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Divergent subregional information
processing in mouse prefrontal cortex
during working memory
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Workingmemory (WM) is a critical cognitive function allowing recent information to be temporarily held
inmind to inform future action. This process depends on coordination betweenprefrontal cortex (PFC)
subregions and other connected brain areas. However, few studies have examined the degree of
functional specialization between these subregions throughout WM using electrophysiological
recordings in freely-movingmice. Here we record single-units in three neighboringmousemedial PFC
(mPFC) subregions—supplementarymotor area (MOs), dorsomedial PFC (dmPFC), and ventromedial
(vmPFC)—during a freely-behaving non-match-to-position WM task. The MOs is most active around
task phase transitions, when it transiently represents the starting sample location. Dorsomedial PFC
contains a stable population code, including persistent sample-location-specific firing during the
delay period. Ventromedial PFC respondsmost strongly to reward-related information during choices.
Our results reveal subregionally segregated WM computation in mPFC and motivate more precise
consideration of the dynamic neural activity required for WM.

Workingmemory (WM) is a fundamental cognitive function allowing prior
sensorimotor and rule information to be held in mind, manipulated, and
protected from interference for future use1. This process relies ondistributed
brain networks performing varying degrees of top-down and bottom-up
operations2,3. The mammalian prefrontal cortex (PFC) is theorized to be a
criticalWMnode, exerting its influence via extensive reciprocal connections
with cortical4 and subcortical structures5. It has been implicated in orches-
trating several key aspects of WM, including actively directing and main-
taining attention toward salient features of a context, selecting strategies to
accomplishgoals basedoncontextualneeds, andmonitoring the outcomeof
enacted motor plans to change strategies if necessary6,7. Difficulty with any
of these functions is prevalent across many human neurological and psy-
chiatric disorders and usually coincides with aberrant activation of PFC-
containing networks during WM8,9. A deeper examination of PFC activity
throughout the different phases of WM is critical to better understand the
potential mechanisms underlying diverse types of WM dysfunction.

Over the past decade,mice have become a standardmodel organism in
PFC research due to rapid development of genetic tools permitting more
precise targeting of cell-types and brain-wide circuits10. Extensive con-
nectomic and genomic mapping has established that mouse PFC can be
divided into subregions based on local and long-range projection
patterns11,12 and cytoarchitecture13,14. However, attempts at segregating
mouse PFC into subregions based on functional processing of WM task

features has yielded surprisingly inconsistent findings15. A potential expla-
nation for this variability comes from recent work showing that neural
activity subserving goal-directed actions is spread across many brain areas,
and the primary locus of control can shift dynamically depending on con-
textual needs and temporal progress through a task16–22. Thus, trying to
localize multifaceted mental processes, like WM, onto isolated mouse PFC
subregions may be an unreliable approach. Instead, experiments in mice
should focus on characterizing a range of WM-related computations in
multiple PFC subregions over the entire time course of a single behavioral
paradigm15.

Mostmouse studies probing PFCneural circuit contributions to spatial
WM have concentrated on single subregions within the same task23–26, and
reports using electrophysiological recordings from multiple subregions are
not accompanied by a detailed comparison between them19,27–29. Moreover,
mostmulti-regionalWMdata havebeen collected fromhead-fixedmice30–33.
Critically, more comprehensive analysis describing how distinct PFC areas
selectively contribute to WM task variables across time in freely-moving
mice is needed, as head-fixed experiments may engage different brain net-
works thanmore naturalistic behaviors34,35. To this end, we recorded single-
units in three adjacent mouse PFC subregions, agreeing with modern PFC
parcellation schemes15: the supplementary motor cortex (MOs), the dor-
somedial PFC (dmPFC), and the ventromedial PFC (vmPFC). Activity in
these subpopulations was tracked in real-time as the mice performed a

1Department of Behavioral Neuroscience, OregonHealth &ScienceUniversity, Portland,OR,USA. 2Department of Psychiatry, OregonHealth &ScienceUniversity,
Portland, OR, USA. 3Research and Development Service, VA Portland Health Care System, Portland, OR, USA. e-mail: abbasat@ohsu.edu

Communications Biology |          (2024) 7:1235 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06926-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06926-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06926-8&domain=pdf
http://orcid.org/0000-0002-3591-7930
http://orcid.org/0000-0002-3591-7930
http://orcid.org/0000-0002-3591-7930
http://orcid.org/0000-0002-3591-7930
http://orcid.org/0000-0002-3591-7930
http://orcid.org/0000-0001-7701-4572
http://orcid.org/0000-0001-7701-4572
http://orcid.org/0000-0001-7701-4572
http://orcid.org/0000-0001-7701-4572
http://orcid.org/0000-0001-7701-4572
http://orcid.org/0000-0002-7080-3509
http://orcid.org/0000-0002-7080-3509
http://orcid.org/0000-0002-7080-3509
http://orcid.org/0000-0002-7080-3509
http://orcid.org/0000-0002-7080-3509
mailto:abbasat@ohsu.edu
www.nature.com/commsbio


freely-behaving delayed-non-match-to-positionWM task36. We asked how
each subregion represented the retrospective sample location andother task-
related information, such as prospective choices and reward, across the
encoding, maintenance, retrieval, and outcome phases ofWM37. Our results
indicate that thedmPFCpopulation stably codes for the retrospective sample
location throughout all task phases in single behavioral trials, while MOs
prioritizes sample identity and other information at contextual transitions
and vmPFC is most reflective of choices and their outcomes.

Results
Behavior and electrode implantation
To examine the relationship between spatial WM and PFC subregional
activity, mice were water restricted to ~90% of their initial body weight and
trainedona freely-moving, delayednon-match-to-position (DNMTP)WM
task (Fig. 1a). Critically, this task was designed so that mice could not know
the exact choice port they would need to visit until the end of the delay
period. During training, mice that made the correct non-match choice on
≥70% of trials over three consecutive days were implanted with a custom-
built, 28-wire, advanceable bundle of microelectrodes into one of three
separate PFC subregions: MOs (blue, four mice), dmPFC (green, six mice),
or vmPFC (pink, sixmice) (Fig. 1b).After oneweekof recovery,we gathered
at least three daily sessions of simultaneous behavioral and electro-
physiological data per mouse, advancing the electrodes ventrally into the
PFC by ~60 µm after each session, so that new neurons were recorded the
following day (white dots in Fig. 1b depict the final electrode bundle loca-
tions for each mouse). Single-units were isolated offline using Kilosort3,
aligned to important DNMTP task events, and organized into pseudopo-
pulations by combining the neurons recorded over all sessions within each
subregion. The total neuron count for each pseudopopulationwas 304 from
theMOs(over 21 sessions), 354 from thedmPFC(over24 sessions), and330
from the vmPFC (over 28 sessions). Figure 1c quantifies the behavioral
performance in all post-implantation sessions in which neurons were
recorded and used for analysis. A one-way ANOVA showed no significant
main effect of electrode implant location on DNMTP performance
(F(2,70) = 2.71, p = 0.073, Fig. 1c).

One possible confound of this task is that the center port always gives a
reward when lit, since it is only available as a choice and never used as a
sample location (Fig. 1a). Therefore, mice could conceivably develop a
strategy where they treat the center choice trials as simple visuospatial
stimulus-response trials. If this were the case, they should perform at nearly
100% on center choices38 (50% of all trials) and would only need to achieve
chance level (50% performance) on outer trials (remaining 50% of trials,
25% left and 25% right) to reach ~75% performance overall, which was
above the performance cutoff for including a session in our analyses. To
check if this was happening, we plotted the trial-type-specific performance
across all sessions and saw thatmicedid performbetter on averagewhen the
center port was the correct choice (Supplementary Fig. 1a). However, when
plotting the correlation between the performance on center choice trials
versus the performance on left and right choice trials combined, less than
10% of the sessions (Supplementary Fig. 1b, circled in black) had near 50%
outer performancewith high center performance, the pattern that would be
expected if mice were exploiting the task and prioritizing the center port.
The remaining >90% of sessions had a positive correlation between center
and outer performance, a pattern more consistent with the mice using a
general WM strategy which applies to all the ports. Interestingly, six of the
seven sessions with a concerning pattern of performance were from the
samedmPFC-implantedmouse (dmPFC4; see greendots circled in black in
Supplementary Fig. 1b), meaning that this mouse was likely not using a
WM-based strategy.

We further reasoned that if the mice were using a simple stimulus-
response strategy at the centerport, theywould respondmorequickly on the
easier center trials than on outer trials. This was not the case, and the time it
took the mice to move from the back delay port to a front choice port for
center versus outer choice trials was again positively correlated (Supple-
mentary Fig. 1d), suggesting that the mice treated all choice port locations
similarly (Supplementary Fig. 1c). Overall, these results point toward the
mice (with one exception) using an active WM strategy, and the increased
performance on center choice trials could potentially be explained by the
mice having twice the amount of training on these trials compared to choice
trials for either outer location.
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Fig. 1 | A freely-moving delayed non-match-to-position task allows for the
examination of prefrontal neural activity during spatial working memory
in mice. a Schematic of the delayed non-match-to-position task. (top) Time course
of a single trial. Diagonal parallel slashes represent variable amounts of time between
task phases. (bottom) Diagram of a correct trial. Progression through the task starts
with the sample phase (left panel), during which one of the two outer front ports
lights up (the center port was never used as a sample location). The lit sample port
location has a 50% chance of being on either the left or right side, but only a left side
example trial is shown here. The mouse pokes its nose into the lit sample port to
make the delay port on the opposite side (“back”) of the box available (center panel).
Then the mouse pokes and holds its nose in the delay (“back”) port for five seconds,
after which it receives a 1 µL reward. This leads to a choice phase (right panel), where
both the initial sample port and one of the remaining other front ports lights up, and

the mouse is required to poke into the lit port that it has not visited previously. Non-
match choices also have a 50% chance of being either of the two non-sample loca-
tions on any given trial. A much larger 7 µL reward is dispensed after a correct non-
match choice. Created in BioRender. Palumbo, M. (2023) BioRender.com/u81z167.
bMice were implanted with recording electrodes in eitherMOs (blue), dorsal mPFC
(green), or ventral mPFC (pink). Example coronal mouse slice showing the final
electrode bundle locations after up to five electrode advancements of ~60 µm (white
dots). Across all sessions, we isolated 304 single-units from the MOs, 354 from the
dmPFC, and 330 from the vmPFC. Brain slice image credit to the AllenMouse Brain
Atlas. c A one-way ANOVA showed that electrode location did not significantly
affect task performance (F(2,70) = 2.71, p = 0.073, n.s. not significant). Each circle
represents performance during one session.
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MOs is more active and contains the most sample identity-
selective neurons during the DNMTP sample phase
Wenext tracked subregional neural firing activity throughout all key phases
of the DNMTP task. Each pseudopopulation contained neurons exhibiting
task-related changes in firing rate (FR) that consistently appeared within a
brief time window around the sample phase nose-poke across many trials

(example neuron in Fig. 2a). Heat maps of the FR were created by first
Z-scoring the spike counts in 100ms bins for all neurons in separate
pseudopopulations, followed by sorting them from highest to lowest peak
Z-scored activity around the sample nose-poke for better visualization
(Fig. 2b). Quantification of mean Z-scored pseudopopulation FR at each
time point revealed that theMOs significantly increased its FR compared to
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the other two implant locations in a 300–400ms window before the sample
poke (Fig. 2c, see Methods). There were no significant differences between
dmPFC and vmPFC at any time points. We also quantified the proportion
of neurons in each pseudopopulation that significantly increased or
decreased their Z-scored FR around the sample port visit compared to an
intertrial interval (ITI) period (Fig. 2d, see Methods). In correspondence
with the above finding, the MOs had the largest proportion of units
increasing their FR around the sample poke compared to the two other
regions, followed by the dmPFC, while vmPFC contained the lowest.
Interestingly, in all regions, many of the neurons significantly changing in
one direction also exhibited a significant change in the opposite direction at
another time point within the time window analyzed (see Supplementary
Fig. 2a for proportions of neurons increasing, decreasing, or both; see
Supplementary Fig. 2b for two example neurons that both increase and
decrease within the same time window). In Fig. 2c, d, and throughout the
rest of the paper, time binswith significant pairwise differences (p < 0.05, see
Methods) between two mPFC subregions are signified by straight lines
above or below the data containing their two respective colors.

We next looked at how selective the pseudopopulations were for the
sample port location in the same period around the sample poke (examples
of selectiveMOs neurons in Fig. 2e). Using a permutation testing approach
(seeMethods), we found that theMOs also contained themost neurons that
could significantly differentiate sample port location based on their FR
(Fig. 2f). This was followed by dmPFC and lastly by the vmPFC. These
results suggest a functional gradient, which is strongest inMOs andweakest
in vmPFC, in the extent towhich these different subregions encode not only
the beginning of the sample phase in general, but also the sample port
location around the sample poke event.

The stability of this selectivity was subsequentlymeasured using cross-
temporal linear support vector machine (SVM) decoding analysis (Fig. 2g,
see Methods) extending out five seconds from the sample poke, which
should include the start of the delay period on most trials. In the MOs and
vmPFC, the decoder had strong and significant on-diagonal (trained and
tested on the same time bin) predictive ability which rapidly decreased to
chance levels in about 400ms for theMOsand 600 to 800ms in the vmPFC.
In these two subregions, strong on-diagonal decoding performance
( ≥ 80%) seemed to stop about three seconds after the sample poke (which is
likely when the delay phase starts on average), indicating the absence of a
stable code extending into the delay period. In contrast, the dmPFC had
significant off-diagonal (trained on one time bin and tested on all others)
decoding accuracy for up to several seconds, along with a continuous pre-
dictive strength of ≥80% for over five seconds after the sample poke, which
should be well into the delay period. This indicates a more robust and
temporally stable population code in the dmPFC during this time.

Finally, since a larger number of neurons discriminate between sample
ports in the MOs, we wanted to check if we could get better SVM decoding
with fewer neurons in this region around the sample poke. Subsampling the
neurons from all pseudopopulations into progressively larger subpopula-
tions revealed that on-diagonal MOs decoding accuracy was consistently
higher than dmPFC and vmPFC when fewer neurons were used in the
model (Supplementary Fig. 3a). Interestingly, the same subsampling tech-
nique produced lower off-diagonal decoding in the MOs compared to
dmPFC and vmPFC (Supplementary Fig. 3b). Overall, these results imply

that theMOs contains a larger proportion of selective neurons, but they are
only very transiently selective around the sample poke (e.g., the example
neurons from Fig. 2e which are only selective for ~200ms), while the other
two regions have fewer sample-selective neurons, but their selectivity lasts
longer.

Retrospectivesampleport information is stablymaintained in the
dmPFC throughout the delay period
The approaches taken abovewere next applied to the delay phase of the task.
MOsZ-scoredpopulation activity around the delay pokewas elevated above
the other subregions to a degree comparable to the sample phase (Fig. 3a–c).
This poke-related difference in pseudopopulation FR between subregions
did not persist into the five second delay holding period. Similar to its
activity in the sample phase, the vmPFC contained the lowest number of
neurons significantly changing their activity throughout the delay (Fig. 3d).
Combined with the observation that the vmPFC also had remarkably few
sample-selective neurons around the delay poke (Fig. 3f), we conclude that
this subregion plays a minimal role during the delay period in our task.

The most striking finding during the delay phase was the presence of
neurons in the dmPFC which appeared to stably differentiate retrospective
sample port identity (left versus right) throughout the five second holding
period (see Fig. 3e for two examples). Examination of sample selectivity
across the entire delay revealed a time-dependent transition in the subregion
encoding the retrospective sample locationmostprominently. In the 200ms
around when the mice poked in the back delay port, the MOs had the
highest proportion of sample-selective neurons by a small but significant
margin over the dmPFC (Fig. 3f). Slightly less than one second into the
delay, the dmPFC became the only subregion to contain any neurons with
retrospective sample selectivity, an effect which lasted until the end of the
delay holding period and resembled a persistent working memory code
(Fig. 3f). Interestingly, these selective neurons only made up a small pro-
portion of the dmPFC pseudopopulation (8-9%, Fig. 3f). Using the same
cross-temporal SVM analysis as above, we were able to infer that a stable
WM code was indeed present. Off-diagonal sample identity decoding
accuracy in dmPFC remained significant and strong ( ≥ 80%) from about
700ms after the delay poke through the end of the delay holding period,
suggesting that the small subset of neurons mentioned above was persis-
tently selective (Fig. 3g, center). Conversely,models trained and tested in the
MOs and vmPFC decoded sample identity at chance levels over the same
duration. To determine the extent to which this persistent decodability
relied on the small subset of delay-selective neurons in dmPFC,we searched
for neurons from Fig. 3f which were significantly selective for the sample
location in at least 20 bins (>= two total seconds) across the entire five
second delay period. We found 29 neurons (8.2% of 354) that met this
threshold for persistence. Removing these neurons and running the same
shuffled cross-temporal SVM analysis from Fig. 3g produced substantially
fewer off-diagonal time points with significant decoding of the sample
identity (Supplementary Fig. 4), providing more evidence that these per-
sistent neurons are part of a small but significantly stable subpopulation
in dmPFC.

Alternative WMmechanisms have also been theorized, which rely on
more dynamic representations involving chains of multiple different neu-
rons becoming transiently selective at different points in time, leading to an

Fig. 2 | Sample location selectivity is highest in the MOs during the sample phase
of theDMNTP task. a Example raster plot from anMOs neuron increasing its firing
rate around the sample port poke on all correct trials. b Z-scored heat maps of all
neurons recorded from each region around the sample poke (white dashed line)
sorted by each neuron’s mean Z-scored firing rate 500 ms before the sample poke.
cThemeanZ-scored pseudopopulation firing rate is higher inMOs leading up to the
sample poke compared to the other regions. Lighter shaded areas above and below
the solid lines represent the standard error of the mean at each time point. d The
percent of neurons significantly increasing or decreasing their firing rate from
baseline (ITI) in at least two 100 ms bins is also higher in theMOs. eExample sample
location-sorted raster plots of twoMOs neurons exhibiting transient selective firing

for the right or left sample location, respectively. Red line separates left from right
sample trials. fMOs contains the highest percentage of neurons selective for either
retrospective sample location (Left and Right combined) in a ~1 s window around
the sample poke. g Sample location decoding accuracy of a linear support vector
machine trained and tested on every combination of 200 ms time bins from the
sample window. White lines indicate the exact time the mouse poked the sample
port. Grey area represents non-significant decoder accuracy compared to a trial
identity-shuffled control. In panels c,d, and f, double-colored straight lines represent
statistically significant differences (p-value < .05) between the two respective sub-
regions in that time bin, after correcting for both false discovery rate and family-wise
error rate.
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unstable population code39. To check if a temporalWMcode coexisted with
the persistent one, we again removed the 29 persistent neurons from
dmPFC and ran a similar delay SVM analysis to the one performed in
Fig. 3g. However, instead of training and testing models on all time bin
combinations using instantaneous firing rate, we collapsed across time for
eachneuron andused thebinnumberwith themaximumfiring rate on each

trial as the unit of analysis. This transformed the data into a temporal
pseudopopulation code for differentiating left versus right sample identity.
Essentially, we asked if the times atwhich themaximumfiring rate occurred
on all left and right sample trials for each neuron could be used decode the
two retrospective locations during the delay. We did this for all subregions
and found that there was no significant main effect of subregion on SVM
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decoding performance using this temporal procedure (one-way ANOVA,
F(2,27) = 1.29, p = 0.29). The mean, cross-validated, decoding accuracy
across 10 subsamples (see Methods) for each region was 51.2% for MOs,
58.5% for dmPFC. and 56.5% for the vmPFC. Thus, a persistent coding
scheme, andnot a temporal one, seems tobe themainWMmechanismused
by the dmPFC to maintain retrospective sample identity in this task.

Furthermore, we broke down each pseudopopulation into individual
sessions to examine how evenly the persistent dmPFC selectivity was spread
across separate recordings (Supplementary Figs. 5-7). This process identi-
fied that five out of six dmPFCmice had at least one recording session with
sustained sample selectivity. Notably, the single dmPFC mouse with zero
stable decoding sessions (Supplementary Fig. 5, dmPFC 4) was the same
mouse from Supplementary Fig. 1b which we reasoned, due to its behavior,
was likely not using aWM-based strategy to perform the task. This analysis
supports our conclusion that the majority of mice perform this DNMTP
task using a similar WM-based strategy. Moreover, for each session we
plotted the mean cross-temporal SVM decoding performance during the
delay against several other session-based experimental parameters (neuron
number in each session, individual session task performance, and average
choice reaction time). Only the dmPFC contained significant correlations
between decoding accuracy and these parameters (Supplementary Fig. 8),
strengthening our previous interpretation that dmPFC is the main sub-
region involved in processing WM representations of sample identity
during the delay.

Finally, to substantiate the idea that the mice were actually using this
persistent sample identity information during the delay to complete the
DNMTPtask,weperformeda similar SVManalysis to compare the strength
of the stable code between correct and incorrect trials. After subsampling to
account for the small number of incorrect trials per session, the ability to
decode sample port identity was significantly better on correct trials, both in
the period directly before the delay poke and during the five second delay
itself (Supplementary Fig. 9). Behaviorally, this suggests that incorrect trials
mightnotuniquely arisedue toa lapse inWMmaintenanceduring thedelay
period, but may also be due to a failed encoding of the sample information
into WM before the delay even starts.

Retrospective sample port information ismost strongly encoded
by the dmPFC during the choice
Reminiscent of nose-pokes in the previous phases, theMOsagain contained
the largest number of active neurons (Fig. 4a-d). We also recorded con-
siderable activity starting approximately 1.5 seconds before the choice poke
which was highest in the vmPFC (Fig. 4c). Around this same time period,
the proportion of neurons increasing their firing rate was not different
between regions. However, the number of neurons significantly decreasing
their firing rate was lower in the vmPFC (Fig. 4d). Contrary to the previous
two task phases, retrospective sample location selectivity in this pre-poke
period and the period directly around the poke wasmost represented in the
dmPFC instead of the MOs (Fig. 4e, f). This significance continued in
dmPFC for about one second after the reward was received, once again
implying that the dmPFCmost stably represents the location of the sample
port that was visited earlier in the trial. Consistent with this, the cross-
temporal SVMuncoveredmore stable significant sample decoding after the

choice poke in dmPFC lasting about two seconds into reward consumption
compared to only about 500ms in the other two subregions (Fig. 4g).

MOs contains the most explainable firing rate variance
around pokes
Although selective coding of retrospective sample port identity is necessary
for successful DNMTP performance, mice must also constantly monitor
several other task variables to make the correct non-match choice and
maximize reward. These include tracking the current phase of the task/
location in the box so that the correct motor strategy can be enacted at key
time points, anticipating and selecting the upcoming choice, and inter-
preting the outcome of the choice (correct or incorrect) so that a mouse can
update its strategy on the next trial if necessary. Any combination of task
variables may interact at any given point during a single trial, so we wanted
to analyze how each variable contributed to firing rate variability of indi-
vidual neurons when taking other variables into consideration. To do this,
we needed to use two versions of a general linear model (GLM). The first
collapses time by considering all phases of theDNMTP task simultaneously
to examine task phase encoding, and the second removes the task phase
variable altogether in order to study the remaining variables in more tem-
poral detail over the entire trial.

In the first GLM, we were mainly interested in how transitioning into
different task phases (sample, delay, or choice) contributed to the total
neural firing rate variability in each pseudopopulation. Because task phases
occur sequentially, we needed to create a time-stacked predictor matrix
centered around all pokes simultaneously (sample, delay, and choice), so
that this variability could be teasedapart in the samemodel (seeMethods for
details). Thematrix contained the following four predictor variables: sample
port location (left or right), choice port location (left, center, or right),
outcome (correct or incorrect), and poke context (sample, delay, or choice
poke). Coefficient of partial determination analysis (CPD, see Methods for
details) estimated the proportion of each neuron’s total firing rate variability
that could be explained by each predictor variable in five separate 200ms
time bins around the time-stacked poke events. When we calculated the
total CPD for all variables by summing the means of each variable’s CPD
across this window, we found that the GLM explained total firing rate
variability to the greatest degree in the MOs pseudopopulation, and to the
lowest degree in vmPFC (black asterisks, Fig. 5a). Looking at each regressor
individually, we found that poke context accounted for the majority of this
explainablefiring rate variability in all pseudopopulations (colored asterisks,
Fig. 5a), indicating that information about task progression and/or the
mouse’s location in thebox is a crucial part ofmPFCcomputation regardless
of the subregion. In line with these findings, the MOs had significantly
higher CPDvalues for poke context compared to dmPFC and vmPFC in all
time bins around pokes (Fig. 5b).

