Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Jan 15;225(2):277–281. doi: 10.1042/bj2250277

Leucine and tryptophan metabolism in rats.

M Salter, D A Bender, C I Pogson
PMCID: PMC1144587  PMID: 3977834

Abstract

The rate of tryptophan metabolism in isolated liver cells from animals fed on a high-leucine diet was greater than for cells from control animals. Leucine inhibited tryptophan metabolism and tryptophan uptake in isolated liver cells, probably by competing for membrane transport. Leucine had no effect on tryptophan 2,3-dioxygenase in vitro. 4-Methyl-2-oxovalerate increased tryptophan oxidation in incubations containing albumin, by displacing bound tryptophan and increasing the availability of the amino acid to the cell. The results suggest that, under extreme conditions, when the availability of tryptophan is low, leucine may be pellagragenic.

Full text

PDF
281

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basner R., Kresse H., von Figura K. N-Acetylglucosamine-6-sulfate sulfatase from human urine. J Biol Chem. 1979 Feb 25;254(4):1151–1158. [PubMed] [Google Scholar]
  2. Bender D. A. Effects of a dietary excess of leucine on the metabolism of tryptophan in the rat: a mechanism for the pellagragenic action of leucine. Br J Nutr. 1983 Jul;50(1):25–32. doi: 10.1079/bjn19830068. [DOI] [PubMed] [Google Scholar]
  3. Cate R. L., Roche T. E. A unifying mechanism for stimulation of mammalian pyruvate dehydrogenase(a) kinase by reduced nicotinamide adenine dinucleotide, dihydrolipoamide, acetyl coenzyme A, or pyruvate. J Biol Chem. 1978 Jan 25;253(2):496–503. [PubMed] [Google Scholar]
  4. Crabb D. W., Harris R. A. Studies on the regulation of leucine catabolism in the liver. Stimulation by pyruvate and dichloroacetate. J Biol Chem. 1978 Mar 10;253(5):1481–1487. [PubMed] [Google Scholar]
  5. Elia M., Livesey G. Effects of ingested steak and infused leucine on forelimb metabolism in man and the fate of the carbon skeletons and amino groups of branched-chain amino acids. Clin Sci (Lond) 1983 May;64(5):517–526. doi: 10.1042/cs0640517. [DOI] [PubMed] [Google Scholar]
  6. GOPALAN C., SRIKANTIA S. G. Leucine and pellagra. Lancet. 1960 Apr 30;1(7131):954–957. doi: 10.1016/s0140-6736(60)90838-2. [DOI] [PubMed] [Google Scholar]
  7. Ghafoorunissa, Rao B. S. Effect of leucine on enzymes of the tryptophan-niacin metabolic pathway in rat liver and kidney. Biochem J. 1973 Jun;134(2):425–430. doi: 10.1042/bj1340425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goto M., Shinno H., Ichihara A. Isozyme patterns of branched-chain amino acid transaminase in human tissues and tumors. Gan. 1977 Oct;68(5):663–667. [PubMed] [Google Scholar]
  9. Handlogten M. E., Weissbach L., Kilberg M. S. Heterogeneity of Na+-independent 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid and L-leucine transport in isolated rat hepatocytes in primary culture. Biochem Biophys Res Commun. 1982 Jan 15;104(1):307–313. doi: 10.1016/0006-291x(82)91975-1. [DOI] [PubMed] [Google Scholar]
  10. Khatra B. S., Chawla R. K., Sewell C. W., Rudman D. Distribution of branched-chain alpha-keto acid dehydrogenases in primate tissues. J Clin Invest. 1977 Mar;59(3):558–564. doi: 10.1172/JCI108671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krishnaswamy K., Bapurao S. Effect of leucine at different levels of pyridoxine on hepatic quinolinate phosphoribosyl transferase (EC 2.4.2.19) and leucine aminotransferase (EC 2.6.1.6) in rats. Br J Nutr. 1978 Jan;39(1):61–64. doi: 10.1079/bjn19780012. [DOI] [PubMed] [Google Scholar]
  12. Kubota H., Nomura K., Yamada O., Shin M., Sano K., Umezawa C. NAD glycohydrolase activity in the liver of rats fed on excess leucine diet and low or high protein diet. J Nutr Sci Vitaminol (Tokyo) 1982 Feb;28(1):57–66. doi: 10.3177/jnsv.28.57. [DOI] [PubMed] [Google Scholar]
