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Abstract

With increasing accessibility to geographic information systems (GIS) software, statisticians and 

data analysts routinely encounter scientific data sets with geocoded locations. This has generated 

considerable interest in statistical modeling for location-referenced spatial data. In public health, 

spatial data routinely arise as aggregates over regions, such as counts or rates over counties, census 

tracts, or some other administrative delineation. Such data are often referred to as areal data. This 

review article provides a brief overview of statistical models that account for spatial dependence 

in areal data. It does so in the context of two applications: disease mapping and spatial survival 

analysis. Disease maps are used to highlight geographic areas with high and low prevalence, 

incidence, or mortality rates of a specific disease and the variability of such rates over a spatial 

domain. They can also be used to detect hot spots or spatial clusters that may arise owing to 

common environmental, demographic, or cultural effects shared by neighboring regions. Spatial 

survival analysis refers to the modeling and analysis for geographically referenced time-to-event 

data, where a subject is followed up to an event (e.g., death or onset of a disease) or is censored, 

whichever comes first. Spatial survival analysis is used to analyze clustered survival data when the 

clustering arises from geographical regions or strata. Illustrations are provided in these application 

domains.
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INTRODUCTION

The emergence of highly efficient geographical information systems (GIS) databases and 

associated computational resources has transformed the way spatial or geographical data 

are collected, stored, managed, and analyzed. Researchers in diverse disciplines within the 

physical, social, and environmental sciences and in public health are increasingly faced with 

the task of analyzing data that are geographically referenced and often presented as maps. 
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Consequently, the past decade has seen significant development in statistical modeling of 

complex spatial data; for a variety of methods and applications, see the texts by Cressie (16), 

Webster & Oliver (41), Cromley & McLafferty (18), Møller (32), Schabenberger & Gotway 

(37), Waller & Gotway (40), Cressie & Wikle (17), and Banerjee et al. (5), among others.

Following convention, spatial data are often classified into one of three basic types: 

point-referenced data, point pattern data, and areal data. Point-referenced data sets consist 

of variables (e.g., outcomes and predictors) that are linked to a specific point location, 

customarily referenced by a coordinate system (e.g., longitude-latitude, easting-northing). 

Point-referenced data sets are not uncommon in environmental monitoring for public health, 

where pollutants are often measured at spatial fixed locations or monitoring stations. The 

spatial locations are considered fixed, and investigators are usually interested in the spatial 

distribution of the measurements and in predicting their levels at new spatial locations. 

Point pattern data refer to situations where the spatial locations themselves correspond to 

random events. Examples include locations being reported as sites of the occurrence of 

a particular disease. Areal data consist of variables that are aggregated over regions as 

counts or rates. Areal data are more common in public health applications, where geospatial 

referencing is not performed at very fine scales, such as GPS locations of households or 

small neighborhoods, to protect the privacy of human subjects.

The Annual Review of Public Health has published two excellent reviews on spatial analytic 

methods by Rushton (36) and Auchincloss et al. (1). This review differs from the previous 

ARPH articles because of its emphasis on the advances made in formal statistical modeling 

and inference for spatial data. It is beyond the scope of a single article to review all 

such methods. The aforementioned texts offer more comprehensive coverage. This review 

focuses primarily on areal data analysis because areal data are most conspicuous in public 

health. In fact, point patterns are often reported as areal aggregates, i.e., counts, rates 

of other summaries over well-delineated spatial regions such as counties or census tracts 

or zip codes, and subsequently modeled as areal data. Within this context, the review 

briefly discusses disease mapping for single diseases and for multiple diseases that may be 

associated with each other, as well as modeling of areally referenced survival data.

SPATIAL MODELS FOR DISEASE MAPPING

In the fields of medicine and public health, researchers often seek a better understanding of 

regional patterns of disease. In the United States, publicly available data on precise locations 

of disease cases are fairly uncommon owing to strict confidentiality regulations. Summaries 

of disease at a regional level, however, are often relatively easy to obtain. Disease mapping 

is an epidemiological technique used to highlight geographic areas with high and low 

incidence or mortality rates of a specific disease and to map how such rates vary over the 

study region. Disease maps are often used to detect spatial clusters, which may generate 

hypotheses regarding common underlying environmental, demographical, or cultural factors 

shared by neighboring regions.

Although one could easily map the crude incidence and mortality rates, such maps can 

lead to spurious conclusions when the population sizes for some of the areal regions are 
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small. Sparse populations usually result in large variability in the estimated rates and impair 

our ability to distinguish chance variability from genuine differences. Statistical models 

that allow a more accurate depiction of true disease rates by borrowing information from 

neighboring regions will help mitigate the effects of sparsely populated regions and deliver 

better inference.

Perhaps the most conspicuous manner of modeling spatial dependence is to introduce 

spatially associated random effects within a Bayesian hierarchical setting [see, for example, 

Banerjee et al. (5)]. The Bayesian modeling and inferential framework is flexible and 

extremely rich in its capabilities to accommodate various scientific hypotheses and 

assumptions. In particular, it provides a cohesive framework for combining complex data 

models and external knowledge or expert opinion. This review discusses spatial modeling 

within a Bayesian context. The models and illustrations that follow are produced using 

Markov chain Monte Carlo (MCMC) simulation methods. Again, it is beyond the scope 

of this review to discuss MCMC algorithms. Details on established MCMC and other 

computational algorithms for spatial data can be found in the books by Møller (32), Gelman 

et al. (22), and Robert & Casella (35).

Spatial Modeling of a Single Disease: A Brief Review

A popular class of models for areal data come from Markov random fields (MRF). These 

models are based on a Markov property, where the conditional distribution of the health 

outcome from a region, given the observations from all the other regions, depends only on 

the observations in the neighborhood. Here, we define the neighborhood by area adjacency, 

such that two regions are neighbors if they share a common boundary (or perhaps even meet 

at a point). Other definitions are sometimes used (e.g., regions with centroids within a given 

fixed distance).

Let Y i be the observed number of cases of a certain disease in region i, i = 1, …, n, and let Ei

be the expected number of cases in this same region. A popular likelihood for mapping a 

single disease is

Y i ∼ind Poisson(Eieμi), i = 1, …, n,

1.

where μi = xi
⊤β + ϕi represents the log-relative risk expressed in terms of departures of the 

observed from expected counts, each xi is a vector of explanatory variables or covariates 

associated with region i having parameter coefficient β, and ϕis are spatially correlated 

random effects. We place a form of Gaussian MRF model, commonly referred to as the 

conditionally autoregressive (CAR) prior, on the random effects ϕ = ϕ1, …, ϕn
⊤, i.e.,

ϕ ∼ Nn(0, [τ(D − αW )]−1),

2.
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where Nn denotes the n-dimensional normal distribution, D is an n × n diagonal matrix 

with diagonal elements mi that denote the number of neighbors of region i, and W  is the 

adjacency matrix of the map (i.e., W ii = 0, and W ii′ = 1 if i′ is adjacent to i and 0 otherwise). 

In Equation 2, τ−1 is the spatial dispersion parameter, and α is the spatial autocorrelation 

parameter. The CAR prior corresponds to the following conditional distribution of ϕi:

ϕi ∣ ϕj, j ≠ i, ∼ N α
mi
∑
i ∼ j

ϕj, 1
τmi

, i, j = 1, …, n,

3.

where i ∼ j denotes that region j is a neighbor of region i. The CAR structure (2) reduces 

to the well-known intrinsic conditionally autoregressive (ICAR) model [described in Besag 

et al. (10)] if α = 1 or an independence model if α = 0. The ICAR model induces local 

smoothing by borrowing strength from the neighbors, whereas the independence model 

assumes independence of spatial rates and induces global smoothing. The smoothing 

parameter α in the CAR prior (2) controls the strength of spatial dependence among 

regions, though it has long been appreciated that a fairly large α may be required to deliver 

significant spatial correlation [see Wall (39) for details on this]. Other variants of CAR 

models have been developed and applied to public health problems by Leroux et al. (30) and 

Dean et al. (19).

Spatial Modeling of Multiple Diseases

Turning to multiple diseases, let Y ij be the observed number of cases of disease j in region i, 
i = 1, …, n, j = 1, …, p, and let Eij be the expected number of cases for the same disease in this 

same region. As in the previous section above, the Y ijs are thought of as random variables, 

whereas the Eijs are thought of as fixed and known. For the first level of the hierarchical 

model, conditional on the random effects ϕij, we assume the Y ijs are independent of each 

other such that

Y ij ∼ind Poisson(Eijexij
⊤βj + ϕij), i = 1, …, n, j = 1, …, p,

4.

where each xij is a vector of region-specific explanatory variables for disease j having 

(possibly region-specific) parameter coefficients βj. The key problem here is to specify rich 

and flexible spatial distributions for the ϕijs.