Next, we assessed how well the population activity in separate sub-
regions could decode the poke context around poke events. We imple-
mented a similar SVM approach as the one described in previous sections,
but we applied a multiclass coding scheme instead of a binary one since the
model now had three possible choices (sample, delay, or choice phase) to
differentiate. Surprisingly, despite the gradient of poke context encoding
from MOs to vmPFC described above, the SVM was able to decode poke

Fig. 3 | Delay activity in dorsal mPFC is persistently selective for retrospective
sample location. a Example raster plot from a dmPFC neuron aligned to the start of
the delay hold period for all correct trials. b Z-scored heat maps of all neurons
recorded from each region, sorted by each neuron’smean Z-scored firing rate during
the delay phase (5 s period after the white dashed line). c The mean Z-scored
pseudopopulation firing rate is higher in MOs around the delay poke compared to
the other regions. Lighter shaded areas above and below the solid lines represent the
standard error of the mean at each time point. d The percentage of neurons sig-
nificantly increasing or decreasing their firing rate from baseline (ITI) is also higher
in the MOs at delay start. e Example sample location-sorted raster plots of two
dmPFC neurons exhibiting persistent selective firing for retrospective right or left
sample location throughout the delay phase. Red line separates left from right sample

trials. fMOs and dmPFC contain similar percentages of neurons selective for either
retrospective sample location (Left and Right combined) in a ~1 s window around
the delay poke, but only the dmPFC shows persistent sample location selectivity
throughout the entire delay phase. g Sample location decoding using a linear support
vector machine that was trained and tested on every combination of 200 ms time
bins during the delay phase confirms the existence of persistent selectivity only in the
dmPFC.White lines indicate the start of the delay period (back port poke). Grey area
represents non-significant decoder accuracy compared to a trial identity-shuffled
control. In panels c, d, and f, double-colored straight lines represent statistically
significant differences (p-value < .05) between the two respective subregions in that
time bin, after correcting for both false discovery rate and family-wise error rate.
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context with 100% accuracy in all subregions (Fig. 5c). To test whether the
results in Fig. 5c were due to a saturation effect from a large number of
neurons in all pseudopopulations, we ran SVMs on progressively larger
subsamples and found that activity in theMOs, which had the highest CPD
for poke context, is also better at decoding this context with fewer cells than
the other subregions (Fig. 5d).

A GLM over time uncovers distinct and dynamic subregional
processing of different task variables
The first GLM required time-stacking the predictor matrices to assess the
extent to which neurons in our pseudopopulations could differentiate
between the three task phases.However,with this design, theCPDvalues for
the other three variablesmay be confounded by the possibility that they are

 MOs dmPFC vmPFC  = Sig. MOs vs dmPFC  = Sig. MOs vs vmPFC  = Sig. vmPFC vs dmPFC
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best approximated only around a single task phase. For example, neural
firing rate variability caused by the outcome regressor likely only makes
sense shortly after the choice phase of the task, when the animal either
receives a reward or not. Therefore, to investigate the contributionof sample
location, choice location, and outcome to firing rate variability with more
temporal precision, we needed to remove the poke context variable and
unstack the predictor matrices to their original chronological order. This
allowed us to run aGLMon all time bins around pokes and observe how the
CPDvalues of these remaining task variables evolved as themiceprogressed
through the separate task phases (Fig. 6).

Going one step further than the raw CPD analysis performed above,
we instead calculated the proportion of neurons in each region that had
statistically significant CPD values (according to a shuffled control ana-
lysis, see Methods for details) for individual task variables in 200 ms time
bins throughout each of the three task phases. This produced results

analogous to our retrospective sample location selectivity analysis using
permutation testing in Figs. 2f, 3f, and 4f, which further strengthens these
findings (Fig. 6a). The time-based GLM also established that neither
upcoming choice port identity nor trial outcome were encoded in the
sample or delay phases of the task (Fig. 6b, c). Importantly, we only
observed a considerable number of choice-port-selective neurons around
the choice poke itself, with the vmPFC displaying the largest percentage
(Fig. 6b). Likewise, only after the choice was made were we able to find
significant subregional differences in the number of neurons encoding
outcome (Fig. 6c). This was a compelling affirmation that the mice were
not choosing an incorrect prospective motor plan or specific choice
location before they needed to make the actual choice. Surprisingly, the
MOs was the region with the most neurons encoding the outcome vari-
able, possibly due to motor activity changing drastically on correct vs
incorrect trials as mice were either consuming a water reward by licking

Fig. 4 | During the choice phase, vmPFC has a higher pseudopopulation pre-
choice Z-scored firing rate, and dmPFC contains more neurons selective for
retrospective sample location. a Example raster plot from a vmPFC neuron aligned
to the non-match choice poke for all correct trials. b Z-scored heat maps of all
neurons recorded from each region, sorted by each neuron’s mean Z-scored firing
one second before the choice poke (white dashed line). c The mean Z-scored
pseudopopulation firing rate is higher in vmPFC leading up to the choice compared
to the other regions, while activity right around the choice poke is highest in MOs.
Lighter shaded areas above and below the solid lines represent the standard error of
the mean at each time point. d The percentage of neurons significantly increasing
their firing rate from baseline (ITI) is higher in MOs at choice poke and the per-
centage of neurons decreasing their firing rate is lower before the choice in vmPFC.
e Example sample location-sorted raster plots of two dmPFC neurons exhibiting

transient selective firing for the right or left sample location during the delay phase.
Red line separates left from right sample trials. f Although activity is higher in
vmPFC leading up to the choice poke, dmPFC contains the most neurons with
retrospective sample selectivity for either sample location (Left andRight combined)
out of all three regions. g Sample location decoding accuracy of a linear support
vector machine trained and tested on every combination of 200 ms time bins during
the non-match choice phase. White lines indicate when the mice poked the choice
port and got rewarded. Grey area represents non-significant decoder accuracy
compared to a trial identity-shuffled control. In panels c, d, and f, double-colored
straight lines represent statistically significant differences (p-value < .05) between
the two respective subregions in that time bin, after correcting for both false dis-
covery rate and family-wise error rate.
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Fig. 5 | DNMTP task variables account for the most poke-related firing rate
variability in MOs. a The coefficient of partial determination (CPD, calculated for
each neuron) from a general linear encoding model was used to estimate the pro-
portion of total pseudopopulation firing rate variance around pokes that was either
unexplained (white bars) or that could be explained by our four regressors (Poke
Context, Sample Port, Choice Port, and Outcome). Numbers under each regressor
represent themeanCPD (% variance explained) across five 200 ms time bins around
the poke for that regressor (this time frame can be visualized in the following panel,
5b). A one-way ANOVA revealed a significant main effect of subregion on
explainable variance, F(2, 985) = 44.54, p = 3.02e-19. Bonferroni post-hoc com-
parisons found that the MOs had the most explainable variance among subregions,
while vmPFC contained the least (black asterisks, MOs vs. dmPFC p = 3.02e-7, MOs
vs vmPFC p = 8.78e-20, dmPFC vs vmPFC, p = 5.35e-5). Furthermore, in each
subregion, one-way ANOVAs with Bonferroni post-hoc tests found that of the four
regressors, Poke Context (PC) was the largest contributor to explained variability.

Colored asterisks represent significant differences within subregions between the
CPD values for Poke Context and all three other regressors. b Looking at the CPD of
Poke Context in isolation at all time points around the poke, we confirm that this
regressor accounts for significantly more firing rate variability in theMOs at all time
points around pokes, followed by dmPFC and then vmPFC.Double-colored straight
lines represent statistically significant differences (p-value < .05) between the two
respective subregions in that time bin, after correcting for both false discovery rate
and family-wise error rate (see Methods). Lighter shaded areas above and below the
solid lines represent the standard error of themeanCPD from the pseudopopulation
at each time point. c Despite MOs containing the highest CPD for Poke Context,
Poke Context is decodable with nearly 100% accuracy in all regions around pokes
using a linear support vector machine. Chance level decoding in the shuffled control
(dashed lines) is 1/3. d Subsampled SVMs revealed that the MOs can decode Poke
Context with fewer cells than the other subregions.
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(correct) or removing their nose from the port when no water was dis-
pensed (incorrect).

Tracking GLM beta-weights for retrospective sample location in
dmPFC across phases confirms its representational stability
Since sample location was the only task feature significantly encoded by
all subregions throughout all phases of the DNMTP task, we wanted to
take a closer look at the temporal dynamics of this information in each
area. We reasoned that a deeper understanding about how retrospective
representations temporally evolve throughout a WM task is critical to
fully understand the circuit mechanisms underlying WM, as most defi-
nitions of WM rely on the ability of animals to maintain prior infor-
mation across time. A recurring theme in our data is that neural
representations encoding retrospective sample identity seem to be
strongly reactivated around subsequent poke events on a given trial. We
therefore investigated the extent towhich sample identity representations
in each subregionwere reactivated around these pokes. The percentage of
neurons significantly selective for the sample identity around multiple
pokes was quantified in the Venn diagrams in Fig. 7a. MOs and dmPFC
both had a large number of neurons selective for the sample location
across multiple task phases. Interestingly, there were relatively much
fewer vmPFC neurons that were sample-selective across multiple pokes
(minimal overlap of pink Venn diagram circles).

ThemaximumGLMbeta-weights aroundall pokes (600msbefore and
after poke) from these selective neurons were next identified and converted
into vectors. The vectors were sorted by their beta-weight amplitudes for
easier visualization, and example histograms of these amplitude vectors
from MOs and vmPFC are plotted in Fig. 7b. In these examples, negative
beta-weights represented a neuron with higher firing rate on left sample
trials, while positive beta-weights signified a higher firing rate on right
sample trials. A higher amplitude means the neuron had a higher average
difference in firing rate between left and right trials. To compare the sub-
regional stability of these beta-weights across task phases, we ran Pearson
correlations between two beta-weight vectors from two subsequent poke
events. For example, at the top of Fig. 7b (blue histograms)we correlated the
vector of beta-weights from significant sample-selective neurons around
sample poke in theMOs (light blue bars) with the vector of beta-weights for
those sameneurons around the subsequent delay poke (dark blue bars). The
r values fromthese vector correlations are graphed asbars inFig. 7c for every
subregion across every phase-to-subsequent-phase comparison.

This analysis elucidated that the sample-selective neural representa-
tions in MOs and dmPFC are similar (i.e., stable) from the sample to the
delay phase (example in top panel of Fig. 7b). Conversely, beta-weight
vectors from the same two phases in vmPFC are negatively correlated,
meaning that neurons in this subpopulation tend to represent the opposite
sample location during the delay poke from the one they responded more
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not encoded by any region until the choice is made. Each region encoded the
outcome (correct vs incorrect) after the choice was made, with the MOs having the
largest proportion of outcome-encoding neurons. Double-colored straight lines in
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strongly to during the sample poke (Fig. 7b, bottom). Furthermore, the
dmPFC exhibited statistically similar (i.e., stable) sample-selectivity repre-
sentations across all subsequent poke comparisons, adding more evidence
that it uses the most stable retrospective coding of all three subregions
(Fig. 7c). Interestingly, none of the areas were stable from the sample to the
choice pokes, which potentially arises from the fact that these events are
separated in time by a cognitively demanding delay phase, which may
largely reorganize neural activity. Overall, the dmPFC seems to utilize short,
recurring bursts of selectivity around pokes, with similar selectivity across
pokes. This may be evidence of a lesser-studied mechanism of WM called
activity-silent WM40, in which information is stored in the transiently
increased synaptic weights of specific patterns of synapses which can be
reactivated by a strong input to theWMcircuit. However, the data collected
in this paper do not allow us to definitively argue that the above results can
be explained by this phenomenon.

vmPFC Z-scored population activity displays the largest change
in reward outcome-related firing rate
Up to this point, we had not detected any substantial contributions from the
vmPFC to WM performance. However, this region is known to have the
densest reciprocal connections with the ventral tegmental area and amyg-
dala out of all PFC subareas41,42, hinting at potential involvement in more
valence or reward-based information processing. As a result, we subtracted
the mean Z-scored firing rate of all recorded neurons on correct trials from
that on incorrect trials (subsampling for the lower count of incorrect trials),
which revealed more pronounced differences in pre-choice and post-
outcome population activity in the vmPFC compared to MOs and dmPFC
(Fig. 8a, positive values indicate higher FR on incorrect trials). Not sur-
prisingly, the vmPFC was also different relative to MOs and dmPFC in
terms of the proportions of neurons responding by either increasing or
decreasing their firing rate based on the reward outcome (Fig. 8b).
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Fig. 7 | Sample-location-selective firing rate representations have higher stability
in MOs and dmPFC compared to vmPFC as mice progress through working
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initiating each task phase. Overlapping circles in the Venn diagram represent the
percent of neurons that share retrospective sample location selectivity around either
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neurons in theMOs remain selective for the sameport across sample and delay pokes
(top), but neurons in the vmPFC switch initial sample location selectivity from
sample to delay (bottom). c Pearson beta-weight correlations quantifying the

similarity in location selectivity between pokes initiating one task phase, to pokes
initiating another one. MOs location selectivity is similar from sample to delay
pokes, but destabilizes over the course of the task. dmPFC remains the most stable
across time. vmPFC shifts location selectivity from the sample to delay pokes, but
then stabilizes later in the task. Asterisks represent an r value that is significantly
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Discussion
In this paper, we delineated how the neural populations in adjacent mouse
mPFC subregions processed information about WM task-related variables
over time. The first key finding was that each subregion exhibited char-
acteristic and differentiated activity during the task relative to the other
subregions. The second key finding was that much of the WM task-related
activity appearedunrelated to storingWMinformation (i.e., representations
of the previously visited sample port locations). Rather, it reflected changes
in activity related to poke context (sample, delay, or choice poke), and
rewards. The third keyfindingwas thatWMof the sample location could be
transiently stored (for less than one second) in both the MOs and dmPFC
and in a sustained manner only in the dmPFC, with minimal retrospective
representations detected in vmPFC. The final key finding was that vmPFC
predominantly represented choice- and outcome-related activity relative to
MOs and dmPFC.

Of note, there is a dearth of comparative analyses using single neuron
and population activity of neighboring mPFC subregions during WM,
particularly in rodents.Activity acrossmPFCsubregionshasbeen examined
in rats performing DNMTP tasks43,44 and a more complex match to place
task45. In these studies, single neurons responded prominently to reward
locations and task phase, but in contrast to the findings presented here, no
sustained neural activity related to retrospective sample port location was
noted during the delay period. Expanding on these studies, our work
implements complementary computational analyses to further explore the
disparate functional roles and temporal dynamics/stability of subregional
mPFC neural populations during WM. In addition, we included another
brain region in our experiments, the MOs, after recent evidence that it
supervises more abstract functions than basic motor control and should be
considered a part of the mPFC46.

In ourDNMTP task, theMOs behaves in amanner consistent with the
theory proposed by Barthas and Kwan46 which posits its involvement in
context-dependent selection of motor plans47,48 and the online monitoring
of sequential sensorimotor tasks49. Activity in our recorded MOs neurons
peaks in a tight window around all port pokes. Importantly, population-
level differences in this transient activity can simultaneously differentiate

which part of the task the poke is occurring in alongside distinguishing the
left versus right sample port location. These transient poke-centered phe-
nomena may represent close monitoring of the phase of the DNMTP task
the animal is in at fixed intervals, while also providing information at each
stage about the spatial rule of the current trial, facilitating ongoing motor
plan selection and timing. Consistent with the notion that MOs is involved
in context-dependent selection of motor plans, it has been reported that
MOs can relay its contextual/motor information to many areas of the
neocortex it connects with, including sensory and primary motor cortex50.
Future timed inactivation studies may be useful in exploring these ideas
further in WM tasks.

With respect to retrospective sample location selectivity, our analyses
uncovered strong sample identity representations in bothMOs and dmPFC
during all task periods. The retrospective sample location was detectable
using single neuron and population analyses, including using an SVM to
decode the sample port location and developing a GLM to show that this
port location information is significantly encoded in MOs and dmPFC
neurons well after the sample phase. As mentioned above, the retrospective
sample location-related activity inMOsmanifests only briefly aroundpokes
( < 1 s), and these recurring transient patterns of selectivity do not remain
stable throughout a trial. We speculate that MOs may not contain the
molecular or circuit architecture necessary tomaintain persistent activity in
a groupof neurons51. In contrast, subsets of dmPFCneurons are selective for
the retrospective sample port at the sample, delay and choice pokes in
similar patterns, with a smaller group (8–9%) exhibiting sustained retro-
spective sample port selectivity throughout the delay. These findings are
consistent with the notion that there are overlapping ensembles of WM
neurons operating with different dynamics in different PFC subregions on
different timescales. They also suggest that briefly active WM ensembles
may bemore common than sustained ensembles. It will be useful to explore
these ideas further in primates and rodents using differentWM tasks with a
range of delay lengths.

Perhaps the most intriguing finding in our data is the aforementioned
stability of retrospective sample identity representations in dmPFC
throughout the course of behavioral trials, especially during the majority of
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the mean at each time point. The Choice time point is colored red to signify that this
was also the exact time Reward was either delivered (correct trials) or omitted
(incorrect trials). b Proportions of neurons in each region that have a higher
Z-scored firing rate onCorrect (✓) or Incorrect (X) trials, or showed no difference in
Z-scored firing rate between correct and incorrect trials (n.d.). The proportion of
neurons modulating their firing rate on correct vs incorrect trials is also greater in
vmPFC. White marks instead of black represent statistically significant proportions
of the neuronswith higher firing rate on that trial type in the vmPFC compared to the
other 2 regions. There were no differences between the MOs and dmPFC.
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the delay holding period when neither of the other subregions display
sample location-related activity. A substantial body of evidence has set the
precedent for the existence of persistently selective delay representations in
various primate brain areas including dorsolateral prefrontal cortex52,53 and
in head-fixed mice. The latter work was done in the nearby anterior lateral
motor cortex (ALM)during adelayedmotor response task showing sample-
related preparatory activity for an upcoming left or right lick30–32,54,55. This
task differs fromours in that the head-fixed animals know the exact location
of the correct choice throughout the delay period, allowing them to make a
precise motor plan which may be represented as persistent activity. In our
task, the prospective location that will be rewarded cannot be anticipated.
Additionally, the delay lengths used in the reports cited above are relatively
short (1–2 s) compared to ours at five seconds. We believe that this longer
interval is crucial to unraveling the dynamics of WM, as we observed that
most neurons coding for the retrospective sample location in MOs and
dmPFCaround thedelaypoke arenot sustainedbeyond1–2 s into thedelay,
with a small group of neurons ( ~8%) in dmPFC exhibiting sustainedWM
activity. Other studies in freely-moving rats also found non-sustained
sample-selective delay activity in the frontal orienting field during a WM
motor planning task47, and in prelimbic cortex in a delayed alternation
task56.

Anoften-overlooked aspectofWMis the need tomaintain some signal
which updates strategies based on feedback from reward outcomes, so that
behavior can be adjusted in the immediate future if results don’t match
expectations. Our findings in vmPFC align with the possibility that this
region is predominantly involved in processing choices and outcomes. This
could be communicated by different release patterns of dopamine in this
region57, or changes in firing from glutamatergic amygdala inputs58.
Although we did not record from all subregions simultaneously, our results
allude to a dorsolateral tomedioventral trajectory of information processing
from MOs to vmPFC as the mice progress through the task. Similar
dynamics across distant brain regions have been characterized before in
humans22, monkeys59, and mice30, but they remain poorly characterized
both in primates andmice inPFC subregions involved inWM,providing an
important future direction of study.

One caveat of this study is that these subregions were not recorded
simultaneously due to the technical difficulty of probingmultiple sites along
the curvature of the cortex. Future studies would benefit from using more
advanced electrophysiological setups with multiple shanks (e.g., Neuro-
pixels 2.0 probes60) to record all subregions at once. We also did not collect
video data to accompany these recordings. In future studies, videowould be
useful for connecting specific movements to associated neural activity
patterns61. Furthermore, with the way our task was designed, we cannot
definitively determine if themice are actively remembering the retrospective
port location or prospectively planning a left or right turn away from the
sample port during the delay period16,62, althoughweargue that both of these
scenarios require a WMmechanism. However, our GLM data showing no
neurons in any region thatwere selective for the upcoming choice port lends
support to the idea that the sustained representation we describe is most
likely a retrospective one that aligns well with storedWM information very
closely related to the sample port visited earlier in the trial.

One ongoing challenge in neuroscience is the mapping of rodent
mPFC subregions to the corresponding areas from primate PFC. Although
this can be done according to common afferent and efferent projections,
molecular expression, and functions63–66, there is often a lack of consensus
regarding the extent of similarity/homology.Another challengehasbeen the
difficulty in localizing persistent neural activity in the PFC of freely moving
mice performing WM tasks in order to study the underlying mechanisms.
By identifying such activity, as well as other types of WM task-related
activity, this study provides a foundation to perform such studies using tools
that are uniquely available in mice. Our work here also paves the way for
more detailed analyses of these networks and amore nuanced and dynamic
view of how neighboring brain regions process information in complex and
complementary ways asmice progress through a complicated behavior that
requires WM and other cognitive functions.

Methods
Animals
All animal experiments performed in this study were approved by the
Veterans Affairs Portland Health Care System Institutional Animal Care
andUseCommittee.Nine female and sevenmalemice, bred on aC57BL/6 J
background, were housed in the Veterans Affairs Portland Health Care
SystemVeterinaryMedical Unit on a reverse 12-hour light cycle with lights
turning off at 8:00 AM (PST), and on at 8:00 PM (PST). All mice were
group-housed before electrode implantation, after which they were single-
housed until the completion of the experiment to prevent them from
damaging each other’s implants. Mice were 3 to 4months old at the start of
training, and testing completed at ages ranging from 6 to 9 months. Mice
had ad libitum access to water (unless restricted for experimentation) and
PMI PicoLab 5L0D Laboratory Rodent Diet (LabDiet, Inc., St. Louis, MO,
USA).Micewere housed in roomswith constant temperature (22–26 °Cdry
bulb) and humidity (30–70%) monitoring. We have complied with all
relevant ethical regulations for animal use.

One day prior to the start of initial behavioral training,micewerewater
restricted to 85-90%of their initial bodyweights so that theyweremotivated
to seek outwater rewards. Thisweight-basedwater restriction continued for
the duration of active behavioral experimentation (but not during recovery
from surgery), after which they were promptly returned to ad libitumwater
until they were sacrificed for implant location confirmation. The long-term
water restriction protocol consisted of giving the mice about one gram of a
98%-water, gelatinous hydrocolloid mixture (HydroGel®, ClearH20,
Westbrook, ME, USA) daily, after behavioral tasks, to keep the mice at a
constant water-motivated weight. Furthermore, during the one-week
recovery from surgery, mice were supplemented with an electrolyte-based
recovery diet (DietGel® Recovery, ClearH20, Westbrook, ME, USA).

Behavioral setup and training
On the first day of delayed-non-match-to-position (DNMTP) behavioral
training, water-restricted mice were acclimated to the behavioral chamber
(Fig. 1a, Bpod, Sanworks LLC, Rochester, NY, USA). The main hardware
components of this chamber included a state machine control board and
illuminable, photo-gated, water-dispensing ports. Integration of this system
with MATLAB software (MathWorks, Natick, MA, USA) and our elec-
trophysiological recording system allowed for precise closed-loop control
over specific DNMTP task parameters via customMATLAB scripts. These
parameters included the timing of task phases, lighting of ports, delivery of
water rewards or signaling of incorrect behavior with negative reinforcers,
and online synchronization with electrophysiological data for accurate
timestamping of neural firing and important behavioral events.

After a 15-minute habituation session on day one,micewere taught on
day two that only lit ports could dispense water rewards. To do this, we
randomly lit and pre-baited one of the four (three “front” and one “back”)
ports so that water was available as soon as the port light turned on. This
allowed mice to initially learn the simple Pavlovian association that water
was available from lit, but not dark, ports. Once themice were familiar with
this association (usually after one 15-minute session), we changed to a
slightly more instrumental design where water was not dispensed until the
mice poked their nose in the lit port and broke the plane of the infrared
photogate, prompting them to learn that their active engagement with the
port was required for water to be dispensed.

The next step in training was a modified version of the final DNMTP
task with intertrial intervals (ITIs), sample phase, delay phase, and choice
phase. After a five second ITI, either the left or right front port had a 50%
chance to randomly light up on a given trial (sample phase, the center port
was never used as a sample location), and themousewas required to poke its
nose in the lit port to get a small water reward (3 µL) and activate the back
delay port. The mouse then turned around to poke in the back delay port,
which dispensed a one µL reward immediately after the poke. Poking in any
of the dark ports during the sample or delay phases led to a punishment
consisting of illumination of a bright house light and a behavioral timeout
for 15 s, after which the exact same trial restarted. Successful progression
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through the delay led to the choice phase, where the previous sample port lit
up alongwith one of the other two front ports (randomly, 50% chance). The
mouse had to poke the lit port that it did not previously visit during the
sample phase to complete a correct non-match choice and get a larger 7 µL
reward. Consumption of this reward typically took about two to three
seconds, after which the mice left the port. Leaving the port after water
consumption initiatedafive second ITIperiod inwhich themouse couldnot
enter any other ports, or the ITI timer would reset. An incorrect choice
similarly led to an illumination of a bright house light and a fifteen second
timeout, but in this case a new trial with new port locations started
afterwards.

Oncemice achieved 70%non-match performance on this training task
with no delay, we removed the sample phase reward and implemented a
gradual increase of delay length in each session to help the mice get to the
final delay periodoffive seconds. Themicehad tohold their nose in the back
port until the delay timer ended to get the small 1 µL reward and enter the
choice phase. After each successful delay hold, the timer went up from zero
by 0.10 s until a five second delay was reached.We let themice do this until
they reliably got to 5 s for the delay period. The final version of the task had
themice starting thedelay at zero seconds andwalkingupbyone secondper
trial to the final five second delay. These first five trials were removed from
analysis. The final task sessions, in which we also recorded brain activity,
usually lasted around one hour and the mice completed anywhere from 33
to 168 trials (mean of 106.43 trials with a standard deviation of 27.35 trials),
depending on motivation for water based on hydration status. Once mice
performed at >70% for three consecutive sessions they were implanted with
electrodes. All behavioral analyses were from sessions where neural
recordings also took place.

Electrode implantations and single-unit recordings
Custom 28-channel implantable electrode bundles were constructed in-lab.
The process consisted of threading 32-channel electrode interface boards
(EIB-36-Narrow-PTB, Neuralynx, Inc., Bozeman, MT, USA) with 12 µm
diameter tungstenwire (California FineWireCompany, Grover Beach, CA,
USA), and securing the wires in the board with gold pins (Neuralynx, Inc.,
Bozeman,MT,USA). Four slightly larger diameter localfield potentialwires
were implanted in various mPFC-connected brain regions, although none
of thedata collectedwith thesewireswasused for analysis. Silver groundand
referencewireswere also solderedonto theEIB.Theapparatuswasbuilt ona
custom 3D-printed scaffold (Grey V4 resin, Formlabs, Somerville, MA,
USA), with holes for drivable screws (McMaster Carr, Elmhurst, IL, USA)
that allowed for advancement of the electrodes after every recording session.
Thewireswere affixed to theEIBsusingdental cement (UNIFASTTrad,GC
America Inc., Alsip, IL, USA) to protect them from damage.

For implantation, mice were lightly anesthetized with 3% vaporized
isoflurane (Covetrus, Dublin, OH, USA) and transferred to a stereotaxic
surgery apparatus (DavidKopf Instruments,Tujunga,CA,USA)where they
were kept at ~1% isoflurane for the remainder of the surgery. Body tem-
perature was monitored with a Physitemp (Clifton, NJ) TCAT-2LV tem-
perature controller system, which held animals between 36 and 37 °C. Prior
to initial incision, they were injectedwith carprofen and dexamethasone for
pain management, along with a topical application of lidocaine to the skull
and surrounding skin. Electrode bundles were implanted on the left side of
the skull at the following coordinates (from bregma): supplementary motor
area (MOs):+1.80mm anterior, -1.50mm lateral left, -1.00mm ventral to
brain surface; dorsomedial prefrontal cortex (dmPFC):+1.80mm anterior,
-0.40mm lateral left, -0.50mm ventral to brain surface; ventromedial pre-
frontal cortex (vmPFC):+ 1.80mm anterior, -0.40mm lateral left,
-1.70mm ventral to brain surface. A larger diameter reference wire was
implanted in the left striatum:+ 0.50mm anterior, -1.60mm lateral left,
-2.50mmventral to brain surface. This reference locationwas chosen due to
its large size, making it an easily reproducible target to reliably hit during
surgery. A ground screw was also placed in the skull over the right (con-
tralateral) cerebellum. The full setupwas secured to the skull using the same
dental cement mentioned previously. This included threading screws into

skull-secured acrylic cuffs so that they could be advanced and drive the
electrodes deeper into the brain.

Mice were allowed to recover for at least one week with daily health
monitoring before returning to water restriction and behavioral testing.
Electrical recordingsduringbehavior beganafter two to three re-habituation
sessions while plugged into the electrophysiological tether and commutator
(Doric, Quebec, Canada). Data was collected with a CerePlex Direct neural
acquisition system connected via a 32-channel CerePlex µ (mu) headstage
(Blackrock Neurotech, Salt Lake City, UT, USA) to the implanted EIB.
Unfiltered data was sampled at 30 kHz throughout an entire behavioral
session. Single-units were isolated offline using Kilosort3 and timestamped
to behavioral events. Since the geometry of recording sites in our bundlewas
unknown, we used a random linear arrangement for our probe configura-
tion parameter and turned off the registration and drift-correction para-
meters. Units considered “good” by the Kilosort algorithm (consistent
unique waveform shape and clean autocorrelations) were then manually
curated and removed if their amplitudes or template shape drifted sig-
nificantly over the course of the recording, or if manual offline cross-
correlations with other units determined that they were duplicates. In the
second case, the highest amplitude duplicate was kept, and the rest were not
used in further analyses. Similarly, any isolated units with amean firing rate
of <0.5 Hzacross the entire sessionwere also excluded fromfurther analysis.

Statistics and reproducibility
The following analyses were completed using custom MATLAB (R2022a
and R2024a) scripts, and the use of specific built-in MATLAB functions is
noted when appropriate. These analyses were performed with the goal of
testing for differences between these subregional pseudopopulations.

Z-scoring and comparison of Z-scored firing rate across
subregions
After spike sorting, we created three pseudopopulations by combining all
neurons within each of the PFC subregions across all recording sessions. The
total neuron count for each pseudopopulation was 304 from the MOs, 354
from the dmPFC, and 330 from the vmPFC. The first analysis involved
Z-scoring the firing rate of every neuron around key behavioral events. This
was done by summing the spikes in every 100ms time bin five seconds before
andafter the sample,delay, or choicepokes for everycorrect trial (onehundred
total bins for each poke).We then normalized each trial of each neuron across
the time bins to create time-based Z-scores. These Z-scores were averaged
across all correct trials in that neuron’s session to get the mean Z-score for
every neuron around important DNMTP task events, and this result is
depicted in the heatmaps seen in Figs. 2b, 3b and 4b. We could then take the
mean across all neurons in each pseudopopulation to see how the regions
differed in terms of simple firing rate changes over time (Figs. 2c, 3c and 4c).

To evaluate if the pseudopopulation Z-scored firing rate differed
between subregions, we ran a separate one-way ANOVA (MATLAB
function anovan) at every relevant time bin shown in the figures (this
number was different between task phases). After uncorrected p-values for
each ANOVAwere found, we adjusted them for false discovery rate (FDR)
using the Benjamini-Hochberg method67. Each time point that still had a
corrected p-value of < .05 was taken, and unpaired t-tests in that bin were
conducted on each combination of subregional comparisons. The p-values
from these multiple comparisons were then Bonferroni post-hoc corrected,
and only comparisonswith adjusted p-values still below .05were considered
significantly different at the corresponding timepoint. The above ANOVA
strategy was also used to calculate significant subregional differences in the
changes in Z-scored firing rate on incorrect vs correct trials in Fig. 8a, except
that that correct Z-scores were subtracted from incorrect Z-scores before
analysis. In these time binned ANOVAs, the within-subject degrees of
freedom is 985 (total number of neurons across pseudopopulationsminus 3
groups), and the between-subject degrees of freedom is 2 (number of
pseudopopulations minus 1).

We took a related approach to analyze subregional differences in the
proportions of neurons exhibiting a significant increase or decrease in
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firing rate.We first used aWilcoxon signed-rank test to compare Z-scored
firing rate in a one second baseline period during the intertrial interval, to
the Z-scored firing rate at each 100ms time point around important task
events (Figs. 2d, 3d and 4d). Then, instead of running ANOVAs to check
for differences between groups at each time point, we ran a χ2 test for
homogeneity of proportions across the three groups (MATLAB function
crosstab). Like the ANOVA approach, we also adjusted p-values for false
discovery rate over time, again using the Benjamini-Hochberg method. If
adjusted p-value was still less than .05 for a time bin, we ran separate
pairwise χ2 tests for each combinationof subregions and corrected for these
multiple comparisons using the Bonferroni-Holmmethod68. Any adjusted
p-value below .05 after these conservative corrections was considered to
represent a significant difference in the proportion of neurons either
increasingor decreasing theirfiring rate frombaseline (during the intertrial
interval) between two groups at that time point. Moreover, this χ2 strategy
was similarly employed in Fig. 8b, to study the differences in the propor-
tions of neurons that increase or decrease their firing rates in response to
incorrect trials compared to correct ones.

Determining retrospective sample location selectivity using
permutation testing
Retrospective sample location selectivity was analyzed in several ways
throughout the paper. In Figs. 2f, 3f and 4f, we used a permutation testing
method to compare the raw spike counts in 100ms time bins between left and
right sample location trials (correct trials only). Since sessions rarely had an
equal number of correct left and right sample trials, for each session we
randomly subsampled trials from the greater of the two tomatch the number
of trials from the lesser. Next, we randomly sampled two trials from a com-
bined subpopulation of left and right samples, such that the spike counts for
these random two trials could be from two left trials, two right trials, or a left
and a right trial.We took the difference between two randomly sampled trials
1000 times and created a shuffled distribution of differences. We then calcu-
lated the truemeandifferencebetweenall left and right trials, compared that to
the shuffled distribution, and counted the number of shuffled differences that
were greater than or less than the true mean difference. Neurons were con-
sidered to be significantly selective for a sample location if < 25 out of
1000 shuffled differences were greater inmagnitude than the actual difference
(approximating a two-tailed p-value of < .05). This was done for every time
point around key poke events. Significance between subregions was deter-
mined using a similar χ2 strategy to the one mentioned in the above section.

Support vectormachines (SVMs) for cross-temporal decodingof
sample location and poke context
To track the stability of location selectivity across time in each region, we
trained linear SVMs (MATLAB fitcsvm) to decode retrospective sample
location every 200ms using binned raw spike counts from each neuron in a
given region’s pseudopopulation on all correct trials.We then assessed how
well each time point’s trainedmodel could predict sample location based on
the pseudopopulation activity at all time points (including the one it was
trained on). A stable population representationwould display above-chance
predictive accuracy ( > 50%) at time points far from the training time. A
leave-two-out cross-validation scheme was applied to protect against
overfitting the model. This consisted of holding out one trial from both left
and right location samples and testing how the model trained on the
remaining trials predicted the identity of these held out trials. Importantly,
we subsampled each session’s left and right trial counts to 13, whichwas the
lowest left or right sample location trial count across all sessions, although
most sessions had many more than 13. Our leave-two-out strategy was
therefore repeated 13 times, with each value from this subsampling
appearing once without replacement in the testing set. The prediction
accuracy of the model for each subsample was calculated as the number
of correct classifications of all held out trial combinations, out of 26. The
overall subsampling procedure was repeated 10 times, for a total of 260
model predictions to calculate non-shuffled prediction accuracy for each
cross-temporal comparison. For each of these 10 subsampling repetitions,

we also randomly shuffled the trial identity and ran the above procedure 100
more times to generate a false distribution of predictions to compare the
non-shuffled accuracy value to. This led to a total of 1000 shuffled to non-
shuffled comparisons. If the mean (out of 260 predictions) prediction value
from the non-shuffled “true” model was greater than at least 950 of the
shuffled model predictions (approximating a one-tailed p-value less than
.05), this cross-temporal time point was considered significant. Any non-
significant time point was represented in the figures as a grey square cov-
ering that cross-temporal location on the graph (Figs. 2g, 3g, and 4g).

A second pseudopopulation SVMwas used in Fig. 5 to classify the poke
context (sample, delay, or choice poke) in a brief window around the three
pokeeventsacross correct trials.Because therewere threecontexts, amulticlass
SVMwasneeded.Weused thefitcecocMATLAB functionwith a ‘one-vs-one’
coding design and 5-fold cross validation per comparison, which produced a
chance level of 1/3.Wealso rana shuffledversionof thismodel to confirmthat
the model was not overfit. The reason these SVMs were only done in a short
timewindowaround the pokeswas tomaximize confidence that the phasewe
were testing did not contain any residual information from a prior or future
task phase, sincewe couldnot be sure of the exact time an animalwas aware of
its transition to another poke/task phase.

General linear modeling
We used two separate general linear model designs (GLM, MATLAB
functionfitlm) to characterize howneurons in each region encodedmultiple
DNMTP task variables simultaneously. The first GLM analysis was mainly
designed to determine the extent to which neurons in each pseudopopu-
lation encoded the task phase that mice were in around pokes (sample,
delay, or choice, Fig. 5). This was done in a brief time window centered
around poke events (-400 to +400ms) since mice took inconsistent and
unpredictable amounts of time to progress to different phases, and we
wanted to make sure the task phases in question were temporally well
isolated. For this GLM, the predictor variables included poke context
(sample, delay, or choice poke), sample location identity (right or left),
choice location identity (left, center, or right), and outcome (correct or
incorrect). Construction of the GLM predictor matrix was done by con-
verting the levels of these regressors (for example, left or right for sample
location) into dummy variables for each neuron (MATLAB function
dummyvar, in the above example, left sample trials become 1 and right
sample trials become 0 for an individual session). When training a GLM
model to predict neural firing rate, each of these one-hot encoders was
treated as a categorical predictor variable. In thefirstGLManalysis, the three
predictormatrices for task phasewere stacked on top of each other such that
poke time was collapsed. Since we were doing this for individual neurons,
the length of each stacked predictor matrix varied, and was equal to the
number of trials in a givenneuron’s sessionmultipliedby 3 (for the 3 stacked
task phase matrices).

For model training, we took a similar overall GLM approach to Akam
et al. 69, inwhich a newmodel was trained to on every time bin to predict the
firing rate of each neuron based the levels of all predictor variables at that
time point (known as the “full”model). The sum of squares error (SSE) of
the fullmodel represents the amount of residual variance in aneuron’sfiring
rate that cannot be explained by changes in the level of predictor variables.
The full model should account for the most firing rate variability in a given
neuron and should therefore have a relatively low SSE since it contains the
most sources of potential variability. To uncover the extent to which
pseudopopulations encoded singular predictor variables, we found the
coefficient of partial determination (CPD) for each individual variable. This
can be calculated by removing the singular predictor variables from the full
model and running another GLM on the reduced model. Since the reduced
model should have a larger error term than the full model, subtracting the
full model from each reduced model should approximate the contribution
of each removed variable to the full model’s firing rate prediction. The
resulting number is the CPD for that singular variable, and it approximates
the percentage of total firing rate variability for a given neuron explained by
that variable. A CPDwas generated for each neuron at each time point, and
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the CPD for each pseudopopulation was averaged across neurons and
reported over time (Fig. 5b) or taken as a mean across the time points
immediately surrounding the poke (Fig. 5a). Using CPDs from all predictor
variables, we could then compare the contributions of each variable to the
explainable firing rate variance in each region.

For our second GLM analysis (Fig. 6), we were instead interested in
whether each pseudopopulation dynamically encoded the other three non-
task-phase variables across the different task phases. For this, we had to
remove the task phase regressor from our stacked predictor matrix and
subsequently unstack it so that this analysis could be done on each time
point around all task phases and likewise compared across task phases.
Thus, each predictor matrix now only contained three predictor variables
and was 1/3 the size of the stacked matrix for each session. Statistically
significant CPDs for each predictor variable at every time point were
determined by comparing the true CPD value to a shuffled distribution of
CPDs generated from randomly shuffling predictor variable identities 1000
times. As a very conservative cutoff, CPDs were only considered significant
if none of the shuffled CPD values were higher than the unshuffled one, and
we calculated the proportion of neurons at every time point that fulfilled this
criterion. We then could determine differences in the proportions of neu-
rons exhibiting complex DNMTP task variable encoding between regions
using the same χ2 approach employed at the end of the sectionZ-scoring and
comparison of Z-scored firing rate across subregions and follow these pro-
portions over time around the poke events of all task phases.

Among the most informative GLM outputs are beta-weights repre-
senting the strength and direction of the relationship between the firing rate
of every neuron and the levels of each predictor variable. As another
approach to visualize the stability of retrospective sample port location
encoding, we recovered the maximum beta-weight amplitudes for every
neuron with significant selectivity in a 600ms time window around pokes.
In this case, the beta-weights of significant neurons could be positive or
negative with respect to the sample port location predictor variable, with
negative signifying neurons that fired more on the left side of the box and
vice versa. We quantified how these beta-weights changed over time using
Pearson correlations (r, MATLAB function corr) comparing the significant
beta-weight population vector at one time point to the beta-weight popu-
lation of those sameneurons at a future time point. The significance levels of
these correlations were also reported in Fig. 7c and represent the confidence
that the reported correlations are different from zero.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The source neural and behavioral data used for all analyses in this study are
publicly available in a Figshare repository with the identifier https://doi.org/
10.6084/m9.figshare.26999575.

Code availability
Custom MATLAB functions for the SVM and GLM analyses in this study
are publicly available in a Figshare repository with the identifier https://doi.
org/10.6084/m9.figshare.26999575.All other customcodeused in this study
will be made available by the corresponding author upon reasonable
request.
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