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Abstract
Background Accurate prediction of short-term mortality in acute pulmonary embolism (APE) is very important. The 
aim of the present study was to analyze the prognostic role of radiomics values of epicardial adipose tissue (EAT) in 
APE.

Methods Overall, 508 patients were included into the study, 209 female (42.1%), mean age, 64.7 ± 14.8 years. 
4.6%and 12.4% died (7- and 30-day mortality, respectively). For external validation, a cohort of 186 patients was 
further analysed. 20.2% and 27.7% died (7- and 30-day mortality, respectively). CTPA was performed at admission 
for every patient before any previous treatment on multi-slice CT scanners. A trained radiologist, blinded to patient 
outcomes, semiautomatically segmented the EAT on a dedicated workstation using ImageJ software. Extraction 
of radiomic features was applied using the pyradiomics library. After correction for correlation among features and 
feature cleansing by random forest and feature ranking, we implemented feature signatures using 247 features of 
each patient. In total, 26 feature combinations with different feature class combinations were identified. Patients were 
randomly assigned to a training and a validation cohort with a ratio of 7:3. We characterized two models (30-day and 
7-day mortality). The models incorporate a combination of 13 features of seven different image feature classes.

Findings We fitted the characterized models to a validation cohort (n = 169) in order to test accuracy of our models. 
We observed an AUC of 0.776 (CI 0.671–0.881) and an AUC of 0.724 (CI 0.628–0.820) for the prediction of 30-day 
mortality and 7-day mortality, respectively. The overall percentage of correct prediction in this regard was 88% and 
79% in the validation cohorts. Lastly, the AUC in an independent external validation cohort was 0.721 (CI 0.633–0.808) 
and 0.750 (CI 0.657–0.842), respectively.

Interpretation Radiomics parameters of EAT are strongly associated with mortality in patients with APE.

Clinical trial number Not applicable.
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Introduction
Acute pulmonary embolism (APE) is a potential life-
threatening disorder with a high mortality [1, 2]. There-
fore, an immediate diagnosis of APE is crucial. The 
current gold standard for the diagnosis of APE is com-
puter tomographic pulmonary angiography (CTPA). 
Moreover, CTPA parameters can also predict out-
comes in patients with APE. For instance, right ventricle 
enlargement is associated with 30-day mortality in APE 
[3]. Reflux of contrast medium into the inferior vena cava 
(IVC) is another important CTPA parameter. IVC reflux 
correlates with tricuspid regurgitation and with levels of 
troponin [4, 5]. IVC reflux also correlates with 30-day 
mortality [6]. Evidence suggests image analysis as an 
emerging diagnostic tool.

Recently, epicardial adipose tissue (EAT) has been 
proposed as a novel imaging biomarker in several acute 
conditions. In fact, EAT volume and attenuation inde-
pendently distinguishes patients with and without myo-
cardial infarction [7]. Furthermore, EAT density predicts 
obstructive coronary artery disease and high risk plaque 
features in patients with atypical chest pain [8]. More-
over, in COVID-19, EAT parameters like volume and/or 
density can predict adverse clinical outcomes [9]. 

In APE, previously, only one work analyzed associa-
tions between EAT and outcomes [10]. 

Currently, modern imaging post-processing methods 
such as radiomics are used to identify novel imaging 
biomarkers. For instance, in APE, several texture analy-
sis values derived from thrombotic clots differed signifi-
cantly in survivors and non-survivors [10]. 

Previously, only few studies reported the prognostic 
significance of radiomics-based features of EAT in sev-
eral cardiac disorders [11, 12]. So far, Ilyushenkova et al. 
showed that the parameter „gray level non-uniformity 
normalized“ was an independent predictor of atrial fibril-
lation recurrence atrial fibrillation recurrence after cath-
eter ablation [11]. Furthermore, radiomics signatures of 
EAT can also improve cardiac risk prediction in patients 
with coronary artery disease [12]. 

To the best of our knowledge, there are no reports 
about the clinical significance of radiomics-based values 
derived from EAT in APE. Presumably, radiomics anal-
ysis of EAT may provide novel sensitive parameters for 
prediction of unfavorable prognosis in APE.

The purpose of the present work was to investigate the 
prognostic role of radiomics-based parameters of EAT in 
patients with APE.

Methods
Data acquisition
Main cohort
The present retrospective study was approved by the 
institutional review board (Nr. 145/21, Ethics Committee, 

Otto-von-Guericke University of Magdeburg, Magde-
burg, Germany). The study was performed in accordance 
with the Declaration of Helsinki. Informed consent was 
waived due to the retrospective design.

