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Abstract 

Background  With the increasing incidence of renal lesions, pretreatment differentiation between benign and malig-
nant lesions is crucial for optimized management. This study aimed to develop a machine learning model utilizing 
radiomic features extracted from various regions of interest (ROIs), intratumoral ecological diversity features, and clini-
cal factors to classify renal lesions.

Methods  CT images (arterial phase) of 1,795 renal lesions with confirmed pathology from three hospital sites were 
split into development (1184, 66%) and test (611, 34%) cohorts by surgery date. Conventional radiomic features were 
extracted from eight ROIs of arterial phase images. Intratumoral ecological diversity features were derived from intra-
tumoral subregions. The combined model incorporating these features with clinical factors was developed, and its 
performance was compared with radiologists’ interpretation.

Results  Combining intratumoral and peritumoral radiomic features, along with ecological diversity features yielded 
the highest AUC of 0.929 among all combinations of features extracted from CT scans. After incorporating clinical fac-
tors into the features extracted from CT images, our combined model outperformed the interpretation of radiologists 
in the whole (AUC = 0.946 vs 0.823, P < 0.001) and small renal lesion (AUC = 0.935 vs 0.745, P < 0.001) test cohorts. Fur-
thermore, the combined model exhibited favorable concordance and provided the highest net benefit across thresh-
old probabilities exceeding 60%. In the whole and small renal lesion test cohorts, the AUCs for subgroups with pre-
dicted risk below or above 95% sensitivity and specificity cutoffs were 0.974 and 0.978, respectively.

Conclusions  The combined model, incorporating intratumoral and peritumoral radiomic features, ecological 
diversity features, and clinical factors showed good performance for distinguishing benign from malignant renal 
lesions, surpassing radiologists’ diagnoses in both whole and small renal lesions. It has the potential to save patients 
from unnecessary invasive biopsies/surgeries and to enhance clinical decision-making.
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Introduction
In 2020, renal cell carcinoma (RCC) accounted for 
431,288 new cases and 179,368 deaths worldwide [1]. 
The incidence of RCC has been on the rise over the past 
two decades, partly due to the widespread adoption 
of ultrasonography and cross-sectional imaging [2, 3]. 
Deciding whether to perform resection of cystic or solid 
renal lesions is often based on clinical imaging, with-
out definitive histologic diagnosis [4, 5]. Studies have 
revealed that about one-quarter of surgically removed 
renal lesions were reported to be benign, and the per-
centages of benign lesions increased as the diameter of 
lesion decreased [6, 7]. This poses challenges in deter-
mining the appropriate method and necessity of treat-
ment for all suspicious lesions, particularly for small 
renal lesions (SRL, defined as ≤ 4.0  cm in diameter). 
Improved diagnosis and differentiation of SRLs has 
been identified as a key research focus in RCC by an 
international research priority setting initiative [8].

Traditionally, CT is the routine modality used in 
clinical practice to characterize renal lesions. However, 
its sensitivity and specificity are limited in distinguish-
ing between benign indolent lesions and aggressive 
malignant renal lesions [9, 10]. A reliable and accu-
rate method for diagnosing of renal lesions, especially 
small ones, is desired to reduce the need for biopsy 
and resection of benign entities. Radiomics comprises 
a diverse set of techniques designed to convert medi-
cal images into quantitative and high-dimensional data, 
allowing for the identification of complex patterns not 
recognized by the human eye [11]. The application of 
radiomics features has been proven valuable in the dif-
ferentiation of renal lesions. However, most studies on 
this topic were limited by small sample sizes, typically 
ranging from 84 to 252 participants [12–18]. Moreo-
ver, these studies primarily focused on intratumoral 
radiomics, overlooking the significance of peritumoral 
radiomics and intratumoral heterogeneity (ITH), which 
could provide a unique viewpoint in tumor interpre-
tation [19, 20]. Additionally, many of these studies 
focused on common pathological types [12–18], which 
was incongruent with real-world clinical workflow, as 
it assumed that uncommon pathological types of renal 
lesions are already excluded. While a few studies with 
larger sample sizes (> 500) were reported, and some 
included uncommon and unclassified RCC subtypes, 
the benign category still only include oncocytoma and 
angiomyolipoma (AML) [21–23]. Therefore, larger and 

more diverse patient cohorts are essential to advance 
algorithm development.

Our study cohort is sourced from a database of patients 
who underwent partial nephrectomy, encompassing a 
diverse range of pathological types, with most lesions 
being small (≤ 4.0 cm). The purpose of our study was to 
develop a machine learning model based on intratumoral 
and peritumoral radiomic features, intratumoral ecologi-
cal diversity features, and clinical factors from this large 
database to predict benign or malignant renal lesions.

Patients and methods
Patients and clinical data
The retrospective study was conducted in accordance 
with Declaration of Helsinki, and approved by the Insti-
tutional Ethics Review Board with waivers for informed 
consent. From December 2011 to December 2021, a 
total of 1,877 patients underwent partial nephrectomies 
and received contrast-enhanced CT examinations were 
included from three different sites of our hospital. Out 
of these, 1,795 (95.6%) patients were included in the final 
analysis according to the inclusion and exclusion criteria 
shown in Fig. 1. The patients were divided into develop-
ment and test cohorts based on the date of surgery. The 
development cohort consisted of 1,184 (66.0%) patients 
treated between December 2011 and June 2020, while the 
test cohort included 611 (34.0%) patients treated from 
July 2020 to December 2021 (Fig. 1).

Patient clinical and pathological data was collected 
and reviewed, including: (1) demographic and clinical 
characteristics, namely, gender, date of birth, laterality 
and size of lesion, date of surgery; (2) CT data, namely, 
arterial (1795 cases, 100.0%), non-contrast (1502, 83.7%), 
and venous (1,478, 82.3%) phase CT imaging, date of CT 
imaging, and CT reported results; (3) pathology data, 
namely, date of pathology report, and pathological con-
clusion. The pathological diagnoses were retrieved from 
the pathological conclusions, which were reported by a 
pathologist with a minimum of 3 years in genitourinary 
pathology and reviewed by a specialist with over 10 years’ 
experience.

CT examination and radiologic evaluation
All CT scans were performed with one of the follow-
ing scanners: Phillips 256 iCT, GE Discovery CT750 
HD scanner, or GE Revolution CT. The CT scan-
ning parameters were shown in Appendix S1. The 
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CT image was interpreted by one radiologist with at 
least 3 years of experience in abdominal radiology and 
reviewed by another radiologist with at least 10 years 
of experience. CT reported results for renal lesions 
were classified as malignant, equivocal, and benign 
based on CT reports, by individuals blinded to the 
pathological results.

ROI definition and radiomic analysis
The radiomics workflow is depicted in Fig. 2. CT images 
segmentation, definition of regions of interest (ROIs), 
registration, and feature extraction were detailed in 
Appendix S2. All eight ROIs, namely, intratumoral 
region (ITR), ITR with 3  mm shrink (ITR-3  mm), ITR 
with 3 mm (ITR+3 mm) and 5 mm (ITR+5 mm) expansion, 

Fig. 1  Flowchart of study participants inclusion

Fig. 2  Workflow of developing the model based on intratumoral radiomics, peritumoral radiomics, intratumoral heterogeneity, and clinical factors 
to distinguish benign and malignant renal lesions
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peritumoral regions (PTRs) of 3  mm (PTR0~+3  mm) and 
5 mm (PTR0~+5 mm) around the tumors, as well as 6 mm 
(PTR-3~+3  mm) and 8  mm (PTR-3~+5  mm) crossing tumor 
border, were used to extract radiomic features from arte-
rial phase images. A total of 14,248 (1,781 × 8) radiomic 
features were extracted from each renal lesion of arterial 
phase image. For non-contrast and venous phase images, 
only ITR were used to extract radiomic features. The 
radiomics features extracted in this study followed an 
internationally standardized and reproducible approach, 
adhering to the definitions outlined by the Imaging Bio-
marker Standardized Initiative [24–26].

Intratumoral subregions segmentation and heterogeneity 
analysis
To objectively segment the ITR of the arterial phase into 
subregions, a simple linear inactive clustering method 
was employed with a predefined segment number 
(n = 100) (Fig. 2) [20, 27]. Radiomic features (first order, 
GLCM, GLDM, GLRLM, GLSZM and NGTDM) were 
extracted from each tumor segment. Subsequently, an 
unsupervised clustering was conducted using Gaussian 
mixture model based on each feature across all segments 
of a patient. The optimal number of clusters, indicative of 
tumor ecosystem diversity, was determined using Bayes-
ian information criteria, ranging from 1 to 5 (Fig. 2). For 
example, the first order feature entropy specifies the 
uncertainty or randomness in the image values, which 
measures the average amount information required to 
encode the image values. The intratumoral ecological 
diversity feature of entropy specifies the complexity level 
of intratumoral heterogeneity when we analyze a tumor 
through entropy. Finally, each patient has an intratumoral 
ecological diversity feature vector (93 features) for fur-
ther analysis, as proposed by Shi et al. [20].

Model construction and validation
The feature selection process in the development cohort 
consisted of two steps: unstable features with intraclass 
correlation coefficient (ICC) less than 0.85 were excluded; 
and features that did not exhibit significant differences 
between benign and malignant lesions were removed 
using Student’s t-test. The radiomic signatures and ITH 
index was constructed by a stacked ensemble model 
(AutoGluon-Tabular classifier, Version 0.8.2) based on 
the stable and significant features. To optimize the hyper-
parameters, a five-fold stratified cross-validation within 
the development cohort was employed. AutoGluon was 
run with parameters set to “eval_metric = ’roc_auc’, and 
presets = ’best_quality’”, while all other parameters were 
left at their default settings.

Simultaneously, we constructed radiomic signatures 
and ITH index using the LASSO algorithm. AutoGluon 

outperformed LASSO in the cross-validation on devel-
opment cohort and in the test cohort (Fig. S1), thus was 
chosen as classifier for constructing the combined model 
based on the combination of intratumoral radiomics 
features, peritumoral radiomic features, intratumoral 
ecological diversity features, and clinical factors. Fea-
ture importance score was generated using the “feature_
importance” function of AutoGluon-Tabular classifier 
with default parameters. A list of features with a positive 
feature importance score and a P < 0.05 was used to pre-
dict benign and malignant renal lesions.

To evaluate the diagnostic ability of clinical factors and 
CT reported results, they were separately integrated into 
the Logistic Regression (LR) algorithm. Additionally, the 
predicted risk by the combined model was fused with the 
CT reported results to investigate whether it enhances 
the radiologists’ diagnostic performance.

Statistical analysis
We presented continuous variables as median (range) 
and categorical variables as frequency (percentage). Con-
tinuous data were analyzed using Student’s t-test, while 
categorical data using the χ2 test. The performance of 
models was evaluated using the area under the receiver 
operating characteristics (ROC) curve (AUC). The 95% 
confidence interval (CI) for the AUC and comparisons 
between AUCs were determined using the method of 
DeLong et  al. [28]. Model performance was also exam-
ined using calibration plots, with calibration assessed by 
grouping cases in the test cohort into deciles and com-
paring the mean of predicted probabilities with observed 
proportions. The deviation of calibration plots from the 
45° line was assessed using the sum squares of the residu-
als (SSR). The clinical utility of the models was evaluated 
using decision-curve analysis [29]. To further assess the 
clinical utility of the radiomics model, we sought to iden-
tify optimal cutoff values for different performance met-
rics. The cutoff values corresponding to 99% sensitivity 
(0.330 and 0.360), 95% sensitivity (0.593 and 0.590), 95% 
specificity (0.862 and 0.880), and 99% specificity (0.940 
and 0.865) were calculated for the combined model in 
both the whole and SRL test cohorts.

Results
Clinicopathological characteristics
A total of 1,795 patients with confirmed renal lesion 
on contrast-enhanced CT imaging underwent partial 
nephrectomies and received definitive pathological diag-
noses. The median age of the entire cohort was 54 years, 
with 61.5% (n = 1,104) being male and 63.4% (n = 1,138) 
having SRL (Table  1). Final pathology diagnosed 1,396 
(77.8%) patients with RCC, including clear cell (85.3%), 
papillary (3.7%), chromophobe (5.6%), MiT Family 
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translocation (2.3%), uncommon (1.1%), and unclassi-
fied (2.0%) RCC. The remaining 399 (22.2%) patients had 
AML (76.9%), oncocytoma (4.5%), benign cyst (13.8%), 
and uncommon benign renal tumor (4.8%) (Table 1).

In univariate analysis, age, gender, size of lesion, and 
CT reported results were significant variables for dis-
tinguishing benign and malignant renal lesions (each 
P < 0.001, Table 1). Multivariate LR was then performed 
to separately combine clinical factors and CT reported 
results. The clinical factors alone had an AUC of 0.784 
(95% CI: 0.740–0.828), and the CT reported results alone 
yield an AUC of 0.823 (95% CI: 0.777–0.870) in the test 
cohort (Figs. 3 and 4A).

Feature selection and construction of radiomic signatures 
and ITH index
Of the 14,248 radiomic features extracted from the 
eight ROIs in the arterial phase images, 9,963 (69.9%) 
with high stability (interobserver and intraobserver 
ICC ≥ 0.85) were initially selected. Next, 3,736 (37.5%) 
significant features were selected by Student’s t-test 

(P < 0.001), including 388 (10.4%), 343 (9.2%), 455 
(12.2%), 434 (11.6%), 535 (14.3%), 564 (15.1%), 503 
(13.5%)and 514 (13.8%) radiomic features from the ITR, 
ITR-3 mm, ITR+3 mm, ITR+5 mm, PTR0~+3 mm, PTR0~+5 mm, 
PTR-3~+3 mm, and PTR-3~+5 mm of arterial phase images, 
respectively. For non-contrast and venous phase 
images, 259 and 430 stable and significant features were 
selected, respectively. For ITH analysis, six stable and 
significant features were selected.

The AUC values for ten radiomic signatures, which 
include eight based on the arterial phase, one based on 
the non-contrast phase, and one based on the venous 
phase, ranged between 0.815 and 0.891 in the cross-
validation, and between 0.757 and 0.889 in the test 
cohort (Fig. S1). Among these signatures, the radiomic 
signatures derived from ITR-3 mm (AUC = 0.889, 95%CI: 
0.852–0.926) and PTR-3~+3  mm (AUC = 0.849, 95%CI: 
0.807–0.890) exhibited the highest performance in 
the test cohort for intratumoral and peritumoral radi-
omic signatures, respectively. The AUC value for ITH 

Table 1  Patient clinical characteristics and histologic types

Other malignant renal tumors included 4 cases of multilocular cystic RCC, 4 cases of sarcomas, 3 cases of clear cell papillary RCC, 2 cases of well-differentiated 
neuroendocrine tumors, 1 case of succinate dehydrogenase deficient RCC, 1 case of collecting duct carcinoma, and 1 case of malignant perivascular epithelioid cell 
tumor. Other benign renal tumors included 6 cases of adult cystic nephroma, 4 cases of juxtaglomerular cell tumor, 3 cases of metanephric adenoma, 2 cases of 
papillary adenoma, 2 cases of inflammatory myofibroblastic tumors, 1 case of mixed epithelial and stromal tumor, and 1 case of schwannoma

RCC​ Renal cell carcinoma

Parameters Benign (n = 399) Malignant (n = 1396) P value

Age, median (range, years) 50 (18–84) 56 (18–86)  < 0.001

Gender, n (%)  < 0.001

  Female 273 (68.4) 418 (29.9)

  Male 126 (31.6) 978 (70.1)

Laterality, n (%) 0.480

  Left 182 (45.6) 667 (47.8)

  Right 217 (54.4) 729 (52.2)

Lesion size, median (range, cm) 3.9 (0.9–19.3) 3.5 (0.9–13.9)  < 0.001

CT reported results  < 0.001

  Malignant 102 (25.6) 1146 (82.1)

  Equivocal 47 (11.8) 211 (15.1)

  Benign 250 (62.7) 39 (2.8)

Lesion subtype, n (%) -

  Clear cell RCC​ - 1191 (85.3)

  Papillary RCC​ - 51 (3.7)

  Chromophobe RCC​ - 78 (5.6)

  MiT Family translocation carcinomas - 32 (2.3)

  Other malignant renal tumor - 16 (1.1)

  Unclassified RCC​ - 28 (2.0)

  Angiomyolipoma 307 (76.9) -

  Oncocytoma 18 (4.5) -

  Cyst 55 (13.8) -

  Other benign renal tumor 19 (4.8) -
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index was 0.665 (95%CI: 0.609–0.722) in the test cohort 
(Fig. 3 and S1).

Development and performance of the combined model
To enhance predictive accuracy, we developed models 
combining intratumoral and peritumoral radiomic fea-
tures, as well as intratumoral ecological diversity features. 
The combination of radiomic features from ITR-3  mm 
and PTR-3~+3  mm, along with ecological diversity fea-
tures yielded the highest AUC of 0.929 (95% CI: 0.904–
0.955) among all combinations of features extracted 
from CT scans (Fig.  4A and Table  S1). The radiomics 
and ITH model included a total of 43 features, compris-
ing of 19 radiomic features from ITR-3  mm, 23 features 
from PTR-3~+3  mm, and one ecological diversity feature 
(Table S2).

Using the AutoGluon-Tabular classifier, the addi-
tion of clinical factors to the features extracted from 
CT images improved the AUC to 0.946 (95%CI: 0.925–
0.968) (Fig.  4A) in the test cohort. The feature impor-
tance for the combined model ranged from 0.0014 to 
0.0380 (Table  S2). The confusion matrix showed that 
most cases (555/611, 90.8%) were correctly predicted 
by the combined model (Fig.  5A). Pathological subtype 
analysis showed that the proportions of correct predic-
tion for clear cell RCC, papillary RCC and chromophobe 
RCC were high (Fig.  5B). To assess whether the com-
bined model could enhance the radiologists’ diagnostic 
performance, the fusion of predicated risk by the com-
bined model and CT results demonstrated superior per-
formance in both the whole test cohort (AUC = 0.954, 
95%CI: 0.933–0.975) and SRL test cohort (AUC = 0.941, 
95%CI: 0.914–0.968), significantly outperforming the CT 
results alone (P < 0.001, Fig. S2).

The test cohort was divided into subgroups by clinico-
pathological characteristics to assess the performance 

stability of the combined model (Fig.  6). The results 
showed that the combined model achieved relatively sta-
ble performance in subgroups by gender, with an AUC 
of 0.942 for males and 0.923 for females (Fig. 6B). How-
ever, the model’s performance was relatively weak in sub-
groups with age > 50 years (AUC = 0.937) (Fig. 6A), lesion 
size ≤ 4.0  cm (AUC = 0.935) (Fig.  6C), and CT reports 
indicating equivocal results (AUC = 0.908) (Fig. 6D).

A sensitivity analysis was conducted for patients with 
SRL. Of these patients, 215 (18.9%) had benign renal 
lesions and 923 (81.1%) had carcinoma on final pathol-
ogy. The radiomics and ITH model demonstrated the 
ability to differentiate benign from malignant renal 
lesions in this subgroup, with an AUC of 0.904 (95% CI: 
0.8.866–0943) (Fig.  4D). The addition of clinical factors 
to the features extracted from CT scans significantly 
improved the predictive performance (AUC = 0.935, 95% 
CI: 0.908–0.962), which was higher than the clinical fac-
tors (AUC = 0.756, P < 0.001), and CT reported results 
(AUC = 0.745, P < 0.001) in the SRL test cohort (Fig. 4D).

Clinical impact of predictive models
The calibration plot of predicated risk against observed 
proportion of malignant renal lesions indicated favora-
ble concordance for the combined model in the whole 
(SSR = 0.034) and SRL (SSR = 0.024) test cohorts (Fig. 4B 
and E). The decision curve analysis showed that the com-
bined model demonstrated a higher net benefit than the 
other three predictions when the threshold probabilities 
exceeded 60% for both the whole and SRL test cohort 
(Fig. 4C and F).

The AUC for the subgroup with a predicated risk below 
the cutoff value of 99% sensitivity or above the cutoff 
value of 99% specificity were 0.987 (95% CI: 0.966–1.000) 
and 0.988 (95% CI: 0.959–1.000) in the whole and SRL 
test cohorts, respectively. Similarly, the AUC for the 

Fig. 3  Heat map shows the association of pathological class with clinical factors (age, gender, CT reported results) and CT features (intratumoral 
heterogeneity index, peritumoral radiomics score, intratumoral radiomics score) in the test cohort. ITH: intratumoral heterogeneity; PTR-3~+3 mm: 
peritumoral regions of 6 mm crossing tumor border; ITR-3 mm: intratumoral region with 3 mm shrink
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subgroup with a predicated risk below or above the cut-
off value of 95% sensitivity or specificity were 0.974 (95% 
CI: 0.954–0.994) and 0.978 (95% CI: 0.959–0.997) in the 
whole and SRL test cohorts, respectively (Fig. 4G and H). 
Conversely, the AUC for subgroups with a predicated 
risk falling between the cutoff values of 95% sensitiv-
ity and specificity was 0.605 (95%CI: 0.468–0.741) and 
0.451 (95%CI: 0.289–0.614) in the whole and SRL test 
cohorts, respectively. Hence, when the predicated prob-
ability is below or above the cutoff value of 95% sensitiv-
ity or specificity, the combined model provides doctors 
with greater confidence in clinical use. However, when 

the predicated risk falls between the cutoff values of 95% 
sensitivity and 95% specificity, doctors need to consider 
integrating other marker to make decisions.

Discussion
Accurate differentiation of benign from malignant renal 
lesions poses a significant challenge for clinicians and is 
essential for optimizing patient management, particular 
for SRLs. In this study, we developed a machine learning 
model that leverages intratumoral and peritumoral radi-
omic features, intratumoral ecological diversity features, 
as well as clinical factors for pretreatment differentiate 

Fig. 4  The performance of the clinical factors, CT reported results, radiomics-ITH model, and combined model for differentiation of benign 
from malignant renal lesions in the whole test cohort and in the test cohort with small renal lesion. ROC curves in the whole (A) and small renal 
lesion (D) test cohort; Calibration plot of observed vs predicated risk of malignant renal lesions in the whole (B) and small renal lesion (E) test cohort; 
Decision curve analysis for predicting malignant renal lesions in the whole (C) and small renal lesion (F) test cohort; Waterfall plot for predicated 
risk by the combined model in the whole (G) and small renal lesion (H) test cohort. The dashed lines from left to right indicates the cutoff values 
for 99% sensitivity, 95% sensitivity, 95% specificity, 99% specificity, respectively in the panel G and H. ITH: intratumoral heterogeneity; ROC: receive 
operating characteristic curves
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between benign and malignant renal lesions. Our com-
bined model demonstrated a robust discriminative capa-
bility in distinguishing benign from malignant renal 
lesions, outperforming the interpretation of radiologists 
in the whole and SRL test cohorts.

In assessing the performance of radiomic signatures 
using features extracted from different CT phases, our 
study found that algorithms based on the features from 
arterial phase CT images demonstrated the highest diag-
nostic accuracy in renal lesion differentiation, consistent 
with findings by Tanaka et al. [16]. Moreover, adding fea-
tures extracted from the non-contrast and venous phases 
(AUC = 0.909) to those extracted from ITR-3  mm and 
PTR-3~+3  mm of the arterial phase (AUC = 0.917) didn’t 
enhance the model’s performance (Table S1). Therefore, 
we chose to focus on the arterial phase for further anal-
ysis. Several previous studies have leveraged radiomic 
features to develop models for predicting benign and 
malignant renal lesions. These radiomics-based models 
achieved an AUC ranging from 0.790 to 0.915 [12–14, 22, 
23, 30]. In parallel, several studies have used deep learn-
ing features to create models for differentiation benign 
from malignant renal lesions [16, 21, 31], with these mod-
els achieving an AUC of 0.730–0.933 in the test cohorts. 

In our research, we constructed radiomic signatures 
based on eight ROIs of arterial phase images, achieving 
AUCs of 0.811–0.889 in the test cohort, which are com-
parable to the previous studies. The radiomic signatures 
of ITR-3  mm and PTR-3~+3  mm had the highest perfor-
mance among the intratumoral and peritumoral radiomic 
signatures, respectively. Furthermore, a study by Liu et al. 
highlighted that the radiomics signature of PTR-3~+3 mm 
exhibited the highest accuracy in predicting of progno-
sis for clinical stage I solid lung adenocarcinoma [32]. 
These findings indicate that the inner and outer regions 
of tumor may provide different clinical insights.

Among all combinations of features extracted from 
CT scans, the pairing of radiomic features from ITR-3 mm 
and PTR-3~+3 mm, in conjunction with ecological diversity 
features yielded the highest AUC, which was higher than 
the radiomic signature of ITR-3 mm. This finding suggests 
that the peritumoral radiomics and ITH are helpful to 
improve the performance of the intratumoral radiomics 
in distinguishing benign from malignant renal lesions. 
Despite peritumoral radiomics and ITH are known to 
correlate with tumor phenotypes [20, 32], the role of 
peritumoral radiomics and ITH in distinguishing of 
renal lesions has not been fully assessed. During tumor 

Fig. 5  The performance of the combined model in the whole test cohort and in the test cohort with small renal lesion. Confusion matrices 
for the whole (A) and small renal lesion (C) test cohorts; The proportion of correct predictions by pathological subtype for the whole (B) and small 
renal lesion (D) test cohort
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progression, the invasion of tumor into surrounding nor-
mal tissues at the cellular level may manifest as changes 
in tissue morphology. And ITH is influenced by both the 
diverse composition of cell populations and their uneven 
distributions within the tumor. These could provide a 
reasonable explanation for the enhanced diagnostic accu-
racy of radiomics models, attributed to peritumoral radi-
omics and ITH.

Until now, studies exploring the addition of clini-
cal factors to the radiomics signature for deafferent-
ing renal lesions have been rare. Several studies have 
explored the association between clinical predictors 
and the malignancy of renal lesions [21, 22, 33–35]. 
These studies consistently found that female sex was 
predominantly associated with benign pathologic diag-
noses, which is in line with our study’s results. This 
association could potentially be explained by the link 
between AML and women [33]. Regarding age, our 
study revealed that the malignant group had an older 
age, consistent with findings by Xi et al. [21] and Lane 
et al. [35]. However, other studies have reported vary-
ing associations between age and malignancy of renal 
lesions, which could be due to the heterogeneity of 
enrolled patients among these studies [21, 22, 33–35]. 

Our study showed that the addition of clinical factors 
to the radiomics and ITH model improved the over-
all AUC by approximately 0.01 in the cross validation. 
This highlights the potential value of integrating clini-
cal information with features extracted from CT scans 
to enhance the accuracy of renal lesion differentiation.

To explore whether the combined model could 
enhance the diagnostic accuracy of radiologists, we 
fused the predicated risk by combined model and CT 
reported results. Our study demonstrated a significant 
improvement in the diagnostic accuracy of combina-
tion than the interpretation by radiologists. Another 
study also showed that radiomics signature help radi-
ologists improve diagnostic accuracy [23]. These find-
ings underscore the radiomics and heterogeneity 
analysis could capture features overlooked by the naked 
eye, resulting in an improved diagnostic performance 
in renal lesion differentiation. Our sensitivity analysis 
also showed that the combined model (AUC = 0.935) 
had good discriminative power for SRL. Its perfor-
mance was comparable to that reported by Dai et  al., 
with AUC values of 0.86, 0.80, and 0.87 for the internal, 
external, and prospective test sets, respectively, where 
SRL was defined as ≤ 3.0 cm [36].

Fig. 6  ROC curves of the combined model based on the clinical factors in the test cohort. Age (A); Gender (B); Lesion size (C); Category of CT 
reported results (D). ROC: receive operating characteristic curves



Page 10 of 12Yu et al. Cancer Imaging          (2024) 24:130 

Our study has several limitations. Firstly, it was con-
ducted at one hospital, and its retrospective design has 
inherent drawbacks. However, we implemented tempo-
ral validation to enhance the study’s credibility, which 
is a more robust approach for evaluating model perfor-
mance [37]. Moreover, participants were enrolled from 
three different sites of our hospital, and CT data was 
acquired using various scanners and field strengths, 
facilitating the development of a more generalizable 
model. Secondly, our study only included patients who 
underwent partial nephrectomy, which may introduce 
selection bias and limit the generalizability of our find-
ings. However, our cohort included a significant num-
ber of SRLs (1138, 63.4% of lesions ≤ 4.0  cm), which is 
valuable for distinguish between benign and malignant 
in SRLs. Thirdly, manual delineation of ROIs was time-
consuming and depend heavily on radiologists’ experi-
ence, potentially affecting the stability of the radiomic 
features. Although we addressed this issue by select-
ing features with ICC greater than 0.85, implementing 
an automated and precise tumor segmentation method 
would further improve efficiency and ensure greater sta-
bility and consistency.

Conclusions
In this study, a machine learning model was devel-
oped based on intratumoral radiomics, peritumoral 
radiomics, heterogeneity analysis, and clinical fac-
tors to noninvasively classify benign and malignant 
renal lesions. The model demonstrated good dis-
crimination, outperforming the interpretation of 
radiologists. Our findings suggest that the combined 
model could serve as a practical technique to assist 
radiologists in clinical practice, particularly in the 
identification of SRL.

Abbreviations
RCC​	� Renal cell carcinoma
SRL	� Small renal lesion
ITH	� Intratumoral heterogeneity
AML	� Angiomyolipoma
ITR	� Intratumor region
ITR-3 mm	� ITR with 3 mm shrink
ITR+3 mm	� ITR with 3 mm expansion
ITR+5 mm	� ITR with 5 mm expansion
PTR0~+3 mm	� Peritumoral regions of 3 mm around the tumors
PTR0~+5 mm	� Peritumoral regions of 5 mm around the tumors
PTR-3~+3 mm	� Peritumoral regions of 6 mm crossing tumor border
PTR-3~+5 mm	� Peritumoral regions of 8 mm crossing tumor border
ICC	� Intraclass correlation coefficient
ROC	� Receiver operating characteristics
AUC​	� Area under the curve
CI	� Confidence interval
SSR	� Sum squares of the residuals

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40644-​024-​00775-8.

Additional file 1: Fig. S1 The comparison of AUC for predicting benign 
and malignant renal lesions using AutoGluon-Tabular classifier and Lasso 
Regression algorithm in the validation (A) and test (B) cohorts. AUC: area 
under curve. ITH: intratumoral heterogeneity; ITR: intratumor region; ITR-3 

mm: ITR with 3 mm shrink; ITR+3 mm: ITR with 3 mm expansion; ITR+5 mm: ITR 
with 5 mm expansion; PTR0~+3 mm: peritumoral regions of 3 mm around 
the tumors; PTR0~+5 mm: peritumoral regions of 5 mm around the tumors; 
PTR-3~+3 mm: peritumoral regions of 6 mm crossing tumor border; PTR-3~+5 

mm: peritumoral regions of 8 mm crossing tumor border; ITRAP: ITR for 
arterial phase image; ITRNCP: ITR for non-contrast phase image; ITRVP: ITR 
for venous phase image.

Additional file 2: Fig. S2 The performance of the CT reported results, com-
bined model, and fusion of the combined model and CT reported results 
for differentiation of benign from malignant renal lesions in the whole 
test cohort and in the test cohort with small renal lesion. ROC curves in 
the whole (A) and small renal lesion (D) test cohort; Calibration plot of 
observed vs predicated risk of malignant renal lesions in the whole (B) and 
small renal lesion (E) test cohort; Decision curve analysis for predicting 
malignant renal lesions in the whole (C) and small renal lesion (F) test 
cohort.

Additional file 3: Table S1: The AUC for different combinations of features 
extracted from CT images.

Additional file 4: Table S2: The importance of predictive features used in 
the radiomics and ITH model, and the combined model.

Additional file 5: Appendix S1, and Appendix S2.

Acknowledgements
Not applicable

Authors’ contributions
All authors contributed to the study conception and design, material prepara-
tion, data collection and analysis. The first draft of the manuscript was written 
by Shuanbao Yu, and all authors commented on previous versions of the 
manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by grants from Henan Provincial Youth Science 
Foundation Project [grant no. 232300420254 & 222300420344] and Henan 
Provincial Medical Science and Technology Tackling Key Project of Province-
Ministry Co-construction [grant no. SBGJ202102140].

Availability of data and materials
The data and material are available through the corresponding author.

Declarations

Ethics approval and consent to participate
This retrospective study received ethical approval from the Institutional Ethics 
Review Board of the First Affiliated Hospital of Zhengzhou University, and Writ-
ten informed consent was waived.

Consent for publication
Not applicable.

Competing interests
The authors of this manuscript declare no conflict of interest.

https://doi.org/10.1186/s40644-024-00775-8
https://doi.org/10.1186/s40644-024-00775-8


Page 11 of 12Yu et al. Cancer Imaging          (2024) 24:130 	

Author details
1 Department of Urology, The First Affiliated Hospital of Zhengzhou University, 
Zhengzhou, China. 2 Department of Information Management, The First 
Affiliated Hospital of Zhengzhou University, Zhengzhou, China. 3 Department 
of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 
China. 4 Department of Urology, Tongliao Clinical College, Inner Mongolia 
Medical University, Tongliao, China. 

Received: 10 November 2023   Accepted: 16 September 2024

References
	1.	 GLOBAL CANCER OBSERVATORY. International Agency for Research on 

Cancer. (2022). http://​gco.​iarc.​fr/. Accessed 20 Apr 2024.
	2.	 Suarez-Ibarrola R, Basulto-Martinez M, Heinze A, Gratzke C, Miernik A. 

Radiomics Applications in Renal Tumor Assessment: A Comprehensive 
Review of the Literature. Cancers. 2020;12(6). https://​doi.​org/​10.​3390/​
cance​rs120​61387.

	3.	 Welch HG, Skinner JS, Schroeck FR, Zhou W, Black WC. Regional Variation 
of Computed Tomographic Imaging in the United States and the Risk of 
Nephrectomy. JAMA Intern Med. 2018;178(2):221–7. https://​doi.​org/​10.​
1001/​jamai​ntern​med.​2017.​7508.

	4.	 European Association of Urology. EAU guidelines on renal cell carcinoma. 
(2022). https://​uroweb.​org/​guide​lines/​renal-​cell-​carci​noma. Accessed 16 
July 2023.

	5.	 Sanchez A, Feldman AS, Hakimi AA. Current Management of Small Renal 
Masses, Including Patient Selection, Renal Tumor Biopsy, Active Surveil-
lance, and Thermal Ablation. Journal of clinical oncology : official journal 
of the American Society of Clinical Oncology. 2018;36(36):3591–600. 
https://​doi.​org/​10.​1200/​jco.​2018.​79.​2341.

	6.	 Frank I, Blute ML, Cheville JC, Lohse CM, Weaver AL, Zincke H. Solid renal 
tumors: an analysis of pathological features related to tumor size. J Urol. 
2003;170(6 Pt 1):2217–20. https://​doi.​org/​10.​1097/​01.​ju.​00000​95475.​
12515.​5e.

	7.	 Tan H-J, Norton EC, Ye Z, Hafez KS, Gore JL, Miller DC. Long-term survival 
following partial vs radical nephrectomy among older patients with 
early-stage kidney cancer. JAMA. 2012;307(15):1629–35. https://​doi.​org/​
10.​1001/​jama.​2012.​475.

	8.	 Rossi SH, Blick C, Handforth C, Brown JE, Stewart GD. Essential Research 
Priorities in Renal Cancer: A Modified Delphi Consensus Statement. Eur 
Urol Focus. 2020;6(5):991–8. https://​doi.​org/​10.​1016/j.​euf.​2019.​01.​014.

	9.	 Choudhary S, Rajesh A, Mayer NJ, Mulcahy KA, Haroon A. Renal oncocy-
toma: CT features cannot reliably distinguish oncocytoma from other 
renal neoplasms. Clin Radiol. 2009;64(5):517–22. https://​doi.​org/​10.​1016/j.​
crad.​2008.​12.​011.

	10.	 Pedrosa I, Sun MR, Spencer M, Genega EM, Olumi AF, Dewolf WC, Rofsky 
NM. MR imaging of renal masses: correlation with findings at surgery and 
pathologic analysis. Radiographics. 2008;28(4):985–1003. https://​doi.​org/​
10.​1148/​rg.​28406​5018.

	11.	 Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures. 
They Are Data Radiology. 2016;278(2):563–77. https://​doi.​org/​10.​1148/​
radiol.​20151​51169.

	12.	 Massa’a RN, Stoeckl EM, Lubner MG, Smith D, Mao L, Shapiro DD, Abel 
EJ, Wentland AL. Differentiation of benign from malignant solid renal 
lesions with MRI-based radiomics and machine learning. Abdominal 
radiology (New York). 2022;47(8):2896–904. https://​doi.​org/​10.​1007/​
s00261-​022-​03577-3.

	13.	 Wentland AL, Yamashita R, Kino A, Pandit P, Shen L, Brooke Jeffrey R, 
Rubin D, Kamaya A. Differentiation of benign from malignant solid renal 
lesions using CT-based radiomics and machine learning: compari-
son with radiologist interpretation. Abdominal radiology (New York). 
2023;48(2):642–8. https://​doi.​org/​10.​1007/​s00261-​022-​03735-7.

	14.	 Erdim C, Yardimci AH, Bektas CT, Kocak B, Koca SB, Demir H, Kilickesmez 
O. Prediction of Benign and Malignant Solid Renal Masses: Machine 
Learning-Based CT Texture Analysis. Acad Radiol. 2020;27(10):1422–9. 
https://​doi.​org/​10.​1016/j.​acra.​2019.​12.​015.

	15.	 Sun XY, Feng QX, Xu X, Zhang J, Zhu FP, Yang YH, Zhang YD. Radiologic-
Radiomic Machine Learning Models for Differentiation of Benign and 
Malignant Solid Renal Masses: Comparison With Expert-Level Radiolo-
gists. AJR Am J Roentgenol. 2020;214(1):W44-w54. https://​doi.​org/​10.​
2214/​ajr.​19.​21617.

	16.	 Tanaka T, Huang Y, Marukawa Y, Tsuboi Y, Masaoka Y, Kojima K, Iguchi T, 
Hiraki T, Gobara H, Yanai H, Nasu Y, Kanazawa S. Differentiation of Small (≤ 
4 cm) Renal Masses on Multiphase Contrast-Enhanced CT by Deep Learn-
ing. AJR Am J Roentgenol. 2020;214(3):605–12. https://​doi.​org/​10.​2214/​
ajr.​19.​22074.

	17.	 Zhou L, Zhang Z, Chen YC, Zhao ZY, Yin XD, Jiang HB. A Deep Learning-
Based Radiomics Model for Differentiating Benign and Malignant Renal 
Tumors. Translational oncology. 2019;12(2):292–300. https://​doi.​org/​10.​
1016/j.​tranon.​2018.​10.​012.

	18.	 Kunapuli G, Varghese BA, Ganapathy P, Desai B, Cen S, Aron M, Gill I, Dud-
dalwar V. A Decision-Support Tool for Renal Mass Classification. J Digit 
Imaging. 2018;31(6):929–39. https://​doi.​org/​10.​1007/​s10278-​018-​0100-0.

	19.	 Zhang S, Shao H, Li W, Zhang H, Lin F, Zhang Q, Zhang H, Wang Z, Gao 
J, Zhang R, Gu Y, Wang Y, Mao N, Xie H. Intra- and peritumoral radiomics 
for predicting malignant BiRADS category 4 breast lesions on contrast-
enhanced spectral mammography: a multicenter study. Eur Radiol. 
2023;33(8):5411–22. https://​doi.​org/​10.​1007/​s00330-​023-​09513-3.

	20.	 Shi Z, Huang X, Cheng Z, Xu Z, Lin H, Liu C, Chen X, Liu C, Liang C, Lu C, 
Cui Y, Han C, Qu J, Shen J, Liu Z. MRI-based Quantification of Intratu-
moral Heterogeneity for Predicting Treatment Response to Neoadjuvant 
Chemotherapy in Breast Cancer. Radiology. 2023;308(1): e222830. https://​
doi.​org/​10.​1148/​radiol.​222830.

	21.	 Xi IL, Zhao Y, Wang R, Chang M, Purkayastha S, Chang K, Huang RY, Silva 
AC, Vallières M, Habibollahi P, Fan Y, Zou B, Gade TP, Zhang PJ, Soulen MC, 
Zhang Z, Bai HX, Stavropoulos SW. Deep Learning to Distinguish Benign 
from Malignant Renal Lesions Based on Routine MR Imaging. Clin Cancer 
Res. 2020;26(8):1944–52. https://​doi.​org/​10.​1158/​1078-​0432.​Ccr-​19-​0374.

	22.	 Nassiri N, Maas M, Cacciamani G, Varghese B, Hwang D, Lei X, Aron M, 
Desai M, Oberai AA, Cen SY, Gill IS, Duddalwar VA. A Radiomic-based 
Machine Learning Algorithm to Reliably Differentiate Benign Renal 
Masses from Renal Cell Carcinoma. Eur Urol Focus. 2022;8(4):988–94. 
https://​doi.​org/​10.​1016/j.​euf.​2021.​09.​004.

	23.	 Zhou T, Guan J, Feng B, Xue H, Cui J, Kuang Q, Chen Y, Xu K, Lin F, Cui 
E, Long W. Distinguishing common renal cell carcinomas from benign 
renal tumors based on machine learning: comparing various CT imaging 
phases, slices, tumor sizes, and ROI segmentation strategies. Eur Radiol. 
2023;33(6):4323–32. https://​doi.​org/​10.​1007/​s00330-​022-​09384-0.

	24.	 van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan 
V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts H. Computational 
Radiomics System to Decode the Radiographic Phenotype. Can Res. 
2017;77(21):e104–7. https://​doi.​org/​10.​1158/​0008-​5472.​Can-​17-​0339.

	25.	 Zwanenburg A, Vallières M, Abdalah MA, Aerts H, Andrearczyk V, Apte A, 
Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, 
Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit MC, Dinapoli N, 
Dinh CV, Echegaray S, El Naqa I, Fedorov AY, Gatta R, Gillies RJ, Goh V, Götz 
M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar 
RTH, Lenkowicz J, Lippert F, Losnegård A, Maier-Hein KH, Morin O, Müller 
H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, 
Scherer J, Siddique MM, Sijtsema NM, Socarras Fernandez J, Spezi E, 
Steenbakkers R, Tanadini-Lang S, Thorwarth D, Troost EGC, Upadhaya 
T, Valentini V, van Dijk LV, van Griethuysen J, van Velden FHP, Whybra 
P, Richter C, Löck S. The Image Biomarker Standardization Initiative: 
Standardized Quantitative Radiomics for High-Throughput Image-based 
Phenotyping. Radiology. 2020;295(2):328–38. https://​doi.​org/​10.​1148/​
radiol.​20201​91145.

	26.	 Zwanenburg A, Leger S, Vallières M, Löck S, Initiative f. Image biomarker 
standardisation initiative - feature definitions. 2016.

	27.	 Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC Superpixels 
Compared to State-of-the-Art Superpixel Methods. IEEE Trans Pattern 
Anal Mach Intell. 2012;34(11):2274–82. https://​doi.​org/​10.​1109/​TPAMI.​
2012.​120.

	28.	 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under 
two or more correlated receiver operating characteristic curves: a non-
parametric approach. Biometrics. 1988;44(3):837–45.

	29.	 Yu S, Tao J, Dong B, Fan Y, Du H, Deng H, Cui J, Hong G, Zhang X. Develop-
ment and head-to-head comparison of machine-learning models to 

http://gco.iarc.fr/
https://doi.org/10.3390/cancers12061387
https://doi.org/10.3390/cancers12061387
https://doi.org/10.1001/jamainternmed.2017.7508
https://doi.org/10.1001/jamainternmed.2017.7508
https://uroweb.org/guidelines/renal-cell-carcinoma
https://doi.org/10.1200/jco.2018.79.2341
https://doi.org/10.1097/01.ju.0000095475.12515.5e
https://doi.org/10.1097/01.ju.0000095475.12515.5e
https://doi.org/10.1001/jama.2012.475
https://doi.org/10.1001/jama.2012.475
https://doi.org/10.1016/j.euf.2019.01.014
https://doi.org/10.1016/j.crad.2008.12.011
https://doi.org/10.1016/j.crad.2008.12.011
https://doi.org/10.1148/rg.284065018
https://doi.org/10.1148/rg.284065018
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/s00261-022-03577-3
https://doi.org/10.1007/s00261-022-03577-3
https://doi.org/10.1007/s00261-022-03735-7
https://doi.org/10.1016/j.acra.2019.12.015
https://doi.org/10.2214/ajr.19.21617
https://doi.org/10.2214/ajr.19.21617
https://doi.org/10.2214/ajr.19.22074
https://doi.org/10.2214/ajr.19.22074
https://doi.org/10.1016/j.tranon.2018.10.012
https://doi.org/10.1016/j.tranon.2018.10.012
https://doi.org/10.1007/s10278-018-0100-0
https://doi.org/10.1007/s00330-023-09513-3
https://doi.org/10.1148/radiol.222830
https://doi.org/10.1148/radiol.222830
https://doi.org/10.1158/1078-0432.Ccr-19-0374
https://doi.org/10.1016/j.euf.2021.09.004
https://doi.org/10.1007/s00330-022-09384-0
https://doi.org/10.1158/0008-5472.Can-17-0339
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1109/TPAMI.2012.120


Page 12 of 12Yu et al. Cancer Imaging          (2024) 24:130 

identify patients requiring prostate biopsy. BMC Urol. 2021;21(1):80. 
https://​doi.​org/​10.​1186/​s12894-​021-​00849-w.

	30.	 Uhlig J, Biggemann L, Nietert MM, Beißbarth T, Lotz J, Kim HS, Trojan L, 
Uhlig A. Discriminating malignant and benign clinical T1 renal masses on 
computed tomography: A pragmatic radiomics and machine learning 
approach. Medicine. 2020;99(16): e19725. https://​doi.​org/​10.​1097/​md.​
00000​00000​019725.

	31.	 Toda N, Hashimoto M, Arita Y, Haque H, Akita H, Akashi T, Gobara H, Nishie 
A, Yakami M, Nakamoto A, Watadani T, Oya M, Jinzaki M. Deep Learn-
ing Algorithm for Fully Automated Detection of Small (≤4 cm) Renal 
Cell Carcinoma in Contrast-Enhanced Computed Tomography Using a 
Multicenter Database. Invest Radiol. 2022;57(5):327–33. https://​doi.​org/​
10.​1097/​rli.​00000​00000​000842.

	32.	 Liu K, Li K, Wu T, Liang M, Zhong Y, Yu X, Li X, Xie C, Zhang L, Liu X. Improv-
ing the accuracy of prognosis for clinical stage I solid lung adenocar-
cinoma by radiomics models covering tumor per se and peritumoral 
changes on CT. Eur Radiol. 2022;32(2):1065–77. https://​doi.​org/​10.​1007/​
s00330-​021-​08194-0.

	33.	 Kim JH, Li S, Khandwala Y, Chung KJ, Park HK, Chung BI. Association of Preva-
lence of Benign Pathologic Findings After Partial Nephrectomy With Preop-
erative Imaging Patterns in the United States From 2007 to 2014. JAMA Surg. 
2019;154(3):225–31. https://​doi.​org/​10.​1001/​jamas​urg.​2018.​4602.

	34.	 Zhu D, Loloi J, Labagnara K, Schwartz D, Agalliu I, Fram EB, Sankin A, 
Aboumohamed A, Kovac E. Clinical Risk Factors Associated With Small 
Renal Mass Malignant Histology in a Multi-Ethnic Population Undergoing 
Partial Nephrectomy. Clin Genitourin Cancer. 2022;20(6):e465–72. https://​
doi.​org/​10.​1016/j.​clgc.​2022.​06.​004.

	35.	 Lane BR, Babineau D, Kattan MW, Novick AC, Gill IS, Zhou M, Weight CJ, 
Campbell SC. A preoperative prognostic nomogram for solid enhanc-
ing renal tumors 7 cm or less amenable to partial nephrectomy. J Urol. 
2007;178(2):429–34. https://​doi.​org/​10.​1016/j.​juro.​2007.​03.​106.

	36.	 Dai C, Xiong Y, Zhu P, Yao L, Lin J, Yao J, Zhang X, Huang R, Wang R, Hou 
J, Wang K, Shi Z, Chen F, Guo J, Zeng M, Zhou J, Wang S. Deep Learning 
Assessment of Small Renal Masses at Contrast-enhanced Multiphase CT. 
Radiology. 2024;311(2): e232178. https://​doi.​org/​10.​1148/​radiol.​232178.

	37.	 Kim H, Lee D, Cho WS, Lee JC, Goo JM, Kim HC, Park CM. CT-based deep 
learning model to differentiate invasive pulmonary adenocarcinomas 
appearing as subsolid nodules among surgical candidates: comparison 
of the diagnostic performance with a size-based logistic model and 
radiologists. Eur Radiol. 2020;30(6):3295–305. https://​doi.​org/​10.​1007/​
s00330-​019-​06628-4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s12894-021-00849-w
https://doi.org/10.1097/md.0000000000019725
https://doi.org/10.1097/md.0000000000019725
https://doi.org/10.1097/rli.0000000000000842
https://doi.org/10.1097/rli.0000000000000842
https://doi.org/10.1007/s00330-021-08194-0
https://doi.org/10.1007/s00330-021-08194-0
https://doi.org/10.1001/jamasurg.2018.4602
https://doi.org/10.1016/j.clgc.2022.06.004
https://doi.org/10.1016/j.clgc.2022.06.004
https://doi.org/10.1016/j.juro.2007.03.106
https://doi.org/10.1148/radiol.232178
https://doi.org/10.1007/s00330-019-06628-4
https://doi.org/10.1007/s00330-019-06628-4

	CT-based conventional radiomics and quantification of intratumoral heterogeneity for predicting benign and malignant renal lesions
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Patients and methods
	Patients and clinical data
	CT examination and radiologic evaluation
	ROI definition and radiomic analysis
	Intratumoral subregions segmentation and heterogeneity analysis
	Model construction and validation
	Statistical analysis

	Results
	Clinicopathological characteristics
	Feature selection and construction of radiomic signatures and ITH index
	Development and performance of the combined model
	Clinical impact of predictive models

	Discussion
	Conclusions
	Acknowledgements
	References


