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Abstract

Investigating the genetic underpinnings of human aging is essential for unraveling the etiology 

of and developing actionable therapies for chronic diseases. Here, we characterize the genetic 

architecture of the biological age gap (BAG; the difference between machine learning-predicted 

age and chronological age) across nine human organ systems in 377,028 participants of European 

ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector 

machines, incorporating imaging, physical traits and physiological measures. We identify 393 

genomic loci–BAG pairs (P < 5 × 10−8) linked to the brain, eye, cardiovascular, hepatic, immune, 

metabolic, musculoskeletal, pulmonary and renal systems. Genetic variants associated with the 

nine BAGs are predominantly specific to the respective organ system (organ specificity) while 

exerting pleiotropic links with other organ systems (interorgan cross-talk). We find that genetic 

correlation between the nine BAGs mirrors their phenotypic correlation. Further, a multiorgan 

causal network established from two-sample Mendelian randomization and latent causal variance 

models revealed potential causality between chronic diseases (for example, Alzheimer’s disease 

and diabetes), modifiable lifestyle factors (for example, sleep duration and body weight) and 

multiple BAGs. Our results illustrate the potential for improving human organ health via a 

multiorgan network, including lifestyle interventions and drug repurposing strategies.

Biological aging is complex and influenced by many factors, including genetics, 

environmental exposures and modifiable lifestyle factors1 across multiple organ systems. 

A comprehensive understanding of the phenotypic landscape and genetic architecture 

underlying biological aging in multiple human organ systems is paramount in forging 

the path toward precision medicine2, including identifying vulnerability (for example, 

smoking) and resilience factors (for example, physical activities). This knowledge can 

improve our understanding of the underlying mechanisms driving age-related diseases, 

identify therapeutic targets and develop personalized interventions for maintaining health 

and functional independence in the aging population.

Previous research efforts have made progress in studying the interconnectedness of 

multiorgan systems in human health3–7. In a recent study by McCracken et al., a heart–

brain–liver axis was studied, highlighting direct and indirect associations among the 

three organs and their interconnectivity and shared biological pathways6. A recent review 

highlighted the role of interorgan signals in metabolic control, including the secretion of 

peptides, small molecules and lipid mediators by metabolic tissues and the involvement 

of the central nervous system (CNS) in coordinating peripheral metabolic functions8. 

Riding the crest of the wave of artificial intelligence (AI), the biomedical community 

has increasingly adopted the biological age gap (BAG) as a comprehensive biomarker of 

human aging in multiple human organ systems. Specifically, BAG serves as a quantitative 

phenotype to capture the disparity between an individual’s AI-derived age and chronological 
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age, which can be used to model aging-related normative trajectory at the individual level 

and holds potential for application in disease populations to capture pertinent pathological 

processes. For instance, Nie et al. derived the biological age in nine organ systems to predict 

the possibility of becoming centenarian7. In our previous study, Tian et al. derived eight 

BAGs in eight organ systems, correlating them with cognition, chronic disease, lifestyle 

factors and mortality3. We used a support vector machine in cross-validation to predict 

BAGs for multiple organ systems.

However, genetic determinants and biological pathways that underlie the observed 

heterogeneity of organ-specific BAGs remain elusive. Furthermore, whether chronic diseases 

and lifestyle factors causally impact the divergence between predicted age and chronological 

age in these organ systems remains to be established, manifesting as either a younger 

or older biological age. Our previous genome-wide association study (GWAS) uncovered 

the genetic architecture of multimodal brain BAGs using magnetic resonance imaging 

data9. Expanding on prior research, the current study sought to depict the genetic 

architecture underlying biological aging across nine human organ systems, including the 

brain, cardiovascular, eye, hepatic, immune, metabolic, musculoskeletal, pulmonary and 

renal BAGs. Our overarching hypothesis postulates that the genetic determinants associated 

with the nine BAGs are specific to individual organ systems (that is, BAG–organ specificity) 

and directly or indirectly interconnected with other organ systems (that is, interorgan 

connection).

In the current study, we analyzed multimodal data from 377,028 individuals of European 

ancestry in the UK Biobank study10 (UKBB) to capture the genetic architecture of the 

nine organ systems. First, we used data from 154,774 participants to perform a GWAS 

and gene-level, partitioned heritability and genetic correlation analyses (Methods). In our 

Mendelian randomization analyses, we used 222,254 UKBB participants that did not overlap 

with the individuals used to compute the BAG to avoid potential bias. We (1) identified both 

previously reported and newly identified genomic loci, (2) demonstrated a greater genetic 

heritability estimate for the brain BAG than other organ systems, (3) constructed a network 

linking genes, drugs and diseases for potential drug repurposing, (4) confirmed that BAG-

associated variants and genes exhibit BAG–organ specificity and interorgan connection 

and (5) established both genetic correlations and causal networks among the nine BAGs, 

chronic diseases and lifestyle factors. All results, including the GWAS summary statistics, 

are publicly accessible through the multiorgan biomedical science (MEDICINE) knowledge 

portal at https://labs-laboratory.com/medicine.

Results

Genome-wide associations for 393 genomic loci–BAG pairs

In populations of European ancestry, a GWAS (Methods) identified 11, 44, 17, 41, 61, 

76, 24, 67 and 52 genomic loci (P < 5 × 10−8) significantly associated with brain, 

cardiovascular, eye, hepatic, immune, metabolic, musculoskeletal, pulmonary and renal 

BAGs, respectively (Fig. 1). All details of the identified loci are presented in Source Data 

File 1. Manhattan and QQ plots are presented in Supplementary Figs. 1–9.
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We estimated the intercept of linkage disequilibrium score regression (LDSC)11 for the 

nine main GWASs and obtained intercepts of 0.9989 ± 0.009, 1.0185 ± 0.0099, 0.9926 ± 

0.0106, 1.0416 ± 0.0113, 1.0293 ± 0.0107, 1.0308 ± 0.0124, 1.0282 ± 0.0099, 1.0442 ± 

0.0104 and 1.0257 ± 0.0112 for the nine BAGs. All the intercepts were close to 1, indicating 

no substantial genomic inflation in the primary GWAS. Furthermore, we conducted four 

sensitivity analyses (Methods) to assess the robustness of the primary nine GWASs on 

individuals of European ancestry (Supplementary Note 2 and Extended Data Fig. 1). Our 

GWASs demonstrated robustness in split-sample GWAS, with a perfect concordance rate 

for the sign (+/−) of β values (C: β = 1) between the split1 and split2 GWASs. The two 

sets of β values were highly correlated (0.90 < r: β < 0.99 for Pearson’s r) and did not 

significantly differ (P: β > 0.48 for two-sample t-test). We compared the GWAS results 

with linear models in PLINK and linear mixed-effect models in fastGWA, resulting in a 

perfect concordance for the two sets of β values as well as very similar LDSC intercept 

values. These findings further support the absence of cryptic population stratification in 

our primary GWASs. Sex-stratified GWASs unveiled distinctive genetic patterns specific to 

each sex, with noteworthy disparities observed in the genetic architecture of the immune 

BAG (r: β = 0.29; P: β = 0.01; C: β = 0.55). Immune responses exhibit sex differences 

that vary across the lifespan and are influenced by age and reproductive status12. Detailed 

quantitative information regarding these observations can be found in Supplementary Note 

2, while visual representations of these patterns are available in Supplementary Figs. 5 and 

7. Finally, the genetic signals identified within populations not of European ancestry were 

less prominent than the European GWAS due to the limited sample size, but we found a high 

concordance between the two sets of β values using the three proposed metrics (0.85 < r: β 
< 0.95; 0.89 < C: β < 1; P: β > 0.12). This underscores the necessity of expanding sample 

sizes within underrepresented ethnic groups in future GWAS studies. Detailed statistics can 

be found in Source Data Files 2–5. Certain genomic loci exhibited unique associations with 

individual organs, whereas others displayed connections to multiple organ BAGs in close 

genomic proximity based on their cytogenetic position. Many of these loci were mapped 

to protein-coding genes and provided functional insights, as exemplified in Supplementary 

Note 3 and Supplementary Figs. 10 and 11.

Phenome-wide associations for organ specificity and interorgan connection

We aimed to investigate the agreement of the identified genomic loci in existing GWAS 

literature. To this end, we performed a phenome-wide association query in the EMBL-

EBI GWAS Catalog for independent genetic signals within each locus, considering 

linkage disequilibrium and redundant associations (Methods). We used FUMA’s standard 

terminologies to delineate the independent genetic signals, ensuring careful consideration of 

linkage disequilibrium. Supplementary Note 1 outlines in detail the specific parameters used 

in FUMA and alternative approaches used in other software and studies.

This phenome-wide associations query identified 11,709 significant associations between 

the identified loci in our GWAS and clinical traits in the literature linked to each organ 

system (that is, BAG–organ specificity; Fig. 2a). The genomic loci associated with the 

brain BAG exhibited the highest proportion of associations (74 of 173) with traits related 

to the brain, including imaging-derived phenotypes such as brain volume metrics and 
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white matter microstructure, as demonstrated in a keyword cloud (Fig. 2a). The brain 

BAG loci were also largely linked to many other traits related to other organ systems 

and chronic diseases, evidencing interorgan connections, including metabolic (N = 43/173; 

for example, cholesterol levels), lifestyle factor (N = 1/173; that is, alcohol consumption), 

neurodegenerative traits (N = 16/173; for example, Alzheimer’s disease) and immune status 

(N = 7/173; for example, lymphocyte count). For the eye BAG loci, most associations were 

found in the eye (N = 31/128; for example, retinal nerve fiber layer thickness) and brain 

traits (N = 6/128; for example, brain morphology), among others.