  13. Livesey G., Lund P. Binding of branched-chain 2-oxo acids to bovine serum albumin. Biochem J. 1982 Apr 15;204(1):265–272. doi: 10.1042/bj2040265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Livesey G., Lund P. Enzymic determination of branched-chain amino acids and 2-oxoacids in rat tissues. Transfer of 2-oxoacids from skeletal muscle to liver in vivo. Biochem J. 1980 Jun 15;188(3):705–713. doi: 10.1042/bj1880705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Magboul B. I., Bender D. A. The effects of a dietary excess of leucine on the synthesis of nicotinamide nucleotides in the rat. Br J Nutr. 1983 May;49(3):321–329. doi: 10.1079/bjn19830041. [DOI] [PubMed] [Google Scholar]
  16. Manson J. A., Carpenter K. J. The effect of a high level of dietary leucine on the niacin status of chicks and rats. J Nutr. 1978 Dec;108(12):1883–1888. doi: 10.1093/jn/108.12.1883. [DOI] [PubMed] [Google Scholar]
  17. Manson J. A., Carpenter K. J. The effect of a high level of dietary leucine on the niacin status of dogs. J Nutr. 1978 Dec;108(12):1889–1898. doi: 10.1093/jn/108.12.1889. [DOI] [PubMed] [Google Scholar]
  18. Metzler H., Gebhardt R., Oberrauch W., Mecke D. A convenient and highly sensitive spectrophotometric assay for tryptophan 2,3-dioxygenase. Anal Biochem. 1982 Mar 15;121(1):10–16. doi: 10.1016/0003-2697(82)90550-4. [DOI] [PubMed] [Google Scholar]
  19. Nakagawa I., Oguri S., Sasaki A., Kajimoto M., Sasaki M. Effects of excess intake of leucine and valine deficiency on tryptophan and niacin metabolites in humans. J Nutr. 1975 Oct;105(10):1241–1252. doi: 10.1093/jn/105.10.1241. [DOI] [PubMed] [Google Scholar]
  20. Roche T. E., Cate R. L. Purification of porcine liver pyruvate dehydrogenase complex and characterization of its catalytic and regulatory properties. Arch Biochem Biophys. 1977 Oct;183(2):664–677. doi: 10.1016/0003-9861(77)90400-3. [DOI] [PubMed] [Google Scholar]
  21. Smith S. A., Carr F. P., Pogson C. I. The metabolism of L-tryptophan by isolated rat liver cells. Quantification of the relative importance of, and the effect of nutritional status on, the individual pathways of tryptophan metabolism. Biochem J. 1980 Nov 15;192(2):673–686. doi: 10.1042/bj1920673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith S. A., Pogson C. I. The metabolism of L-tryptophan by isolated rat liver cells. Effect of albumin binding and amino acid competition on oxidatin of tryptophan by tryptophan 2,3-dioxygenase. Biochem J. 1980 Mar 15;186(3):977–986. doi: 10.1042/bj1860977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tannous R. I., Rogers Q. R., Harper A. E. Effect of leucine--isoleucine antagonism on the amino acid pattern of plasma and tissues of the rat. Arch Biochem Biophys. 1966 Feb;113(2):356–361. doi: 10.1016/0003-9861(66)90197-4. [DOI] [PubMed] [Google Scholar]
  24. Weissbach L., Handlogten M. E., Christensen H. N., Kilberg M. S. Evidence for two Na+-independent neutral amino acid transport systems in primary cultures of rat hepatocytes. Time-dependent changes in activity. J Biol Chem. 1982 Oct 25;257(20):12006–12011. [PubMed] [Google Scholar]
  25. Yamada O., Shin M., Sano K., Umezawa C. Effect of dietary excess leucine on nicotinamide nucleotide level in rat liver. Int J Vitam Nutr Res. 1979;49(4):376–385. [PubMed] [Google Scholar]
  26. Yamada O., Shin M., Sano K., Umezawa C. Effect of dietary excess leucine on the levels of branched chain alpha-keto acids and ketone bodies in blood and the liver of rats. Int J Vitam Nutr Res. 1983;53(2):192–198. [PubMed] [Google Scholar]
  27. Yamada O., Shin M., Sano K., Umezawa C. Effect of leucine and alpha-ketoisocaproic acid on NAD biosynthesis from tryptophan or nicotinic acid in the isolated rat liver cells. Int J Vitam Nutr Res. 1983;53(2):184–191. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES