based onparticipants’ responses, in addition to
the original 117 onscreen events and 74 offscreen events in the main
experiment’s stimulus, we added 25 new events (23 onscreen, 2 off-
screen) that either summarized several events or partiallymatched the
annotated events. In our replication study, in addition to the original 71
onscreen events and 66 offscreen events, we added 20 new events (17
onscreen, 3 offscreen).Whereas the original eventswere eachassigned
a value of one point, we assigned these additional events a half point.
This point system enabled us to directly match events in participants’
responses to the annotated events. In our analyses of retrodictions,
predictions, and recalls, we added up the number of points earned for
each response to estimate participants’ event hit rates.

We coded only the first retrodiction or prediction response in
each trial. For these responses, we also only considered storyline
events that were in the same temporal direction as the target segment.
For example, if a participant was asked to retrodict what happened in
segment n, only events from segments 1…n were considered in our
analysis. When coding recall responses, we considered only events
from the target segment. We also retroactively added events to the
annotations that were mentioned by participants that matched events
in future episodes of the TV show. We also identified and counted
unmatched events in participants’ responses (i.e., events that did not
match any annotated events).

The television episode used in the replication study contained
several interleaved storylines, which led to some deviations that were
specified in our pre-registered analyses. Specifically, for our tests
comparing the numbers of hits for different types of events, we
additionally ran linear mixed-effect models with the type of events
having two levels: matched or unmatched. This analysis was not pre-
registered, but we thought that this categorization of events (matched
and unmatched) would make the results clearer. For our tests of the
proportions of events hit for three reference types (referenced,
reference-adjacent, and remaining), we corrected the “reference-
adjacent” label to correspond to individual storylines. This correction
was not pre-registered.

Resolving ambiguities andestimating inter-rater reliability.We used
Jaccard similarity to quantify the inter-rater reliabilities of the anno-
tations, defined as the size of the intersection divided by the size of the

union of the two coders’ event labels for participants’ responses. The
Jaccard similarities were calculated for each experiment (across all
trials in the uncued and cued conditions), and unmatched event labels
were excluded. We observed a Jaccard similarity of 0.42 for both the
main and replication experiments.

This low inter-rater reliability appeared to follow from difficulties
related to setting criteria for determining whether a given response
counted as a “hit” for a specific event. Whereas we had initially
expected that manually matching up participants’ responses with
events in the narrative would be obvious, empirically, we found sub-
stantial ambiguities in this process. As one example, during one scene
in our replication experiment’s stimulus, the main character (Ji-Yoon)
chaired a meeting for her department. One participant made a retro-
diction response, “Ji-Yoon chaired adepartmentmeeting,” andanother
participant wrote “All faculty had a meeting.” If a given rater’s “match”
criteria included specifically mentioning that Ji-Yoon was leading the
meeting, only the first participant’s responsewould count as a “hit” for
this event. However, a more lenient scorer might consider both
responses to be “hits.” After reviewing the scores across raters and
discussing each scene on a case-by-case basis, the raters decided to re-
score the responses using strict criteria (e.g., in the above example,
only the first participant’s response would be counted as a hit).

Another pattern we observed was that participants’ guesses
sometimes contained some events that actually happened (or would
happen) alongside other incorrect events or details. For example, in
another scene in our replication experiment’s stimulus, one character
(Dafna) gives another character (Bill) a ride in her car. One participant
predicted that “Dafna bails Bill out anddrives himback to Pembroke or
helps him sober up.” In one sense, if incorrect or extraneous details are
ignored, this response would be considered a “hit” because the parti-
cipant mentions that Dafna gives Bill a ride. However, if incorrect or
extraneous details are factored into the scoring procedure (for
example,Dafnanever bails Bill out, nor does shehelpBill soberup), the
same response would be considered amiss. After reviewing the scores
across raters and discussing each scene on a case-by-case basis, the
raters decided to re-score the responses using the former “ignore
incorrect or extraneous details” approach.

The raters repeated this general process of developing scoring
criteria, comparing and discussing differences, and re-scoring the
responses following those discussions until consensus was reached
about every response in both experiments (i.e., Jaccard
similarities of 1).

Text embeddings of participants’ responses. To estimate the
semantic similarities between pairs of responses, we first transformed
each response into a 512-dimensional vector (embedding) using the
Universal Sentence Encoder (Transformer USE,16). We defined “simi-
larity” as the cosine of the angle formed by the responses’ vectors.
Following62, we defined the “precision” of participants’ responses as
the median similarity between that response’s vector and the embed-
ding vectors for all other participants’ recalls of the target segment
(main experiment), or the similarity between that response’s vector
and the embedding vector for the plot synopsis of the target segment
(replication experiment). We defined the “convergence” of a given
response as themean similarity between that response’s vector and all
other participants’ responses of the same type to the corresponding
segment, in the same condition. To compute these median or mean
similarities, we first applied the Fisher z-transformation to the simi-
larity values, then took the median or mean of the z-transformed
similarities, and finally applied the inverse z-transformation to obtain
the precision or convergence score.

To test the validity and reliability of the USE embeddings, we
performed a classification analysis of recall responses using a leave-
one-out approach. For each recall response, we calculated its semantic
similarity with all other recall responses for the same storyline. We
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took the segment with the highest median semantic similarity (to the
recall response) as the “predicted” segment. Across all responses, the
predicted segments matched the true recalled segments’ labels 98.6%
of the time (1088 out of 1103 predictions; chance level: 9%). We note
that this validation analysis could only be carried out with data from
our main experiment since we did not collect recall responses in our
replication experiment.

Reference coding
Two coders (main experiment: X.X. and Z.Z.; replication experiment:
X.X. and X.Z.) identified character dialogs in the narrative that referred
to past events or future (onscreen or offscreen) events. Only refer-
ences to events that occurred in a different segment were included in
this tagging procedure. For each reference, the source (referring)
segment and the referred event number were recorded. A total of 82
references were identified in the main experiment stimulus, and 53
were identified in the replication experiment stimulus. Of these
references in the main experiment, 30 referred to onscreen events,
and 52 referred to offscreen events. In the replication experiment, 13
referred to onscreen events, and 40 referred to offscreen events. For
these referenced events, their corresponding summary events or
partial events were also labeled as referenced. In instances where the
coders disagreed about a given tag, disagreements were resolved
through discussions between the two coders. In our analyses, each
storyline event was coded according to whether or not it had been
referenced in the segment(s) that theparticipant hadviewed thus far in
the experiment.

In principle, a given event could receive multiple labels. For
example, during eventA, a charactermight speak about another event,
B, during which a reference to a third event (C) was made. In this
scenario, event B could be both a “referring event” (B → C) and a
referenced event (A → B). In practice, however, this scenario was quite
rare, accounting foronly oneout of a total of 30onscreen events inour
main experiment and one out of 13 onscreen events in our replication
experiment.

Statistical analysis
Weused (generalized) linearmixedmodels to analyze the hit rates and
numbers of events retrodicted, predicted, and recalled, as well as the
precisions and convergences of participants’ responses. Our models
were implemented in R using the afex package. We carried out com-
parisons or contrasts and extracted p-values, using the emmeans
package. Participants and stimuli (e.g., segment identity) were mod-
eled as crossed random effects (as specified below). Random effects
were selected as the maximal structure that allowed model con-
vergence. All of our statistical tests were two-sided, and the alpha level
was set to 0.05.

For our tests of the target event hit rates across four levels
(uncued, character-cued, updated, and recall; Fig. 3B, E), we fit a gen-
eralized linear mixed model with a binomial link function:

cbindðthp , ttp � thpÞ � direction � level � seg cnt � storyline

+ ðdirection � level j targetÞ
+ ðdirection � level � seg cnt jparticipantÞ

where for analyses of our main experiment, thp was the number of
points hit for the target segment, ttpwas the total number of points for
the target segment (from its annotations), direction was either retro-
diction or prediction, level had four levels (uncued, character-cued,
updated, and recall), seg_cnt represented the number of segments in
the storyline that had beenwatched (1–10, centered), storyline had two
levels (1 or 2), and target had 22 levels according to the identity of the
target segment. For our analyses of our replication experiment, the
level had two levels (uncued and character-cued), seg_cnt ranged from
1–12, the storyline parameter was omitted since there was only a single

storyline, and the target had 13 levels according to the identity of the
target segment. In the replication experiment, we did not include
random slopes ofdirection effect in the participant level in all analyses,
as participants either made retrodictions or predictions (i.e., partici-
pants and tasks were nested).

For our tests of precision and convergence (Fig. 3C, D, F, and G),
we fit linearmixedmodels using the same formula. To test the effect of
direction (retrodiction or prediction) on target event hit rates, preci-
sion, and convergence, we fit a (generalized) linear mixed model
separately for each of the three levels (uncued, character-cued, and
recall).

For our tests comparing the numbers of hits for different types of
events (Fig. 4B and Supplementary Fig. S6), we fit generalized linear
mixedmodels using the same formula, butwith a Poisson link function.
For these models, we manually doubled the point counts to ensure
that half points were mapped onto integers, ensuring compatibility
with the Poisson link function.

For our analyses of the number of events hit, controlling for lag
(Fig. 4C), we fit a generalized linear mixed model with a Poisson link
function:

hp lag � direction � full stp � lag � storyline

+ ðdirection jbase segÞ+ ð1 jbase seg pairÞ
+ ðdirection � full stp � lag � storyline jparticipantÞ

where hp_lag is the number of “points” earned (for each lag) in each
trial (again, we manually doubled the point counts to ensure that half
points were mapped onto integers, for compatibility with the Poisson
link function), full_stp denoted whether the given events (of the given
lag) were onscreen (i.e., full step) or offscreen (i.e., half step), lag
denotes the (centered) absolute lag, base_seg denotes the identity of
the just-watched segment (main experiment: 22 levels; replication
experiment: 13 levels), and base_seg_pair denotes the pairing of the
just-watched segment and the segment at each lag (main experiment:
440 levels; replication experiment: 324 levels).

For our analyses of the proportions of events hit for referenced
versus unreferenced events (Fig. 5D, E and Supplementary Fig. S7), we
fit a generalized linear model with a binomial link function:

cbindðhp lag , tp lag � hp lagÞ � direction � reference � full stp

+ lag + ðdirection jbase segÞ
+ ð1 jbase seg pairÞ

+ ðdirection � reference � full stp + lag jparticipantÞ

where hp_lag denotes the number of earned hit points for each refer-
ence type (referenced or unreferenced) at each lag, tp_lag denotes the
total number of possible hit points for each reference type at each lag,
and the other variables adhered to the samenotationused in the above
formulas.

For our tests of the proportions of events hit for all three refer-
ence types (referenced, reference-adjacent, and remaining: Fig. 6D, E
and Supplementary Figs. S9, S10; or referenced, referring, and other:
Fig. 7D and Supplementary Fig. S11), we fit a generalized linear mixed
model using the same formula as above, but with three (rather than
two) reference levels.

Several of our analyses entailed comparing the relative hit rates or
probabilities of two different conditions or outcomes. We used the
emmeans package to compute the odds ratios given the generalized
linear mixed models we fit for the given analysis. These odds ratios
reflect the odds (calculated as p

1�p), where p is the probability that the
outcome occurs) of a particular outcome (e.g., making a response
about a particular event) given a scenario (e.g., the event occurred
prior to the just-watched segment) dividedby the odds of the outcome
occurring in the alternative scenario (e.g., the event occurred after the
just-watched segment).
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Large-scale analysis of conversational data
At a high level, the goal of our analysis of conversational data was to
predict in-text references to past and future events. Manually identi-
fying these references is labor and time-intensive, so it is impractical to
scale upmanual tagging tomillions of documents. Instead, we defined
a set of heuristics for predicting when text is referring to real or
hypothetical past or future events. Our approach comprised four
main steps.

First, we used the nltk package63 to segment each document into
individual sentences. Each sentence was processed independently of
the others. Second, we handled contractions using the contractions
package (e.g., “we’ll” was split into “we will,” and so on). Third, we
defined two sets of “keywords” (words and phrases) that tended to be
indicative of referring to the past (Tab. S6) or future (Tab. S7).We used
ChatGPT64 to generate each list, with exactly 50 templates per list,
using the following prompt:

I’m designing a heuristic algorithm for identifying references (in
text) to past and future events. Part of the algorithm will involve
looking for specific keywords or phrases that suggest that the text
is referring to something that happened (or will happen) in the
past and/or future. Could you help me generate a list of 50 key-
words or phrases to include in each list (one list for identifying
references to the past and a second list for identifying references to
the future)? I’d like to be able to paste the lists you generate into
two plain text documents with one row per keyword or phrase,
and no other content. Please output the lists as a “code” block
(enclosed by “‘...”’).

Fourth, we used part-of-speech tagging (again, using the nltk
package) to look for verbs or verb phrases that were in past or future
tenses. After the words were tagged with their predicted parts of
speech, weused regular expressions (applied to the sequences of tags)
to label each verb or verb phrase with a human-readable verb
form (e.g., “future perfect continuous passive,” “conditional
perfect continuous passive,” and so on). The regular expressions we
used to generate these labels are shown in the Supplementary
Table S4, and the part of speech tags are defined in the Supplementary
Table S5.

We treated each keywordmatch (of past or future keywords) as a
“reference” (to a past or future event, respectively). We also tracked
whether any past or future verb forms were detected. We then tallied
up the numbers of past and/or future references across sentences
within the given document, counting (up to) one past reference and
one future reference per sentence.

In designing the above approach, we used the transcript of “The
Chair”, Episode 1 to “debug” the automatically derived tense tags. We
began by spot-checking randomly selected sentences from the epi-
sode’s transcript, tweaking the algorithm as needed to catch tricky
edge cases. Once we began to see good performance on the excerpted
sentences, we applied the approach to the full episode transcript. We
verified that the automated procedure accurately recovered the
approximate relative numbers of past versus future “references” that
we identified by hand. Next, we applied the automated tagging pro-
cedure to the other episodes of “The Chair”. We found that our
approach appeared to generalize to those episodes as well, as com-
pared with manually derived labels. Finally, after computing auto-
mated tags for the other datasets, we carried out a final set of “spot
checks” on randomly excerpted utterances from each dataset to verify
that the automated tags were behaving as expected.

In general, our automated tagging procedure tended to over-
count the number of references (Supplementary Fig. S12A). From
manually examining hundreds of example tags, we noticed that our
automated tagging procedure often counts the “same” references

multiple times when the reference is extended across multiple sen-
tences. Specifically, the manually generated tags sought to identify
references to specific events that occurred or were implied to occur in
other parts of the narrative. In contrast, as a heuristic, we designed the
automated tagging procedure to identify uses of the past or future
tense as a proxy for references to past or future events. Individual
conversations often contain multiple references to a given (past or
future) event. Whereas the manually generated tags counted these as
“single” references, our automated taggingprocedurehadnomeansof
differentiating between several references to the same event versus
the same number of references to different events. This leads the
automated tagging procedure to overestimate the number of distinct
events being referenced. These overestimates tended to be biased
towards future references (Supplementary Fig. S12 B, C). Therefore,
the ratios of past to future references we estimated automatically
appeared to systematically underestimate the true ratio. Nevertheless,
underestimating the Past/Future reference ratio does not change our
conclusion that past references are more common than future refer-
ences in human-human conversations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Behavioral data generated for this study have been deposited on
Zenodo (https://doi.org/10.5281/zenodo.12522455)65. Data inclu-
ded in our large-scale analysis are available at https://imsdb.
com, https://convokit.cornell.edu/documentation/datasets.html,
https://scrapsfromtheloft.com/?s=THE+CHAIR, https://github.
com/ricsinaruto/gutenberg-dialog, and https://www.screenspy.
com/the-chair-season-1-episode-1/, and on Zenodo (https://doi.
org/10.5281/zenodo.12522455)65.

Code availability
All of the analysis code from our paper is available on Zenodo (https://
doi.org/10.5281/zenodo.12522455)65.
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