For the seven body organ systems, among the loci associated with the cardiovascular 

BAG, most associations were observed with cardiovascular traits (319 of 439), such 

as systolic/diastolic blood pressure and coronary artery disease. Other associations were 

found with musculoskeletal (N = 30/439), metabolic (N = 14/439), immune (N = 6/439), 

renal (N = 18/1,890) and brain (N = 9/439) traits. Three hundred and seventy-six of 

1,853 associations were related to hepatic traits (for example, blood protein, cirrhosis and 

bilirubin) for the hepatic BAG loci. Among the loci associated with the immune BAG, 

abundant associations were found in metabolic (929 of 1,773), immune (N = 244/1,773), 

hepatic (N = 149/1,853), musculoskeletal (N = 57/1,853) and cardiovascular traits (N = 

72/1,853). For the metabolic BAG loci, most associations were observed in metabolic traits 

(3,841 of 4,907). We found a significant intertwining of metabolic systems with other organ 

systems, highlighting interorgan connections in human metabolic activities. Details of the 

phenome-wide associations are presented in Source Data File 6. Furthermore, we reported 

the complementary results of this phenome-wide association query using the GWAS Atlas13 

platform (Supplementary Note 4, Source Data File 7 and Supplementary Fig. 12).

Single-nucleotide polymorphism (SNP)-based heritability estimates

We estimated the SNP-based heritability (h2) across the nine organ systems using the full 

sample sizes (Fig. 2b) of the nine BAGs. Additionally, the distributions of the magnitude 

of the β coefficient in the GWAS and the allele frequency of the alternative allele (effect 

allele) are shown in Fig. 2c,d. Notably, the sample sizes of the brain and eye BAGs were 

much smaller than those of the seven body organ BAGs; the body organ BAGs had the same 

populations.

After analyzing the full sample sizes, the estimated h2 for the brain BAG (0.47 ± 0.02) 

outperformed all other organ systems, followed by the eye (0.38 ± 0.02), pulmonary (0.36 

± 0.006), renal (0.31 ± 0.006), metabolic (0.29 ± 0.006), cardiovascular (0.27 ± 0.006), 

musculoskeletal (0.24 ± 0.006), hepatic (0.23 ± 0.006) and immune BAGs (0.21 ± 0.006; 

Fig. 2b). All heritability estimates were statistically significant after controlling for multiple 

comparisons using the Bonferroni correction. This trend persisted when subsampling the 

population of other BAGs to match that of the brain BAG, with comparable distributions 

in sex and age (Extended Data Fig. 2a). Detailed results of the h2 estimate are presented 

in Supplementary Table 1a,b. Of note, we used the GCTA software to estimate h2, 

acknowledging that previous research14 has demonstrated variations in the magnitude of 

h2 estimates based on the choice of methods.
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To gain deeper insights into the significant genetic signals, we conducted a detailed 

examination of the effect sizes (β coefficient) in the GWAS of the nine BAGs, as the effect 

size is independent of the sample size. The independent significant SNPs of the brain (|β| = 

0.062 ± 0.013; [0.0470, 0.093]) and eye (|β| = 0.0645 ± 0.030) BAGs showed larger mean 

magnitudes than the seven body organ systems (Fig. 2c). Among the body organ BAGs 

with the same sample size, the renal BAG showed the largest effect size (0.023 < |β| < 

0.306). This pattern persisted with the results using the subsampled populations to the brain 

BAGs (Extended Data Fig. 2b). The full set of statistics (for example, β coefficients) of the 

independent significant SNPs is detailed in Source Data File 5 for the European ancestry 

GWAS. We observed that the alternative (effect) allele frequency of the independent 

significant SNPs associated with the brain and eye BAGs was relatively higher than that 

of the body organ BAGs (Fig. 2d). This may indicate that larger samples are required for 

the brain and eye to detect SNP effects with a relatively lower allele frequency. Additional 

considerations of the comparison of the genetic signals among the nine BAGs are detailed 

in Supplementary Note 5, Supplementary Figs. 13 and 14, Supplementary Tables 2 and 3, 

Source Data File 8 and Extended Data Figs. 3 and 4 regarding allele frequency, sample sizes, 

underlying features to compute the BAGs and Bayesian colocalization (Methods).

Gene set enrichment analysis (GSEA) for biological pathway annotations

To biologically validate our GWAS findings at the gene level, we performed gene-based 

associations using MAGMA software based on the full P value distribution from the GWASs 

of the nine BAGs. The significantly associated genes (Source Data File 9) were used for 

the GSEA (Methods) to annotate relevant biological pathways underlying each organ system 

(Fig. 3a).

Genes associated with the cardiovascular BAG were implicated in the insulin-like growth 

factor II binding (IGF-II) pathway (P = 7.08 × 10−7). Genes associated with the eye BAG 

were enriched in the pathway of forebrain dorsal–ventral pattern formation (P = 6.46 × 

10−7). Among others, the most significant enrichment result shown in the hepatic BAG was 

the flavonoid glucuronidation pathway (P = 1.71 × 10−8). Genes linked to the metabolic 

BAG displayed enrichment in several pathways, including the flavonoid glucuronidation 

pathway (P = 2.46 × 10−15) and triglyceride-rich lipoprotein particle clearance pathway (P 
= 3.72 × 10–15), both of which are implicated in liver function. In addition, the neutral 

lipid metabolic process, regulated by complex pathways featuring lipid metabolism enzymes 

and structural proteins, was also identified. Genes associated with the musculoskeletal 

BAG exhibited enrichment in the gene set in an amplicon at 20q11 (P = 1.54 × 10−15), 

defined by a study of copy number alterations conducted on 191 individuals with breast 

tumors15. Genes associated with the pulmonary BAG displayed significant enrichment 

in the pathways of the negative regulation biosynthetic process (P = 3.72 × 10−10), 

consistent with a previous DNA methylation analysis of pulmonary function using old-aged 

Chinese monozygotic twins16. Genes associated with the renal BAG were implicated in the 

xenobiotic glucuronidation pathway (P = 1.56 × 10−6). Given that the kidney contains most 

enzymes that metabolize foreign substances (that is, xenobiotics), it plays a crucial role in 

the overall metabolism of drugs and other foreign compounds within the body (Fig. 3a). 
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Detailed results of the GSEAs are presented in Source Data File 10. Sex-stratified results are 

presented in Extended Data Fig. 5.

Tissue-specific gene expression analysis for gene expression patterns

To investigate the gene expression patterns of the significant genes associated with the nine 

BAGs, we performed a tissue-specific gene expression analysis using MAGMA and the 

GTEx RNA-sequencing dataset17 (Methods).

Across 54 human organ tissues (Fig. 3b), genes associated with the cardiovascular BAG 

exhibited significant overexpression in various heart-related tissues (for example, the aorta 

and tibial artery) and other organs (for example, the uterus and colon sigmoid). Genes 

associated with the hepatic BAG were overexpressed in the liver and subcutaneous adipose. 

Several immune system-related tissues showed a high average expression of genes related 

to the immune BAG, including the spleen, blood and lymphocytes. Likewise, genes 

associated with the metabolic BAG showed a high expression level in the liver and intestine, 

critical organs in the metabolic system. Genes related to the pulmonary BAG displayed 

significant overexpression in the esophagus gastroesophageal junction, artery and others. 

Genes associated with the renal BAG were overexpressed in the kidney. Detailed results are 

presented in Source Data File 11. Sex-stratified results are presented in Extended Data Fig. 

6.

Gene–drug–disease network for potential repositionable drugs

We performed a drug target enrichment analysis (Methods) for genes linked to the nine 

BAGs in the targeted gene sets of drug categories using the DrugBank database, thereby 

constructing a gene–drug–disease network of potentially repositionable drugs.

The constructed gene–drug–disease network (Fig. 4) identified significant interactions 

between 12 metabolic BAG-linked genes, 46 drugs and many metabolic disorders encoded 

in the International Classification of Diseases-10 (ICD-10) code (E70-E90). For instance, 

the PPARD gene was the target gene of the PPARδ agonist SAR-351034, (denoted in Fig. 

4), which aimed to improve insulin sensitivity and lipid-related activities and battle against 

inflammation and oxidative stress, serving as actionable drugs for metabolic disorders, 

diabetes and kidney and liver injury-related diseases18. Our results showed that genes 

associated with the metabolic BAG were used to develop drugs treating various other 

diseases, beyond metabolic disorders, related to multiple organ systems (Fig. 4). These 

included heart-related diseases (for example, chronic rheumatic heart diseases for I05-I09) 

and cerebrovascular disease (I60-I69), although the enrichment did not survive correction 

for multiple comparisons (Fig. 4). For instance, the drug MPSK3169A (clinical trial number 

NCT01609140; metabolic BAG-linked gene PCSK9) is used to treat cerebrovascular disease 

and coronary heart disease, and the drug T3D-959 (clinical trial number NCT04251182; 

pulmonary BAG-linked gene PPARD) was a candidate drug targeting Alzheimer’s disease. 

Detailed results are presented in Source Data File 12.

The drug–gene–disease network revealed the association between genes related to the 

metabolic BAG and drugs targeting various chronic diseases and highlights the importance 
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of the metabolic system in the overall functioning of the human body and the potentials of 

repositioning existing drugs to tackle biological aging.

Heritability enrichment in different cells, categories, tissues and chromatin states

To further biologically validate our GWAS findings at the SNP level, we performed 

partitioned heritability analyses (Methods) to estimate the heritability enrichment of genetic 

variants related to the nine BAGs concerning three different cell types (that is, neurons, 

oligodendrocytes and astrocytes; Fig. 5a), 53 nontissue-specific functional categories (Fig. 

5b), 205 tissue-specific gene expression data (Fig. 5c) and 489 tissue-specific chromatin 

states (Fig. 5d).