For this study, the clinical database was screened for 
cases with APE in the time-period between 2015 and 
2021. Inclusion criteria for the study were:

  – sufficient CTPA images at the admission of the 
hospital;

  – available information about 30-day and 7-day 
mortality (according to the medical records, in all 
instances, the mortality was attributed to acute PE);

  – thrombolytic treatment was not administered before 
and/or during the CTPA;

  – information about troponin, lactate, sPESI and 
hemodynamic instability.

Exclusion criteria were as follows:

  – severe image artifacts;
  – missing clinical data/follow up;
  – chronic PE.

Overall, 508 patients met the inclusion criteria (Fig.  1). 
Patients comprised 209 females (42.1%) and 299 males 
(57.9%) with a mean of 64.7 ± 14.8 years.

Independent validation cohort
For the external evaluation, an additional cohort was col-
lected. For this cohort, a retrospective search in the clini-
cal database of the Department of Internal Medicine of 
the University of Leipzig was performed. This subproj-
ect was approved by the institutional review board (Nr. 
118/19-ck, Ethics Committee, University of Leipzig, 
Leipzig, Germany). There were also similar inclusion and 
exclusion criteria. Overall, 186 patients were included 
(Fig. 1). Patients comprised 96 (52%) men and 90 (48%) 
women with a mean age of 64.1 ± 15.6 years.

Imaging technique
CTPA was performed at admission for every patient 
before any previous treatment on multi-slice CT scan-
ners (Siemens Somatom Definition AS+, Siemens 
Healthcare, Germany or Canon Aquilion Prime, Canon 
Medical Systems, Ottawara, Japan). In all cases, an iodin-
ated contrast agent (60–150  ml Accupaque 300  mg/ml, 
GE Healthcare Buchler GmbH & Co. KG, Braunschweig, 
Germany or Imeron 300, Bracco Imaging Deutschland 
GmbH, Konstanz, Germany) was administrated intra-
venously via a peripheral venous line at a rate of 3.0–
4.0 ml/s. Automatic bolus tracking was performed in the 
pulmonary trunk with a trigger of 100 Hounsfield units 
(HU). The imaging parameters were as follows: 100–120 
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kVp, 25–200 mAs (tube current modulated 50–400 mA), 
slice thickness 1 mm, and a pitch factor of 1.4.

Analysis of EAT
EAT segmentation was performed by a trained radiolo-
gist (AA). The pericardium was manually traced from the 
right pulmonary artery to the diaphragm respecting as 
anatomical limits the pulmonary artery bifurcation, the 
left atrium and the aortic root as the upper limit and the 
diaphragm and the left ventricle apex as the lower limit. 
Furthermore, the region of interest within the traced area 
was defined based on density threshold values between 

− 30 and − 190 Hounsfield units (HU). After three-dimen-
sional reconstruction, EAT volume was automatically 
calculated by the software program. The segmentation 
was done on a dedicated workstation using ImageJ soft-
ware (Fig. 2a). The radiologist was blinded to patient out-
comes. The segmented EAT volume data were saved in 
DICOM format, before being transformed in NRRD for-
mat using python (Fig. 2b).

Extraction of the radiomics features was applied using 
the pyradiomics library (https://pyradiomics.readthed-
ocs.io/en/latest/), a Python toolbox and used it for deep 
analysis of the CT data [13]. The .yaml- parameter file 

Fig. 1 Flowchart of patient recruitment and study design

 

https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
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Fig. 2 (a) Segmentation of EAT on CTPA. (b) Segmented EAT images
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is stored and can be applied upon request. The datasets 
were normalized to -1024 HU and 1000 HU according to 
the pyradiomics normalization steps. We used the set-
tings that were recommended for CT data (with custom-
ized modifications) and automatically extracted 1661 
features for each patient. The results were stored in a 
large excel file for subsequent analysis.

Randomly, patients were assigned to a training and a 
validation cohort with a ratio of 7:3 (Fig. 1).

We divided the extracted features of the EAT into 
three main groups: (a) the first order statistics, (b) tex-
ture parameters and (c) size/shape features. The first 19 
features are based on histogram and mainly describe 
attenuation value distribution of EAT (grey-white-level). 
The textural features characterize the spatial relation-
ship between voxel grey-values and hence heterogene-
ity of adipose tissue measures and its coarseness, which 
is further described by five matrices (grey-level depen-
dence matrix (GLDM), grey-level co-occurrence matrix 
(GLCM), grey-level size zone matrix (GLSZM), grey-
level run-length matrix (GLRLM), and neighbourhood 
grey tone difference matrix (NGTDM)). Moreover, we 
extracted size and shape features (including EAT vol-
ume) and grey- level intensity- independent features. We 
applied in total seven filters for deeper image character-
ization: wavelet (yields eight decompositions per level in 
each of the three dimensions), Laplacian of Gaussian fil-
ter (emphasizes areas of grey level change), Square (takes 
the square of the image intensities and linearly scales 
them back to the original image), SquareRoot (takes the 
square root of the absolute image intensities and scales 
them back to original range), Logarithm (takes the loga-
rithm of the absolute intesity + 1), Exponential (takes the 
exponential) and Gradient (returns the magnitude of the 
local gradient). All features were extracted from origi-
nal and filtered images (shape and size features are only 
extracted from the original images). 

Feature cleansing and feature selection
A correlation analysis was performed using R (version 
3.5.1) for Windows. In order to account for non-nor-
mal features, we opted for Spearman correlation. We 
removed correlating features with correlation larger than 
0.7 in order to avoid weakening of the regression model 
by loading variables which correlate. Further, we only 
used parameters which differed among the two groups 
(survived versus died). The SPSS modeler was used in 
order to further reduce feature count and ranking of fea-
tures of the selection model in order to extract the key 
features for the model. Feature cleansing reduced the 
feature number to 247 features for each patient. We put 
the features into the random forest (RF) model, ranking 
the features according to their importance to the model. 
Based on the ranking results, we fitted the features in 
forward regression analysis, extracting 26 feature com-
bination models. We selected the optimal combination 
(feature signature), which was able to predict the mor-
tality of the patients.  For our models, we directly imple-
mented a logistic regression model due to its reduced 
small number of input features. The aim was to analyze 
feature combinations with minimal correlation among 
features.

Statistical analysis
All statistical analyses for the present study were per-
formed with SPSS 29.0, R (version 3.5.1) and Python (ver-
sion 3.6). Mann- Whitney U test or Student’s t test was 
used for the continuous variables according to the test 
of normal distribution. The chi-square test was applied 
to compare categorical variables. According to the test 
of normal distribution, continuous variables were given 
as mean S ± SD or median interquartile range (IQR). 
Statistical significance was indicated by a two-tailed p 
value < 0.05. The receiver operating characteristic (ROC) 
curve was used to evaluate the performance of the mod-
els for discrimination between patients with acute pul-
monary embolism that survived from non-survivors. 
After establishment of two suitable models, feature signa-
tures (combinations of specific features) were validated in 
the validation cohort of the same cohort and in an inde-
pendent external validation cohort.

Results
Overall, 508 patients were included into the study, 209 
female (42.1%), mean age, 64.7 ± 14.8 years. In the valida-
tion cohort, a total of 4.6% died within 7-days and 12.4% 
died within the 30-day observation study period. Table 1 
provides descriptive data of the patient cohort. In all 
cases, based on the medical records, the mortality was 
attributed to the acute PE.

We started with analysis of features in a training cohort 
(n = 339) in order to decipher the best fitting model. We 

Table 1 Basic characteristics of patients of the three cohorts. 
sPESI = simplified pulmonary embolism severity index, 
eGFR = estimated glomerular filtration rate, BNP = brain 
natriuretic peptide.

Trainings 
cohort

Validation 
cohort

External 
validation 
cohort

Total number of patients 339 169 186
Women (%) 58.5 55.3% 48.8
Age 64.9 ± 15.5 61.9 ± 10.2 64 ± 17
sPESI 1.3 ± 1.1 1.1 ± 1.0 2 ± 1
Wells Score - - 6 ± 2
eGFR (ml/min/1,73m2) 73.5 ± 39.1 70.5 ± 33.4 70 ± 28
NT-proBNP (pg/mL) - - 2112 ± 2594
D-dimer 6.5 ± 6.2 6.7 ± 5.5 13 ± 15
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characterized the trainings cohort.The feature model 
incorporates a feature combination of 13 features of 
seven different image filters. Table  2 provides descrip-
tions of the investigated texture features. Here, we fitted 
the features into the regression model, as the selected fea-
tures represented the most important feature filter class, 
both quantitatively and by rank. Therefore, for the mod-
els, we decided to use the best fitting feature combination 
by applying logistic regression. The analysis revealed, that 
the model was best in discriminating the dichotomous 
variables. While the overall correctness of the models 
predicting mortality was comparable, the model per-
formed better in discriminating the true positive cases 
(patients, who were correctly assigned to the “died” cat-
egory). The model was superior in predicting mortality 
than rolling the dice (prediction of true positive 72.5%). 
54.5% of the variance in the outcome, so whether patients 
died or survived, can be explained by the predictors used 
in the model (Nagelke R Square). Hosmer- Lemeshow 
test was non- significant in all models tested. The over-
all correctness of prediction of mortality is 88.1 (30-day 
mortality) and 79.7% (7-day mortality), respectively. The 
resulting Receiver Operator Characteristic (ROC) curves 

for the feature signature model is presented in Fig.  3. 
The ROC yields an area-under-the-curve (AUC) value of 
0.914 with a 95% confidence interval (CI) of 0.866–0.963.

Finally, we validated the built model in a validation 
cohort (n = 169) in order to test accuracy of our model. 
We observed an AUC of 0.776 (CI 0.671–0.881, 30-day 
mortality and of 0.724 (CI 0.628–0.820, 7-day mortality) 
(Fig.  4). To corroborate these results in an independent 
external validation, we fitted the characterized model to 
a validation cohort (n = 186) in order to test the reliabil-
ity of our model in an independent cohort. We observed 
an AUC of 0.721 (CI 0.633–0.808) in 30-day mortality 
and an AUC of 0.750 (CI 0.657–0.842) in 7-day mortal-
ity (Fig.  5). Aiming to analyze gender-specific effects of 
radiomic features, we split the independent cohort in 
men and women and observed a superiority of mortal-
ity prediction in men over women (AUC 0.860 (CI 0.756–
0.962) in 7-day mortality and AUC 0.803 (CI 0.705-0.900) 
in 30-day mortality versus AUC 0.778 (CI 0.651–0.905) 
in 7-day mortality and 0.781 (CI 0.679–0.884) in 30-day 
mortality, respectively; Fig. 6a, b).

We next correlated the signature features with lev-
els of troponin, lactate, hemodynamic instability, age 

Fig. 3 Predicted probability (red line), reference line (blue line). AUC was 0.914 (CI 0.866–0.963).
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and sPESI (Fig.  7). Hemodynamic instability and lac-
tate levels showed no relevant correlations with the 
radiomics features. Troponin levels correlated strongly 
with the features wavelet-LHH_glrlm_RunVariance (r = 
-0.61, p < 0.001), log-sigma-2-0-mm-3D_glszm_Gray-
LevelNonUniformityNormalized (r = -0.64, p < 0.001), 
wavelet-HHH_gldm_LowGrayLevelEmphasis (r = -0.66, 
p < 0.001), log-sigma-4-0-mm-3D_firstorder_Uniformity 
(r = -0.66, p < 0.001), log-sigma-4-0-mm-3D_glrlm_Gray-

LevelNonUniformityNormalized (r = -0.66, p < 0.001) and 
with wavelet-LLH_gldm_SmallDependenceEmphasis 
(r = -0.59, p < 0.001). Finally, the sPESI score correlated 
with age (r = 0.31, p < 0.001), log-sigma-2-0-mm-3D_
glszm_GrayLevelNonUniformityNormalized (r = -0.29, 
p < 0.001) and wavelet-HHH_gldm_LowGrayLevelEm-
phasis (r = -0.29, p < 0.001).

Fig. 5 External validation cohort. Predicted probability (red line), reference line (blue line). Left: model 30-day mortality; right: model 7-day mortality. The 
AUC was 0.721 (CI 633-0.808) and 0.750 (CI 0.657–0.842), respectively.

 

Fig. 4 Validation cohort. Predicted probability (red line), reference line (blue line). Left: model 30-day mortality; right: model 7-day mortality. The AUC was 
0.776 (CI 0.671–0.881) and 0.724 (CI 0.628–0.820), respectively.
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Discussion
Radiomics analysis is an emerging field of diagnosis espe-
cially in the context of oncology. Recently, radiomics got 
is in special focus of research in cardiology [14], aiming 
to improve prognosis of the diseases. We hypothesized 
that radiomics analysis of CT images of EAT may have 

a prognostic value in patients with APE. This is the first 
study addressing the prognostic role of radiomics based 
parameters of EAT in APE. EAT is a type of visceral fat 
surrounding the myocardium and visceral pericardium.

Complex interactions between EAT and the myo-
cardium occur due to the fact, that EAT represents 

Fig. 6 a, b. External validation cohort. Predicted probability (blue line), reference line (green line). a, left: model 7-day mortality in men (AUC 0.860 (CI 
0.756–0.962)); right: model 30-day mortality in men (AUC 0.803 (CI 0.705-0.900)). b, left: model 7-day mortality in women (AUC 0.778 (CI 0.651–0.905)); 
right: model 30-day mortality in women (AUC 0.781 (CI 0.679–0.884)).
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a metabolically active organ and influences anatomi-
cal and electrical remodeling of the heart. For instance, 
EAT induces fatty atrial infiltration [15]. Furthermore, 
EAT secretes pro-inflammatory and pro-fibrotic media-
tors [15, 16]. So far, according to Zhang et al., EAT shows 
an increased expression of leptin in patients with coro-
nary artery disease [17]. Furthermore, leptin expres-
sion in EAT is an independent risk factor for coronary 

atherosclerosis [17]. EAT volume correlates significantly 
with serum concentration of irisin, adiponectin and 
leptin, which affects the myocardium [18]. EAT thickness 
correlates with inflammatory mediators like C-reactive 
protein and interleukin 6 [19]. 

Therefore, EAT plays an important role in cardiac 
homeostasis and may have a predictive role in APE. We 
hypothesize that EAT provoke a “chronic metabolic heart 

Fig. 7 Correlation between age, sex, sPESI, lactate levels, troponin levels, hemodynamic instability and radiomics features. The heatmap represents Spear-
man correlations between relative changes in variables. Colors indicate the correlation coefficient, ranging from blue (− 1,0) to white (0,0) to red (1,0). Stars 
represent significant p-values: * p < 0.05; ** p < 0.01; *** p < 0.001.
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damage”. Metabolically damaged heart is not able to tol-
erate the APE.

As mentioned, cardiac dysfunction plays a key role 
in APE [20, 21]. The current risk assessment comprises 
troponin level as an independent predictor of short- and 
long-term outcomes in patients with PE [20]. Moreover, 
common prognostic factors are signs of right ventricular 
dysfunction (RVD) on CT and/or echocardiography [22]. 
CT-detected dilation of the right ventricle and reflux into 
the inferior vena cava are strong predictors of 30-day 
mortality in patients with APE [6, 21, 22]. 

We hypothesized that radiomics features of EAT pre-
dict 30-day mortality in APE. In fact, some studies indi-
cate that EAT attenuation/density is more important 
than volume [8, 23]. For example, Pandey et al. showed 
that epicardial fat attenuation, but not volume, predicts 
obstructive coronary artery disease and high-risk plaque 
features in patients with atypical chest pain [8]. Presum-
ably, changed EAT texture parameters may be associ-
ated with mortality in APE. Corroborating the idea, 
that the deeper structure analysis of EAT in APE using 
radiomics feature models is of prognostical value, we 
show, that radiomics features predict mortality in PAE 
with a high accuracy. Our data reveals an overall percent-
age of correct prediction of 90.5% in model 1 and 88.1% 
in model 2 in the validation cohort. This finding suggests 
that radiomics parameters may reflect deep changes or 
remodeling and thus indirectly also metabolic activity 
of EAT. Hypothetically, remodeled EAT may synthesize 
extensively or store more biochemical substances and can 
hence alter myocardial function. This phenomenon was 
already described in patients with cardiac arrhythmia 
[11, 24]. So far, in patients with aortic stenosis, radiomics 
features of EAT can identify patients at risk of develop-
ing postoperative atrial fibrillation [24]. Furthermore, a 
radiomics model shows good performance in predicting 
myocardial ischemia [25], whereas EAT radiomics signa-
tures can predict recurrence of atrial fibrillation [26]. 

Independently of possible pathomechanisms, we postu-
late that CT based radiomics values of EAT play a highly 
predictive role and, therefore, they can be suggested as 
novel biomarkers in patients with APE.

Additionally, we could demonstrate a superior mor-
tality prediction using radiomic features in men versus 
women. Future studies with larger cohorts are needed in 
order to verify our findings. Additionally, we did observe 
a better prediction in men as compared to both sexes 
merged, indicating that due to a small cohort size after 
splitting of sex, we might obtain a slight overfit in our 
model.

Our study has several limitations. Besides the ret-
rospective nature, the manual segmentation of EAT is 
potentially error-prone and could be improved by addi-
tional readers or further automation processes.  In future, 

we plan to extend our approach to a larger multi-center 
study. Lastly, the prediction models might further be lim-
ited by the unequal cohort split into the outcome catego-
ries „died“ versus „survived“, as the former category only 
included 1/10 of the study cohort. However, the present 
study is the first investigation about the prognostic role 
of radiomics parameters of EAT in patients with APE. 
Moreover, in this work, also an external validation of the 
radiomics-based models was performed.

In conclusion, we identified a radiomics signature of 
EAT that are strongly associated with 7-day and 30-day 
mortality in patients with APE. This could be shown to 
be linked by the associations between CT radiomics fea-
tures and laboratory findings, here troponin levels and 
sPESI suggesting cardiac injury.
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