We found significant heritability enrichment in oligodendrocytes (P = 0.03), a specific type 

of neuroglial cell, for the brain BAG. The cardiovascular BAG also exhibited significant 

heritability enrichment in neurons (P = 0.01; Fig. 5a and Source Data File 13). Concerning 

the heritability enrichment in nontissue-specific functional categories, we exemplified the 

four highest significant partitioned heritability estimates for each BAG in Fig. 5b. For the 

brain BAG, the superenhancer regions used 17.16% of SNPs to explain 0.47 ± 0.04 of 

SNP heritability (P = 1.80 × 10−11), and the histone H3 at lysine 9 (H3K9ac) regions used 

12.61% of SNPs to explain 0.61 ± 0.12 of SNP heritability (P = 2.96 × 10−4). For the 

eye BAG, the superenhancer regions explained 0.39 ± 0.05 of SNP heritability (P = 2.12 × 

10−6) using 16.84% of SNPs. For the hepatic BAG, the H3K9ac regions explained 0.69 ± 

0.13 of SNP heritability (P = 3.60 × 10–5) using 12.61% of SNPs. For the immune BAG, 

the transcription start site regions (that is, core promoters) explained 0.37 ± 0.08 of SNP 

heritability (P = 1.48 × 10−6) using 1.82% of SNPs. The 3.11% of SNPs annotated by 

the promoter regions explained 0.30 ± 0.08 of SNP heritability (P = 7.64 × 10−4) for the 

metabolic BAG. For the cardiovascular (enrichment = 16.39 ± 2.23; P = 4.70 × 10−11), 

musculoskeletal (enrichment = 17.34 ± 4.08; P = 1.65 × 10−6), pulmonary (enrichment 

= 16.82 ± 2.51; P = 7.58 × 10−9) and renal (enrichment = 13.96 ± 1.88; P = 7.25 × 

10−9) BAGs, the highest heritability enrichment was found in the regions conserved across 

mammals (Fig. 5b and Source Data File 14). These results suggested disproportionate 

genomic contributions to the heritability of BAGs from multiple functional categories.

In addition, the nine BAGs showed high heritability enrichment in specific tissues 

corresponding to their organ systems. For example, the cardiovascular BAG showed 

significant heritability enrichment in multiple tissue types, including the artery (for example, 

the aorta: P = 1.03 × 10−7), myometrium (P = 1.35 × 10−4) and uterus (P = 2.43 × 10−4). 

Significant heritability enrichment was found in the liver for the hepatic (P = 5.60 × 10−9) 

and metabolic BAGs (P = 6.24 × 10−9). For the immune BAG, significant heritability 

enrichment was found in fetal blood tissues (P = 7.36 × 10−9; Fig. 5c and Source Data File 

15). These findings were aligned with the tissue-specific gene expression patterns observed 

at the gene level (Fig. 3b).

The results from the multitissue chromatin state-specific data further provide the proof 

of concept for the organ-specific heritability enrichment among these nine BAGs. For the 

brain BAG, significant heritability enrichment was found in multiple brain tissues in the 

H3K4me3 (for example, P = 9.06 × 10−5 for the hippocampus), H3K4me1 (for example, P 
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= 6.94 × 10−5 for the hippocampus) and H3K27ac (for example, P = 1.15 × 10−5 for the 

anterior caudate) regions. For the cardiovascular BAG, significant heritability enrichment 

was shown in the right ventricle in the H3K4me3 region (P = 6.36 × 10−5) and the artery 

aorta in the H3K27ac region (P = 5.81 × 10−7). Significant heritability enrichment was 

found in primary hematopoietic stem cells in the H3K4me1 region for the immune BAG 

for both women (P = 5.61 × 10−5) and men (P = 9.50 × 10−5). The fetal leg muscle tissue 

in the DNase regions (P = 6.54 × 10−5) for the musculoskeletal BAG showed significant 

heritability enrichment. For the pulmonary BAG, significant heritability enrichment was 

found in the fetal lung in the H3K4me1 (P = 1.33 × 10−9) and DNase regions (P = 3.80 

× 10−8), among other tissues from the stomach, artery and muscle. For the renal BAG, 

significant enrichment was shown in the liver in the H3K9ac region (P = 2.46 × 10−5) and 

the gastric tissues in the H3K27ac region (P = 6.24 × 10−5; Fig. 5d and Source Data File 16).

Genetic correlations mirror their phenotypic correlations

We estimated the genetic correlation (gc; Methods) and the phenotypic correlation (pc; for 

Pearson’s correlation coefficient) between each pair of the nine BAGs. Our results supported 

the long-standing Cheverud’s Conjecture19, which states that the genetic correlation between 

two clinical traits reflects their phenotypic correlation (Fig. 5e).

The musculoskeletal and hepatic BAGs showed the highest genetic correlation (gc = 0.40) 

and phenotypic correlation (pc = 0.38). Similarly, the hepatic and renal BAGs showed a high 

genetic correlation (gc = 0.39) and phenotypic correlation (pc = 0.37). The musculoskeletal 

BAG also showed significant genetic and phenotypic correlations with pulmonary (gc = 

0.35, pc = 0.19) and renal BAGs (gc = 0.13, pc = 0.21). In addition, the eye BAG showed 

small genetic and phenotypic correlations with the brain BAG (gc = 0.15, pc = 0.11). 

The correlations between the brain and eye BAGs and other organ BAGs were relatively 

weaker than those observed among other organ pairs. These findings indicate the presence 

of shared genetic underpinnings that collectively contribute to the biological aging processes 

captured by these organ BAGs. Most of the genetic correlations showed consistency between 

women and men, albeit sex differences were evident in certain BAGs, particularly in the 

cardiovascular BAG results. Specifically, men exhibited dominant correlations between 

cardiovascular BAGs and hepatic and renal BAGs, whereas women demonstrated unique 

correlations with musculoskeletal and pulmonary BAGs (Extended Data Fig. 7). Sex 

differences in cardiovascular diseases have been explored in prior literature20, highlighting 

the divergent effects of factors associated with both sex and gender on the clinical 

presentations and outcomes of cardiovascular disease. Detailed results are presented in 

Source Data File 17.

Genetic correlations between the nine BAGs and 41 clinical traits

We also estimated gc between the nine BAGs and 41 clinical traits to examine their 

genetic correlations. The 41 clinical traits encompassed many common chronic diseases and 

conditions and their disease subtypes4,21–24, cognition (for example, general intelligence and 

reaction time) and lifestyle factors (for example, computer use; Fig. 5f and Supplementary 

Table 4).
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The brain BAG was genetically associated with several brain diseases of the CNS and their 

subtypes, including Alzheimer’s disease (gc = 0.37 ± 0.14) and late-life depression (gc = 

0.25 ± 0.07). Furthermore, we observed significant genetic correlations between the brain 

BAG and years of education (gc = −0.14 ± 0.05) and intelligence (gc = −0.15 ± 0.05). The 

cardiovascular BAG was positively correlated with stroke (gc = 0.20 ± 0.05), a significant 

cardiovascular disease, and was negatively correlated with years of education (gc = −0.17 ± 

0.05). The musculoskeletal BAG was positively correlated with hyperlipidemia (gc = 0.18 

± 0.06), rheumatoid arthritis (gc = 0.13 ± 0.03) and Crohn’s disease (gc = 0.19 ± 0.06) and 

was negatively correlated with atrial fibrillation (gc = –0.11 ± 0.04), years of education (gc 

= −0.21 ± 0.04) and intelligence (gc = −0.18 ± 0.03). The pulmonary BAG was positively 

associated with hyperlipidemia (gc = 0.12 ± 0.04), stroke (gc = 0.15 ± 0.05), liver fat 

(gc = 0.12 ± 0.04) and lung carcinoma (gc = 0.17 ± 0.05). Finally, the renal BAG was 

positively correlated with chronic kidney disease (gc = 0.39 ± 0.06) and atrial fibrillation 

(gc = 0.09 ± 0.03). Notably, type 2 diabetes showed abundant positive genetic correlations 

with multiple BAGs, including the brain, cardiovascular, metabolic, pulmonary and renal 

BAGs. Detailed results are presented in Source Data File 18. Furthermore, we calculated the 

genetic correlation between the nine BAGs and longevity25 and household income26. Our 

findings indicated that the cardiovascular (gc = −0.16 ± 0.09) and pulmonary BAGs (gc = 

−0.12 ± 0.07) exhibited negative associations with longevity, defined as cases surviving at 

or beyond the age corresponding to the 90th survival percentile, and the brain BAG (gc = 

−0.21 ± 0.04), musculoskeletal BAG (gc = −0.29 ± 0.03) and pulmonary BAG (gc = −0.16 

± 0.03) were negatively genetically correlated with household income. We used GWAS 

summary statistics from a prior study27 to detect a significant genetic correlation between 

the immune BAG (gc = −0.13 ± 0.03), pulmonary BAG (gc = −0.09 ± 0.03) and telomere 

length (Supplementary Table 5).

These genetic correlations yield insights into potential shared mechanisms underlying the 

nine BAGs, their relationships with chronic diseases, particularly Alzheimer’s disease and 

type 2 diabetes, and cognition. These compelling results prompted us to explore the potential 

causal effects of these traits on the nine BAGs. In the subsequent section, we unbiasedly 

selected 17 clinical traits encompassing chronic diseases, cognition and lifestyle factors to 

perform Mendelian randomization.

Hepatic and musculoskeletal BAGs are causally linked

We performed two-sample bidirectional Mendelian randomization for each pair of BAGs 

by excluding overlapping populations to avoid bias (Methods). We found that the hepatic 

and musculoskeletal BAGs showed a bidirectional causal relationship (from the hepatic 

BAG to the musculoskeletal BAG: P = 9.85 × 10−7, odds ratio (OR; 95% confidence 

interval (95% CI)) = 1.47 (1.26, 1.71); from the musculoskeletal BAG to the hepatic BAG: 

P = 1.54 × 10−8, OR (95% CI) = 2.78 (1.95, 3.97); Fig. 6a)). This causal relationship 

echoes our genetic correlation results; the musculoskeletal and hepatic BAGs showed the 

highest genetic correlation compared to other organ systems (Fig. 5e). Detailed results and 

sensitivity check results are presented in Source Data File 19 and Supplementary Figs. 15 

and 16.
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We performed three additional sensitivity check analyses for this bidirectional causal 

relationship. First, we reperformed the GWAS for the hepatic BAG and musculoskeletal 

BAG, incorporating weight as a covariate due to its established causal associations 

with several organ systems. This analysis reaffirmed this bidirectional causal relationship 

(Supplementary Note 6a and Supplementary Table 6a,b). Furthermore, we performed 

Mendelian randomization by excluding the common SNP within the APOE gene (rs429358) 

due to its pleiotropic effects. This analysis underscored the robustness of the potential causal 

relationship from the hepatic BAG to the musculoskeletal BAG, both with and without 

including this SNP as an instrumental variable (IV), as elaborated in Supplementary Note 

6b and Supplementary Table 6c. Finally, the latent causal variable (LCV28; Methods) model 

confirmed a partially genetically causal effect from the hepatic BAG to the musculoskeletal 

BAG (genetic causality proportion = 0.75 ± 0.14, −log10 (P value) = 11.0, gc = 0.41 ± 0.06; 

Supplementary Table 6d).

Multiorgan causal network with chronic diseases, body weight and sleep duration

We investigated the bidirectional causal effects between chronic diseases (for example, 

Alzheimer’s disease) and lifestyle factors (for example, sleep duration) and the nine 

BAGs. We unbiasedly and systematically included 17 clinical traits guided by our genetic 

correlation results (Fig. 5f). The 17 clinical traits included chronic diseases linked to the 

brain, cardiovascular, metabolic, digestive, renal and musculoskeletal systems, cognition and 

lifestyle factors (Supplementary Table 7).

In the forward Mendelian randomization, we found potential causal effects of Alzheimer’s 

disease on the brain (P = 3.99 × 10−8, OR (95% CI) = 1.05 (1.03, 1.06), number of SNPs 

= 10), hepatic (P = 7.53 × 10−7, OR (95% CI) = 1.03 (1.02, 1.04), number of SNPs = 10), 

musculoskeletal (P = 1.73 × 10−5, OR (95% CI) = 0.98 (0.97, 0.99), number of SNPs = 10) 

and renal (P = 5.71 × 10−4, OR (95% CI) = 0.98 (0.97, 0.99), number of SNPs = 10) BAGs. 

Body weight showed causal effects on multiple organ systems, including the immune (P = 

8.96 × 10−5, OR (95% CI) = 1.08 (1.04, 1.11), number of SNPs = 160), musculoskeletal (P 
= 4.32 × 10−15, OR (95% CI) = 0.83 (0.79, 0.86), number of SNPs = 160), pulmonary (P = 

3.50 × 10−7, OR (95% CI) = 0.84 (0.79, 0.90), number of SNPs = 160) and renal BAGs (P 
= 4.53 × 10−13, OR (95% CI) = 1.18 (1.13, 1.23), number of SNPs = 160). In addition, we 

also found that Crohn’s disease had causal effects on the hepatic BAG (P = 3.00 × 10−3, OR 

(95% CI) = 1.02 (1.00, 1.03), number of SNPs = 77), type 2 diabetes had causal effects on 

the metabolic BAG (P = 9.92 × 10−12, OR (95% CI) = 1.16 (1.09, 1.24), number of SNPs 

= 8), and inflammatory bowel disease (P = 1.42 × 10−3, OR (95% CI) = 1.02 (1.00, 1.03), 

number of SNPs = 80) and primary biliary cholangitis (P = 7.41 × 10−4, OR (95% CI) = 1.02 

(1.00, 1.03), number of SNPs = 16) had causal effects on the musculoskeletal BAG (Fig. 6b).

For the inverse Mendelian randomization, we found potential causal effects of the metabolic 

(P = 6.85 × 10−4, OR (95% CI) = 0.94 (0.91, 0.97), number of SNPs = 71) and pulmonary 

(P = 3.79 × 10−5, OR (95% CI) = 0.84 (0.79, 0.91), number of SNPs = 62) BAGs on 

body weight, the cardiovascular BAG on triglycerides versus lipid ratio in very large very-

low-density lipoprotein (P = 2.14 × 10−4, OR (95% CI) = 1.09 (1.04, 1.14), number of SNPs 
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= 39) and the brain BAG on sleep duration (P = 2.61 × 10−3, OR (95% CI) = 1.09 (1.04, 

1.14), number of SNPs = 10; Fig. 6c). Detailed results are presented in Source Data File 20.

We performed several sensitivity analyses (Methods) to test the robustness of our findings. 

Based on these sensitivity checks, we identified potential outlier IVs (that is, SNPs) 

for four Mendelian randomization tests (Alzheimer’s disease and body weight on the 

musculoskeletal BAG, Crohn’s disease on the hepatic BAG and type 2 diabetes on the 

metabolic BAG) in the forward Mendelian randomization and one Mendelian randomization 

test (metabolic BAG on body weight) in the inverse Mendelian randomization. Detailed 

results of the sensitivity check are presented in Supplementary Figs. 17–32 for all significant 

results. We showcased a detailed analysis of the sensitivity results for the metabolic BAG 

on body weight in Supplementary Note 6c. In summary, the potential causal link from the 

metabolic BAG to body weight remained robust across several sensitivity checks despite the 

identification of two potential outlier IVs, namely, rs117233107 and rs33959228.

In addition, we used the LCV method and found a partial genetically causal effect from 

longevity (99th survival percentile) to the brain BAG (genetic causality proportion = 0.45 ± 

0.20, P = 0.04). Importantly, we selected the LCV method over Mendelian randomization 

because of the partial population overlap between the longevity GWAS summary statistics 

and our BAG GWAS summary statistics. The LCV analysis also detected a partially 

genetically causal effect from telomere length to the immune BAG (genetic causality 

proportion = 0.33 ± 0.12, P = 0.0002) and the pulmonary BAG (genetic causality proportion 

= 0.67 ± 0.20, P = 3.57 × 10−16; Supplementary Table 6d).

Discussion

The current study depicts the genetic architecture of common genetic variants on biological 

aging of nine human organ systems using multimodal data from 377,028 participants of 

European ancestry. We identified many genomic loci for the BAGs of nine human organ 

systems. These associations were observed within a phenotypic landscape characterized by 

BAG–organ specificity and interorgan connections. GSEA, tissue-specific gene expression 

patterns and heritability enrichment results provided additional evidence supporting 

biological validation for BAG–organ specificity and interorgan connections. The phenotypic 

correlation between BAGs was a proxy for their genetic correlation, thereby supporting 

the long-standing Cheverud’s Conjecture. Mendelian randomization demonstrated potential 

causal relationships between chronic diseases, particularly Alzheimer’s disease and type 2 

diabetes, body weight, sleep duration and the nine BAGs.

Our large-scale multiorgan GWAS significantly expands the current catalog of genetic 

variants associated with health-related traits. The discovery of these identified genomic 

loci has significant clinical implications. These findings provide a foundation to validate 

genes or regulatory elements, molecular pathways and biological processes related to the 

clinical traits and diseases of interest in the current study and future GWASs. Previous 

GWASs mainly focused on the BAG in one organ system, such as the brain BAG9,29 

from imaging-derived phenotypes. These investigations have largely overlooked the inherent 

interconnectedness of human organ systems, which are intricately intertwined with distinct 
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axes. Recent studies have identified notable axes, such as the heart–brain–liver6, brain–

eye30 and brain–heart31 axes, highlighting the importance of comprehending these intricate 

relationships to understand human physiology and health.

Our phenome-wide associations validate the pleiotropic effects of the identified genomic 

loci, influencing various health-related clinical traits in the GWAS Catalog and GWAS 

Atlas. Our findings also highlight BAG–organ specificity and interorgan connections, further 

supporting that biological aging is a complex, multifaceted phenomenon. The human brain 

regulates various physiological processes and maintains homeostasis throughout the body. 

Consequently, it is unsurprising that the brain exhibits interconnectedness with clinical 

traits associated with multiple organ systems. The remarkable enrichment of metabolic 

traits across various organ systems is unsurprising. As a vital metabolic organ, the liver 

substantially overlaps genetic variants and loci with both the hepatic and metabolic BAGs. 

Biologically, the liver’s metabolic functions are intricately regulated by hormones like 

insulin and other metabolic regulators32. Similarly, the interplay between immune and 

metabolic processes is essential for maintaining overall health and is crucial for the body’s 

ability to respond to pathogens and regulate metabolic homeostasis33.

Our gene-level and partitioned heritability analyses further validate our GWAS findings, 

supporting BAG–organ specificity and interorgan connections. In the GSEA, the genes 

associated with the cardiovascular BAG were implicated in the IGF-II pathway. IGF-II 

activates two receptors (IGF-1R and IR-A) to promote cell growth and survival. The 

IGF signaling pathway is essential for cardiac development in the human heart, the 

first functional organ to develop34. In particular, IGF-II promotes fetal cardiomyocyte 

proliferation through the tyrosine kinase receptors IGF-1R and INSR. Previous research 

provided appealing evidence on IGF signaling in cardiac regeneration in animal models 

and induced pluripotent stem cells35. The flavonoid glucuronidation pathway was the most 

significant enrichment result shown in the hepatic BAG. A previous study demonstrated 

that procyanidin C1, a flavonoid in grape seed extract, extended the lifespan of mice36. 

Furthermore, ample evidence indicated that natural flavonoids could be potential therapeutic 

approaches for nonalcoholic fatty liver disease37. The metabolites formed through this 

pathway can also exert effects beyond the liver and impact other organ systems. Our tissue-

specific gene expression analyses provided additional support for the biological relevance 

of our GWAS findings, as the identified genes exhibited specific expression patterns within 

tissues from the corresponding organ systems.

The heritability enrichment analysis further validates the BAG–organ specificity and 

interorgan connections by highlighting the disproportional heritability enrichment of genetic 

variants in different functional categories, cell types, tissues and chromatin states. The cell-

type-specific enrichment results in the brain (that is, oligodendrocytes) and cardiovascular 

(that is, neurons) BAGs align with previous research. Specifically, Zhao et al. conducted a 

large-scale GWAS on brain white matter microstructure and found significant heritability 

enrichment in glial cells, particularly oligodendrocytes21,38, which aligns with our current 

findings. Our previous multimodal brain BAG GWAS9 also confirmed this enrichment in the 

brain BAG derived from the white matter microstructural features. Similarly, research has 

revealed the presence of an ‘intrinsic cardiac nervous system’ within the heart, often called 
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the ‘heart brain’. This system consists of around 40,000 neurons similar to those found in the 

brain, indicating that the heart possesses a distinct nervous system39.

Our genetic correlation results confirmed that the genetic correlation generally mirrors 

phenotypic correlations in multiorgan biological age. This suggests that environmental 

factors likely affect the aging of multiple organ systems in the same direction. Providing 

evidence for Cheverud’s Conjecture can have clinical implications by providing insights 

into the genetic basis of complex age-related diseases. For instance, by identifying the 

shared genetic factors underlying multiple age-related diseases, we can target these common 

pathways to develop potential treatments or repurpose existing drugs40 that have proven 

efficacy in treating one disease or condition for others. Moreover, the validation of 

Cheverud’s Conjecture emphasizes the importance of considering the genetic covariance of 

age-related diseases in clinical practice. It underscores the need for comprehensive genetic 

assessments and genomic analyses to understand disease risk and progression41.

We found a bidirectional causal relationship between the hepatic and musculoskeletal BAGs. 

Abundant research has suggested that liver function and metabolic health, particularly 

related to glucose and lipid metabolism, can significantly impact musculoskeletal health42. 

This interorgan connection can cause dysregulation of liver metabolism (for example, 

nonalcoholic fatty liver disease) linked to musculoskeletal disorders, including osteoporosis, 

sarcopenia and muscle wasting. The musculoskeletal system can also exert an inverse 

influence on liver function. Regular physical activity and muscle strength have been linked 

to enhanced liver health and decreased susceptibility to liver diseases. To further support 

this, causal effects of primary biliary cholangitis, a chronic liver disease, on elevated 

musculoskeletal BAG were confirmed in our Mendelian randomization results. The absence 

of direct causal relationships between the remaining BAGs can be attributed to various 

factors with potential explanations and implications. One possible explanation is that the 

brain BAG, having the smallest sample size in our GWAS (after removing overlapping 

participants), may be limited in statistical power. In addition, this may suggest that various 

factors, including chronic diseases, environmental exposures and lifestyle choices, influence 

biological aging in alternative pathways or mediate such changes. Thus, understanding the 

collective contribution of chronic diseases, environmental factors and lifestyle choices is 

crucial for comprehending the overall aging process and its impact on organ health.

We found that several clinical traits collectively cause organ systems to appear older or 

younger than their chronological age. For instance, body weight was causally associated 

with the immune, musculoskeletal, metabolic and pulmonary BAGs. For several reasons, 

body weight can causally influence multiple organ systems. Excessive body weight 

(for example, obesity) has metabolic consequences, including increased inflammation, 

insulin resistance and dysregulation of metabolic pathways in adipose tissue43. It also 

leads to mechanical stress on the body, contributing to musculoskeletal strain44 and 

cardiovascular workload45. Hormonal imbalances46 and lifestyle factors linked to body 

weight also influence multiorgan function and the development of chronic diseases. 

Being overweight is also a risk factor for type 2 diabetes, which was positively causally 

associated with the metabolic BAG. Alzheimer’s disease was causally linked to the brain, 

hepatic, musculoskeletal and renal BAGs. Alzheimer’s disease, a neurodegenerative disorder 
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primarily affecting the brain, can have causal influences on multiple organ systems. For 

example, it has broader systemic involvement beyond the brain, mediated by mechanisms 

including protein aggregation (for example, amyloid-β and tau47), inflammation48 and other 

secondary factors. Protein aggregates can spread to other organs, vascular abnormalities can 

impact blood flow, inflammation can affect distant organ systems, and secondary factors, 

such as medication use and lifestyle changes, also contribute.

Our sex-stratified GWAS findings (Supplementary Figs. 1–9) reveal significant sex biases 

across several organs’ biological age, particularly evident in the immune BAG. Sex bias is 

a common phenomenon in chronic diseases, exemplified by conditions like autism spectrum 

disorder exhibiting a male-dominant pattern and Alzheimer’s disease displaying a female-

vulnerable pattern. Various factors contribute to such sex differences. Recent studies49 

propose that autistic women may demonstrate better sociocognitive abilities than autistic 

men, potentially leading to underdiagnosis among women (that is, population selection 

bias). However, it remains uncertain whether these differences also arise from distinct 

neurophysiological functioning and/or genetic variants in autistic individuals of different 

sexes. Another study provides genetic evidence of sex differences in autism spectrum 

disorder, supporting the female-protective effect using a mutation burden analysis50. 

Similarly, sex differences are observed in Alzheimer’s disease51. Individuals diagnosed with 

Alzheimer’s disease exhibit distinct cognitive and psychiatric symptoms based on sex, with 

women experiencing more rapid cognitive decline following a diagnosis of mild cognitive 

impairment or Alzheimer’s disease. These examples illustrate the sex differences in multiple 

contexts that may contribute to the sex bias observed in our sex-stratified GWAS. Our 

main GWAS carefully included several sex-related covariates; we also provided post-GWAS 

results for each specific sex, such as genetic correlations using sex-specific GWAS data 

(Extended Data Fig. 7). In particular, for the immune BAG, a recent study52 using single-cell 

genomics identified sex-biased immune gene expression and immune cell populations, such 

as group 2 innate lymphoid cells, modulated by androgens. Follow-up studies specifically 

investigating sex differences at the molecular and cellular levels in the current study will 

further elucidate the underlying etiology affecting multiorgan health.

This study has several limitations. First, the generalizability of genetic findings from 

populations of European and non-European ancestry is limited by the current sample 

sizes despite a high correlation in the derived β values. Future studies can extend their 

scope to encompass a more diverse array of underrepresented ethnicities, a wider range of 

disease cohorts and individuals of varying ages throughout their entire lifespan. Second, 

it is essential to approach the causality results cautiously, considering the assumptions 

underlying Mendelian randomization. In future studies, more advanced multiresponse 

Mendelian randomization methods53 should be used. Third, despite our efforts of quality 

check analyses to scrutinize our primary GWAS, it is essential to acknowledge that potential 

ascertainment bias54, and confounding related to demographic and socioeconomic factors 

could potentially introduce cryptic population stratification, which may not be entirely 

resolved in the current study. Additionally, sex differences were apparent in several of the 

nine BAGs, indicating the need for future research to explore this aspect more thoroughly. 

Finally, the large number of genomic loci identified in our GWAS may have connections 

to BAGs due to various factors, such as biological processes, potential confounding due to 
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demographics or specific study design and phenotyping aspects. It is important to note that 

the effects at these loci might not be inherently biological but could be influenced by other 

unmeasured confounding factors.

In conclusion, our study provides compelling genetic evidence affirming the notion that 

‘no organ system is an island’. It underscores the collective influence of different chronic 

diseases on multiorgan systems and the interconnectedness among these human organ 

systems. These findings highlight the importance of understanding the underlying causes 

of chronic diseases within the multiorgan network. By shedding light on its comprehensive 

genetic architecture, our study paves the way for future research to unravel complex disease 

mechanisms and develop holistic approaches to ameliorate overall organ health.

Methods

Study populations

UKBB is a population-based study of approximately 500,000 people recruited between 

2006 and 2010 from the United Kingdom. The UKBB study has ethical approval, and the 

ethics committee is detailed at https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/

governance/ethics-advisory-committee.

The current study (application numbers 35148 and 60698) analyzed multimodal data, 

including imaging-derived phenotypes and physical and physiological measures in nine 

human organ systems, from 154,774 UKBB participants. In our previous study, we 

constructed BAGs for eight organ systems using machine learning, including magnetic 

resonance imaging data for the brain BAG from 30,108 participants (European ancestry), 

pulse rate and blood pressure data for the cardiovascular BAG, liver-related blood 

biomarkers for the hepatic BAG, C-reactive protein and blood hematology variables for 

the immune BAG, blood biomarkers for the metabolic BAG, physical measurements and 

vitamin D for the musculoskeletal BAG, lung functioning measurements for the pulmonary 

BAG and glomerular filtration and electrolyte regulation biomarkers for the renal BAG from 

111,543 participants. Furthermore, the current study also used 60 OCT-derived measures 

from 36,004 participants to derive the BAG of the ninth organ system, the eye BAG. The 

inclusion criteria for the features used to predict the eight BAGs, the machine learning 

methods and the cross-validation procedures are detailed in our previous study3. We initially 

used the 88 OCT-derived measures (category ID 10079) for the additional eye BAG in 

67,549 participants. Of these measures, 28 were excluded due to a high missing rate 

(>20% of participants). Additionally, 4,172 participants were excluded due to missing 

data, and 1,798 participants identified as outliers (outside mean ± 6 s.d.) for the 60 

remaining measures were discarded. This resulted in 41,966 participants (36,004 participants 

of European ancestry). The included 2,444 features to derive the BAG of the nine organ 

systems are presented in Source Data File 21.

In addition, we also performed a GWAS for seven variables from 222,254 UKBB 

participants by excluding the 154,774 participants from the BAG populations to avoid bias 

due to overlapping samples. These variables included six lifestyle factors and one cognitive 

variable: N = 219,661 (European ancestry) for coffee intake (field ID 1498), N = 221,393 for 
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fresh fruit intake (field ID 1309), N = 221,739 for tea intake (field ID 1488), N = 220,765 

for sleep duration (field ID 1160), N = 209,012 for time spent outdoors in the summer (field 

ID 1050), N = 221,337 for body weight (field ID 21002) and N = 220,624 for reaction time 

(field ID 20023). In total, we analyzed data from 377,028 individuals of European ancestry 

in the current study.

Support vector machines to predict BAG

Our prior study3 used support vector machines to predict the chronological age of healthy 

individuals, which was defined as no self-reported and healthcare-documented lifetime 

chronic medical conditions, based on phenotypes from the nine organ systems. Support 

vector machine regression was preferred over linear regression for its enhanced robustness 

to outliers and overfitting. We performed a 20-fold cross-validation procedure and developed 

predictive models for each organ system. Detailed information regarding the machine 

learning models and model performance compared to the previous literature are present 

in Supplementary Note 7.

Genetic analyses

We used the imputed genotype data for all genetic analyses, and our quality check pipeline 

resulted in 487,409 participants and 6,477,810 SNPs. After merging with the population 

for each BAG, we included 30,108–111,543 participants of European ancestry for the nine 

BAGs (Fig. 1). To avoid bias due to overlapping populations55, we also used the rest 

of the UKBB participants of European ancestry (nonoverlapping) to derive the GWAS 

summary statistics for several lifestyle factors (Methods). We summarize the genetic quality 

control pipeline. First, we excluded related individuals (up to second degree) from the 

complete UKBB sample using the KING software for family relationship inference56; 

fastGWA skips this step because the method tackles the population stratification problem 

without removing related individuals. We then removed duplicated variants from all 22 

autosomal chromosomes. Individuals whose genetically identified sex did not match their 

self-acknowledged sex were removed. Other excluding criteria were (1) individuals with 

more than 3% of missing genotypes, (2) variants with a minor allele frequency of less 

than 1% (dosage mode57), (3) variants with larger than 3% missing genotyping rate and 

(4) variants that failed the Hardy–Weinberg test at 1 × 10−10. To adjust for population 

stratification58, we derived the first 40 genetic principle components using FlashPCA 

software59. Details of the genetic quality check protocol are described elsewhere9,22,60.

GWAS.

For GWAS, we ran a linear regression using PLINK61 for each BAG, controlling for 

confounders of age, dataset status (training/validation/test or independent test dataset), 

age-squared, sex, age × sex interaction, age-squared × sex interaction and the first 40 

genetic principal components; additional covariates for total intracranial volume and the 

brain position in the scanner were included for the brain BAG GWAS. We adopted the 

genome-wide P value threshold of 5 × 10−8 and annotated independent genetic signals 

considering linkage disequilibrium (see below).
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To check the robustness of our GWAS results, we performed several sensitivity check 

analyses, including a (1) sex-stratified GWAS for men and women, (2) split-sample 

GWAS by randomly dividing the entire population into two splits (sex and age matched), 

(3) non-European ancestries GWAS and (4) fastGWA62 for linear mixed-effect GWAS, 

hypothesizing that the main GWASs with European ancestry did not show substantial 

genomic inflation due to cryptic population stratification. In all our sensitivity check 

analyses, we considered linkage disequilibrium. We only evaluated the independent 

significant SNPs of the two sets of β coefficients between splits, sexes, ancestry groups 

and GWAS methods. The definition of the independent significant SNPs used the same 

parameters as in FUMA63 (Supplementary Note 1). We used the raw genotype data and the 

PLINK clump command (250 kb) and defined a set of SNPs in linkage disequilibrium with 

the independent significant SNPs, analogous to the candidate SNPs in FUMA.

SNP-based heritability.

We estimated the SNP-based heritability (h2) using GCTA64 with the same covariates in 

GWAS. We reported results from two experiments for each BAG using (1) the full sample 

sizes and (2) randomly downsampled sample sizes to that (N = 30,108) of the brain BAG 

with comparable distributions regarding sex and age; the sample size of brain BAGs was 

smaller than the other BAGs.

Annotation of genomic loci.

Annotation of genomic loci and mapped genes was performed using FUMA63. For the 

annotation of genomic loci, FUMA first defined lead SNPs (correlation r2 ≤ 0.1, distance 

< 250 kb) and assigned them to a genomic locus (nonoverlapping); the lead SNP with the 

lowest P value (that is, the top lead SNP) was used to represent the genomic locus in Fig. 

1. For gene mappings, three different strategies were considered. First, positional mapping 

assigns the SNP to its physically nearby genes (a 10-kb window by default). Second, eQTL 

mapping annotates SNPs to genes based on eQTL associations using the GTEx v8 data. 

Finally, chromatin interaction mapping annotates SNPs to genes when there is a significant 

chromatin interaction between the disease-associated regions and nearby or distant genes63. 

The definitions of top lead SNP, lead SNP, independent significant SNP and candidate SNP 

can be found in Supplementary Note 1.

For the top lead SNP of each identified genomic locus, we showcased whether it 

was previously associated with any clinical traits considering linkage disequilibrium 

(5,000 kb around the top lead SNP) in the EMBL-EBI GWAS Catalog65 platform 

(https://www.ebi.ac.uk/gwas/home). For instance, we aimed to query the locus with 

the top lead SNP (rs60569686) associated with the renal BAG. First, we looked 

up the chromosomal position (that is, chromosome 13) and found that the location 

is chr13:49170160 (GRCh38). We then searched the GWAS Catalog for a 5,000-kb 

region around this top lead SNP: ‘chr13:49167660–49172660’ (https://www.ebi.ac.uk/gwas/

regions/chr13:49167660-49172660; query date 12 October 2023). In this region, we 

discovered no prior associations. It is important to note that this search is not comprehensive, 

as new GWASs continually emerge on various open platforms, such as IEU OpenGWAS66 

(https://gwas.mrcieu.ac.uk/) and GWAS Atlas13 (https://atlas.ctglab.nl/PheWAS).

Wen et al. Page 18

Nat Aging. Author manuscript; available in PMC 2024 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ebi.ac.uk/gwas/home
https://www.ebi.ac.uk/gwas/regions/chr13:49167660-49172660
https://www.ebi.ac.uk/gwas/regions/chr13:49167660-49172660
https://gwas.mrcieu.ac.uk/
https://atlas.ctglab.nl/PheWAS


Phenome-wide association look-up queries.

We first queried the significant independent SNPs within each locus in the EMBL-EBI 

GWAS Catalog (query date 24 April 2023, via FUMA version v1.5.4) to determine 

their previously identified associations with any other traits (P < 1 × 10−5 by default 

in the EMBL-EBI GWAS Catalog). For visualization purposes, we further mapped the 

associated traits into organ-specific groups and other chronic disease traits and cognition. 

We performed the following procedure to fully consider linkage disequilibrium and remove 

redundant associations among the independent significant SNPs. If the top lead SNP 

showed any clinical associations, this would present the current locus; if not, we queried 

the independent significant SNPs (in high correlation with the top lead SNP), starting 

with the most significant SNPs, until we identified established associations. In this way, 

only one genetic variant within each genomic locus was considered. We also conducted a 

complementary phenome-wide association query on the GWAS Atlas platform. We applied 

the same P value threshold search criteria as those used in the EMBL-EBI GWAS Catalog. 

The same procedure, considering linkage disequilibrium and redundant associations, was 

applied.

GSEA.

We first performed gene-level association analysis using MAGMA67. First, gene annotation 

was performed to map the SNPs (reference variant location from Phase 3 of 1,000 

Genomes for European ancestry) to genes according to their physical positions. Of note, 

other advanced annotation methods exist that integrate functional insights, such as brain 

chromatin interaction68 and cell-type-specific gene expression69. We then performed gene-

level associations based on the SNP GWAS summary statistics to obtain gene-level P values 

between the nine BAGs and the curated protein-coding genes containing valid SNPs. We 

performed GSEA using the gene-level association P values. Gene sets were obtained from 

the Molecular Signatures Database (MSigDB, v7.5.1)70, including 6,366 curated and 10,402 

ontology gene sets. All other parameters were set by default for MAGMA. The Bonferroni 

method was used to correct multiple comparisons for all tested gene sets.

Tissue-specific gene expression analysis.

MAGMA performed gene property analyses to identify tissue-specific gene expression 

of the nine BAGs. The gene property analysis converts the gene-level association P 
values (above) to z scores and tests a specific tissue’s gene expression value versus the 

average expression value across all tissues in a regression model. Bonferroni correction was 

performed for all tested gene sets. We reported the results from the 54 tissue types using the 

GTEx V8 data.

Gene–drug–disease network.

We tested the enrichment of the nine BAG-linked genes in the targeted gene sets for 

different drug categories from the DrugBank database71. The gene–drug–disease network 

was constructed to prioritize potentially repositionable drugs. GREP software72 performs 

Fisher’s exact tests to examine whether the prioritized genes are enriched in gene sets 
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targeted by drugs in a clinical indication category for a certain disease or condition. 

Bonferroni correction was performed for all tested drugs.

Partitioned heritability estimate.

Our objective is to comprehend how distinct functional genome categories play different 

roles in contributing to the heritability of the nine BAGs. Therefore, the partitioned 

heritability analysis via stratified linkage disequilibrium score regression calculates the 

extent to which heritability enrichment can be attributed to predefined and annotated 

genome regions and categories73. Three sets of functional categories and cell- and tissue-

specific types were considered. First, the partitioned heritability was calculated for 53 

general functional categories (1 including the entire set of SNPs). The 53 functional 

categories are not specific to any cell type and include coding, untranslated region, promoter 

and intronic regions and so on. The details of the 53 categories are described elsewhere73. 

Subsequently, cell- and tissue-type-specific partitioned heritability was estimated using 

gene sets from Cahoy et al.74 for three main cell types (that is, astrocyte, neuron, and 

oligodendrocyte), multitissue chromatin state-specific data (ROADMAP75 and ENTEx76) 

and multitissue gene expression data (GTEx V8)17. Bonferroni correction was performed 

for all tested annotations and categories. The detailed methodologies for the stratified 

linkage disequilibrium score regression are presented in the original work73. The linkage 

disequilibrium scores and allele frequencies for the European ancestry were obtained from a 

predefined version based on data from the 1000 Genomes Project.

Genetic correlation.

We used LDSC11 software to estimate the pairwise genetic correlation (gc) between each 

pair of BAGs and between the nine BAGs and 41 other clinical traits, including chronic 

diseases involving multiple organ systems, such as Alzheimer’s disease for brain and 

chronic kidney disease for kidney, cognition and lifestyle factors. We used the precomputed 

linkage disequilibrium scores from the 1000 Genomes of European ancestry. To ensure 

the suitability of the GWAS summary statistics, we first checked that the selected study’s 

population was of European ancestry; we then guaranteed a moderate SNP-based heritability 

h2 estimate. Notably, LDSC corrects for sample overlap and provides an unbiased estimate 

of genetic correlation41. The inclusion criteria and ultimately included traits are detailed in 

Supplementary Table 4. Bonferroni correction was performed for the 41 clinical traits.

Two-sample bidirectional Mendelian randomization.

We investigated whether one BAG was causally associated with another BAG and whether 

the 41 clinical traits were causally associated with the nine BAGs. To this end, we used 

a bidirectional, two-sample Mendelian randomization using the TwoSampleMR package77. 

Both forward and inverse Mendelian randomization were performed between each pair of 

traits by switching the exposure and outcome variables. We applied five different Mendelian 

randomization methods and reported the results of inverse variance weighted in the main 

text and the four others (that is, Egger, weighted median, simple mode and weighted mode 

estimators) in the Supplementary Information.
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Mendelian randomization needs to fulfill several IV assumptions78. We followed a 

systematic procedure guided by the STROBE-MR Statement79 in all steps of our causality 

analyses, including selecting exposure and outcome variables, reporting comprehensive 

statistics, performing sensitivity checks for potential violations of underlying assumptions 

and performing the analyses using alternative methods and software28,53. For the causal 

inference of each pair of BAGs, all GWAS summary statistics were derived from our 

analyses by excluding overlapping populations of the two BAGs. For example, to test the 

causal relationship between the brain BAG and cardiovascular BAG, we reran the GWAS 

for the cardiovascular BAG by excluding the partially overlapping population from the brain 

BAG. For all seven body organ systems that had entirely overlapping populations, we used 

the GWAS data from the split-sample analyses (Methods). For instance, the GWAS for the 

cardiovascular BAG was from the first-split data, and the pulmonary BAG was from the 

second-split data. Bonferroni correction was performed for the tested BAGs.

One key challenge in our hypothesis-driven Mendelian randomization is to select these 

exposure variables unbiasedly. Clinical traits sharing common genetic covariance with the 

nine BAGs are more likely to be causally associated with them. We performed a systematic 

inclusion procedure using the following criteria to overcome this. We manually queried the 

41 clinical traits (used in our genetic correlation analyses) in the IEU GWAS database, 

specifically curated for Mendelian randomization analyses. We ranked all available studies 

for a certain trait (for example, Alzheimer’s disease) based on the sample sizes. We then 

chose the studies whose populations were of European ancestry and did not include UKBB 

participants to avoid bias due to overlapping populations55. For the traits whose GWAS data 

were available in the IEU GWAS database, we used the TwoSampleMR package to perform 

the Mendelian randomization analysis. For the traits whose data were not appropriate in 

the IEU GWAS database, we then performed another manual query in the EMBL-EBI 

GWAS Catalog database to download the available GWAS summary statistics with the same 

filter criteria. For the traits whose GWAS data were dominated by studies using UKBB 

participants in both databases, we ran a GWAS using our own UKBB data by excluding 

overlapping populations. Finally, after harmonizing their GWAS summary statistics (using 

the function harmonise_data from 2SampleMR), this resulted in 17 clinical traits with at 

least eight valid IVs (that is, SNPs). The 17 clinical traits included chronic diseases affecting 

multiple organ systems, cognition and lifestyle factors (Supplementary Table 7). Bonferroni 

correction was performed for all tested clinical traits.

We performed several sensitivity analyses. First, a heterogeneity test was performed to 

check for violating the IV assumptions. Horizontal pleiotropy was estimated to navigate the 

violation of the IV’s exclusivity assumption80 using a funnel plot, single-SNP Mendelian 

randomization approaches and Mendelian randomization Egger estimator81. Moreover, the 

leave-one-out analysis excluded one instrument (SNP) at a time and assessed the sensitivity 

of the results to individual SNPs.

Following these analyses, we performed three supplementary sensitivity checks for some 

specific significant causal signals: (1) the exclusion of two common SNPs/IVs (rs429358 

and rs7412) in the APOE gene, considering their potential pleiotropic effects for the hepatic 

BAG on the musculoskeletal BAG; (2) incorporating body weight as a covariate in the 
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GWAS for the bidirectional causality between the hepatic BAG and musculoskeletal BAG, 

as body weight displays causal associations with BAGs in multiple organ systems; and (3) 

re-executing the Mendelian randomization analysis using alternative software. Specifically, 

we scrutinized the causal relationship between the hepatic BAG and the musculoskeletal 

BAG using the LCV model28. Using different modeling assumptions and IVs in contrast to 

Mendelian randomization, it examined the causal relationship between two interchangeable 

traits without distinction between the direct and inverse directions. An LCV (L) acted 

as a mediator for the genetic correlation between the two traits, allowing us to quantify 

the genetic causality proportion. A positive genetic causality proportion value between 0 

and 1 indicates that trait 1 is partially genetically causal, and a negative genetic causality 

proportion value means that trait 2 is partially genetically causal.

Bayesian colocalization.

The R package coloc was used to investigate the genetic colocalization signals between 

two traits at each genomic locus defined by the pulmonary BAG GWAS. We used the 

Fully Bayesian colocalization analysis using Bayes Factors (coloc.abf). The method tests 

the following five hypotheses, denoted by their posterior probabilities: H0 (no association 

with either trait), H1 (association with trait 1 but not trait 2), H2 (association with trait 

2 but not trait 1), H3 (association with both traits but with separate causal variants) and 

H4 (association with both traits with a shared causal variant). It examines the posterior 

probability (PP.H4.ABF: Approximate Bayes Factor) to evaluate hypothesis H4, which 

suggests that the presence of a single shared causal variant is associated with both traits 

within a specific genomic locus. To determine the significance of the H4 hypothesis, we set 

a threshold of PP.H4.ABF > 0.8 (ref. 82), and at least 100 SNPs were included within the 

genomic locus. All other parameters (for example, the prior probability of p12) were set as 

default.

Statistics and reproducibility

The sample size was not predetermined using statistical methods. Experiments were not 

randomized, and investigators were not blinded to allocation. The sample sizes for deriving 

the original BAG measures were detailed in our previous work3. The current study then 

performed a rigor quality check on the genetic data and several sensitivity checks for the 

primary GWAS results. All GWAS summary statistics and methodology details are publicly 

shared to ensure the reproducibility of our analyses.
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Extended Data

Extended Data Fig. 1 |. Scatterplots of the main GWAS sensitivity analysis for nine BAGs.
We scrutinized the robustness of the nine primary GWAS using the European ancestry 

populations by fully considering linkage disequilibrium. We only included the independent 

significant SNPs in four different sensitivity check analyses. We reported three statistics 

i) r-β: Pearson’s r between the two sets of β coefficients from the two splits; ii) C-β: 

concordance rate of the sign of the β coefficients from the two splits – if the same SNP 

exerts the same protective/risk effect between the two splits; iii) P-β: the difference between 

the two sets of β coefficients from the two splits – if the two sets of β coefficients (mean) 

statistically differ (two-sample t-test). Detailed statistics are presented in Supplementary 

Note 1 for a) split-sample, b) sex-stratified, c) fastGWA vs. PLINK, and d) European vs. 

Non-European GWAS analyses.
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Extended Data Fig. 2 |. SNP-based heritability, beta coefficients, and alternative allele frequency 
using the brain-BAG comparable populations and different inclusion criteria for the SNPs.
a) The SNP-based heritability of the nine BAGs using populations from downsampling 

to the brain BAG population. Error bars represent the standard error of the estimated 

parameters, and the measure of the center for the error bars represents the inferred 

statistics (that is, SNP-based heritability). b) The absolute value of the beta coefficients 

of the independent significant SNPs of the nine BAG GWASs using populations from 

downsampling to the brain BAG population (N = 30,108); the independent significant 
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SNPs are shown separately for each BAG. c) The alternative (effective) allele frequency 

of the independent significant SNPs from the nine BAG GWASs using populations from 

downsampling to the brain BAG population (N = 30,108). d) The beta coefficients of 

the independent significant SNPs using the original full samples but with all identified 

independent significant SNPs across the nine BAG GWASs (with the same number of SNPs 

tested), where we see no difference regarding allele frequency in Figure e). f) The absolute 

value of the beta coefficients of the independent significant SNPs plus the candidate SNPs in 

LD of the nine BAG GWASs using the original full samples; the SNPs are shown separately 

for each BAG. g) The alternative allele frequency for the setting in Figure f). h) The absolute 

beta coefficients of the nine BAGs using all genome-wide SNPs (the y-axis was truncated to 

0.1 for visualization purposes). i) the alternative allele frequency did not differ for Figure h) 

including all genome-wide SNPs. For Figure c, e, g, and i, the upper/lower whiskers show 

the upper/lower boundaries based on the 1.5xthe interquartile range (IQR). The upper/lower 

hinge displays the top/bottom end of the IQR. The central measures denote the median 

values.
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Extended Data Fig. 3 |. Trumpet plots of the alternative allele frequency vs. the beta coefficient of 
the nine BAG GWASs.
The trumpet plots display the inverse relationship between the alternative (effect) allele 

frequency and the effect size (beta coefficient) for the brain, cardiovascular, eye, hepatic, 

immune, metabolic, musculoskeletal, pulmonary, and renal BAGs. Only the independent 

significant SNPs were considered. The dot size corresponds to the effect size, while the 

transparency of the dot is proportional to its statistical significance.
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Extended Data Fig. 4 |. Bayesian colocalization signal between the pulmonary BAG and FEV/
FVC.
Here, we illustrate the colocalization signal between the pulmonary BAG and the FEV/FCV 

feature at the genomic locus: 4q24, with the top lead SNP (causal SNP: rs7664805). Genetic 

colocalization was evidenced at one locus (4q24) between the pulmonary BAG and the 

FEV/FCV feature. The signed PP.H4.ABF (0.99) denotes the posterior probability (PP) of 

hypothesis H4, which suggests that both traits share the same causal SNP (rs7664805). All 

P-values were two-sided.
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Extended Data Fig. 5 |. Gene-set enrichment analysis using sex-stratified GWAS results.
Gene-set enrichment analysis was performed using the GWAS summary statistics specific 

to females (a) and males (b). Gene set enrichment analyses were performed using curated 

gene sets and GO terms from the MsigDB database. Only significant gene sets are presented 

after adjusting for multiple comparisons using the Bonferroni correction. All P-values were 

two-sided.
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Extended Data Fig. 6 |. Tissue-specific gene expression analysis using sex-stratified GWAS 
results.
Tissue-specific enrichment analysis was performed using the GWAS summary statistics 

specific to females (a) and males (b). Gene-property analyses evaluate tissue-specific 

gene expressions for the nine BAG-related genes using the full SNP P-values distribution. 

Only significant gene sets are presented after adjusting for multiple comparisons using the 

Bonferroni correction. All P-values were two-sided.
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Extended Data Fig. 7 |. Genetic correlations using sex-stratified GWAS results.
The genetic correlation between each pair of BAGs was determined using sex-stratified 

GWAS summary statistics from our analyses. Most of the genetic correlations showed 

consistency between females and males, albeit sex differences are evident in certain 

BAGs, particularly in the cardiovascular BAG results. Specifically, males exhibit dominant 

correlations between cardiovascular BAGs and hepatic and renal BAGs, while females 

demonstrate specific correlations with musculoskeletal and pulmonary BAGs. All P-values 

were two-sided, and Bonferroni correction was employed to denote significant signals (* 

symbols).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

This study used the UK Biobank resource under application numbers 35148 and 60698. The 

raw imaging data are restricted to registered researchers and are protected and unavailable 

due to data privacy laws; access can be obtained at https://www.ukbiobank.ac.uk/. 

The GWAS summary statistics corresponding to this study are publicly available on 

the MEDICINE knowledge portal (https://labs-laboratory.com/medicine). The gene–drug–

disease network used data from the DrugBank database (v.5.1.9; https://go.drugbank.com/). 

Our genetic analyses also used GWAS summary statistics from the IEU OpenGWAS 

database (https://gwas.mrcieu.ac.uk/) and GWAS Catalog (https://www.ebi.ac.uk/gwas/) as 

well as GWAS summary data from individual studies by requesting directly from the 

authors. Gene sets were obtained from the Molecular Signatures Database (MSigDB, v7.5.1; 

https://www.gsea-msigdb.org/gsea/msigdb/). Tissue specificity enrichment analysis used 

data from GTEx V8 (https://gtexportal.org/home/). The analysis for partitioned heritability 

estimates used data from ROADMAP (https://egg2.wustl.edu/roadmap/web_portal/) and 

ENTEx (https://www.encodeproject.org/). All source data and original figures are also 

publicly available at Zenodo at https://doi.org/10.5281/zenodo.11075409 (ref. 84). All 

unrestricted data supporting the findings are also available from the corresponding author 

upon request.
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Fig. 1 |. Genomic loci associated with the nine BAGs.
Organ-specific BAG was derived from a large cohort of 30,108 to 111,543 participants of 

European ancestry from the UKBB cohort. The nine organ systems include the brain (N = 

30,108), cardiovascular (N = 111,543), eye (N = 36,004), hepatic (N = 111,543), immune 

(N = 111,543), metabolic (N = 111,543), musculoskeletal (N = 111,543), pulmonary (N 
= 111,543) and renal (N = 111,543) BAGs. In total, 393 genomic loci–BAG pairs were 

identified using a genome-wide P value threshold (−log10 (P value) > 7.30; two sided). 

For visualization purposes, we denoted the genomic loci using their top lead SNPs that are 
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not associated with any clinical traits in the EMBL-EBI GWAS Catalog. All analyses used 

GRCh37. We present representative features used in calculating each organ’s BAG; BMI, 

body mass index; Chr, chromosome; IDP, imaging-derived phenotype; GM, gray matter; 

WM, white matter; FC, functional connectivity; OCT, optical coherence tomography; FVC, 

forced vital capacity; FEV, forced expiratory volume; PEF, peak expiratory flow. The human 

anatomy was created with BioRender.com.
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Fig. 2 |. Phenome-wide associations of the identified genomic loci and SNP-wide heritability 
estimates of the nine BAGs.
a, Phenome-wide association query of the identified genomic loci in the EMBL-EBI GWAS 

Catalog (query date 24 April 2023 via FUMA version v1.5.4) showed an organ-specific and 

interorgan landscape. By examining the independent significant SNPs considering linkage 

disequilibrium (Methods) within each genomic locus, we linked them to various clinical 

traits. These traits were categorized into high-level groups encompassing different organ 

systems, neurodegenerative and neuropsychiatric disorders and lifestyle factors. To visually 

represent the findings, we generated keyword cloud plots based on the frequency of these 

clinical traits within each BAG. The length of each rectangle block indicates the number of 

associations concerning the genomic loci in our analysis and clinical traits in the literature. 
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The individual disease traits were categorized within their respective organ systems. 

However, this categorization does not imply that the sum of these diseases exclusively 

represents the entirety of the organ system or that these diseases are solely associated with 

one specific organ system. Additional searches on alternative public GWAS platforms, such 

as the GWAS Atlas, are provided. b, The brain BAG is more heritable than other organ 

systems using GCTA. Error bars represent the standard error of the estimated parameters, 

and the measure of the center for the error bars represents the inferred statistics (that is, 

SNP-based heritability). c, The brain BAG showed larger effect sizes of the independent 

significant SNPs than other organ systems. The kernel density estimate plot shows the 

distribution of the effect sizes (that is, the magnitude of the linear regression β coefficients) 

in the nine GWASs. The white horizontal lines represent the mean effect sizes. d, Alternative 

allele frequency (effect allele) distribution for the nine BAGs. The upper/lower whiskers 

show the upper/lower boundaries based on 1.5× the interquartile range. The upper/lower 

hinge displays the top/bottom end of the interquartile range. The central measures denote 

the median values. Of note, only independent significant SNPs were shown for each BAG 

in c and d. All results in b–d used the original full sample sizes of the nine BAGs; the 

brain, eye and other body organ BAGs have different sample sizes. Results for b–d using the 

downsampled sample sizes (N = 30,108 of the brain BAG) are shown in Extended Data Fig. 

2; ALT FREQS, allele frequency of the alternative (effective) allele. The human anatomy 

was created with BioRender.com.
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Fig. 3 |. Gene-level biological pathway annotation and tissue-specific gene expression.
a, Validation of the nine BAGs in GSEAs. GSEAs were performed using curated gene 

sets and Gene Ontology terms from the MSigDB database. b, Validation of the nine BAGs 

in gene property analyses. Gene property analyses evaluate tissue-specific gene expression 

for the nine BAG-related genes using the full SNP P value (two sided) distribution. Only 

significant gene sets are presented after adjusting for multiple comparisons using the 

Bonferroni correction; EGJ, esophagus gastroesophageal junction; FDVP, forebrain dorsal–
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ventral pattern; VLDL, very-low-density lipoprotein; CN, copy number; POR, Schmidt port 

targets in limb bud.
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Fig. 4 |. Gene–drug–disease network of the nine BAGs.
The gene–drug–disease network reveals a broad spectrum of gene, drug and disease 

interactions across the nine BAGs, highlighting the metabolic-related genes. The ICD-10 

code icons symbolize disease categories linked to the primary organ systems (for example, 

G30 for Alzheimer’s disease in the CNS). All presented genes passed the nominal P value 

threshold (<0.05; two sided) and were pharmacogenetically associated with drug categories 

in the DrugBank database; an asterisk (*) indicates gene–drug–disease interactions that 

passed the Bonferroni correction.
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Fig. 5 |. Partitioned heritability enrichment and genetic correlation of the nine BAGs.
a, Cell-type-specific partitioned heritability estimates for neurons, oligodendrocytes and 

astrocytes. b, Partitioned heritability estimates for the general 53 functional categories. 

For visualization purposes, we only show the four categories with the highest significant 

estimates for each BAG. The label for 500 denotes a 500-base pair window around each 

of the 24 main annotations in the full baseline model, which prevents a biased estimate 

inflated by heritability in flanking regions83; TSS, transcription start site; DHS, DNase I 

hypersensitivity site; TFBS, transcription factor binding site. c, Tissue-specific partitioned 

Wen et al. Page 42

Nat Aging. Author manuscript; available in PMC 2024 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



heritability estimates using gene sets from multitissue gene expression data. d, Tissue- 

and chromatin-specific partitioned heritability estimates using multitissue chromatin data. 

e, Cheverud’s conjecture: the genetic correlation between two BAGs (gc; bottom triangle) 

mirrors their phenotypic correlation (pc; top triangle). f, Genetic correlations between the 

nine BAGs and 41 clinical traits, including chronic diseases and their subtypes involving 

multiple human organ systems, education, intelligence and reaction time. An asterisk (*) 

denotes Bonferroni-corrected significance, and the absence of an asterisk indicates that all 

results remain significant after correction. For a–d and f, the standard error of the estimated 

parameters is presented using error bars. The measure of the center for the error bars 

represents the inferred statistics. The sample sizes, P values and other detailed statistics 

are presented in Source Data Files 13–18 and Supplementary Table 5; all P values are two 

sided; AD, Alzheimer’s disease; ASD, autism spectrum disorder; LLD, late-life depression; 

SCZ, schizophrenia; DB, type 2 diabetes; WMH, white matter hyperintensity; HPLD, 

hyperlipidemia; AF, atrial fibrillation; RA, rheumatoid arthritis; CD, Crohn’s disease; CKD, 

chronic kidney disease; PHST, primary hematopoietic stem cell.
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Fig. 6 |. Causal multiorgan network between the nine BAGs and 17 clinical traits of chronic 
diseases, lifestyle factors and cognition.
a, Causal inference between each pair of BAGs using bidirectional two-sample Mendelian 

randomization by excluding overlapping populations. The colored lines represent causal 

effects that survived the correction for multiple comparisons using the Bonferroni method; 

the dotted lines denote the nominal significant causal effects (P < 0.05). b, Forward 

Mendelian randomization investigates the causal inference of 17 unbiasedly selected 

exposure variables on the 9 outcome variables (that is, the 9 BAGs). c, Inverse Mendelian 

randomization examines the causal inference of the nine BAGs on the 17 clinical traits. 

Significant tests were adjusted for multiple comparisons using the Bonferroni correction. 

The ORs and 95% CIs are presented. Detailed OR and 95% CI information can be 

found in Source Data Files 19 and 20. It is crucial to approach the interpretation of 

these potential causal relationships with caution despite our thorough efforts in conducting 

multiple sensitivity checks to assess any potential violations of underlying assumptions. All 

P values are two sided.
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