Carlin & Banerjee (11) and Gelfand & Vounatsou (21) generalized the univariate CAR (2) to 

a joint model for the random effects ϕij, which permits modeling of correlation among the p
diseases while maintaining spatial dependence for each of the diseases. These models were 

subsequently subsumed by more general, and flexible, Bayesian hierarchical frameworks 

developed and implemented by Jin et al.(27, 28).
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The idea in Jin et al. (28) is best expounded with p = 2 diseases. Let ϕ1 be the n × 1 vector of 

spatial random effects for the first disease, and let ϕ2 be the same for the second disease. Jin 

et al. (28) specify a joint spatial model for ϕ1 and ϕ2 by specifying a conditional distribution 

of ϕ1 given ϕ2 and a marginal distribution for ϕ2. To achieve spatial smoothing, we assume 

that both these distributions are CARs. More precisely, we write the joint density as

p(ϕ1, ϕ2) = N(ϕ2 ∣ 0, [τ2(D − α2W )]−1) × N(ϕ1 ∣ (η0I + η1W )ϕ2, [τ1(D − α1W )]−1),

5.

where η0 and η1 are the bridging parameters associating the spatial effect for disease 1 in 

region i with disease 2 in region i. With disease 2 in a neighboring region, ρ1 and ρ2 are 

smoothing parameters associated with the conditional distribution of ϕ1 ∣ ϕ2 and the marginal 

distribution of ϕ2 respectively, and τ1 and τ2 scale the precision of ϕ1 ∣ ϕ2 and ϕ2, respectively. 

The model in Equation 5 yields a legitimate probability density as long as the two CAR 

distributions on the right-hand side are valid, which means that the two dispersion matrices 

for ϕ1 ∣ ϕ2 and ϕ2 must be positive definite. Jin et al. (28) provide conditions for these 

matrices to be positive definite.

Models where the spatial random effects are shown as in Equation 5 are known as 

generalized multivariate conditionally autoregressive (GMCAR) models. The specification 

in Equation 5 subsumes several special cases in the multivariate disease mapping literature. 

Setting ρ1 = ρ2 = ρ and η1 = 0 produces a model showing that the association between the 

two diseases remains the same across the regions. If we assume ρ1 ≠ ρ2 and η0 = η1 = 0, 

then we ignore dependence between the multivariate components, and the model turns 

out to be equivalent to fitting two separate univariate CAR models. Finally, if we assume 

ρ1 = ρ2 = 0, η0 ≠ 0, and η1 = 0, then the model becomes a simple bivariate normal model with 

no spatial association.

The above approach is appealing for two diseases, or perhaps at most for three diseases, 

but using it to model several diseases at once has its limitations. An inherent problem with 

these methods is that their conditional specification imposes a potentially arbitrary order on 

the variables being modeled, as they lead to different marginal distributions depending on 

the conditioning sequence [i.e., whether to model p ϕ1 ∣ ϕ2  and then p ϕ2 , or p ϕ2 ∣ ϕ1  and 

then p ϕ1  ]. This problem is somewhat mitigated in certain (e.g., medical and environmental) 

contexts where a natural order is reasonable, but in many disease mapping contexts this is 

not the case.

To obviate the ordering issue, Jin et al. (27) developed an order-free, joint framework for 

multivariate areal modeling that allows versatile spatial structures, yet is computationally 

feasible for many outcomes. These are called coregionalized MCAR models, named after 

linear models of coregionalization in multivariate geostatistics [see, e.g., Wackernagel 

(38)]. The underlying idea here is to develop richer spatial association models using 

linear transformations of much simpler spatial distributions. The objective is to allow 

explicit smoothing of cross-covariances without being hampered by conditional ordering. 
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In particular, suppose we assume a common proximity specification for each component of 

the random effects vector, ϕ. Then, we could write ϕ = Aψ, where ψj, the jth component 

of ψ, is a univariate intrinsic CAR with precision parameter τj
2 and each of the component 

CAR models are independent. The matrix A represents the linear transformation that maps 

independent CAR effects for each disease to correlated CAR (or multivariate CAR) effects 

for the diseases.

MCAR models are not the only available option for analyzing multivariate areal data. Zhang 

et al. (43) have developed an arguably simpler approach by adapting smoothed ANOVA 

(SANOVA) models (24) for areal data. The underlying idea is to extend SANOVA to cases 

in which one factor is a spatial map, which is smoothed using a CAR model, and a second 

factor is, for example, a type of disease. Data sets routinely lack enough information to 

identify the additional structure of MCAR. SANOVA offers a simpler and more intelligible 

structure than MCAR while performing equally well. Nevertheless, the MCAR and more 

general CAR-based models offer a rich inferential framework for capturing complex spatial 

associations. We focus on MCAR models and their variants within the disease mapping 

context in the remainder of this article.

Illustration

We illustrate with a brief example from Jin et al. (28), who modeled the numbers of 

deaths due to cancers of the lung and esophagus between 1991 and 1998 across the 87 

counties in Minnesota. The county-level maps of the raw standardized mortality ratios (i.e., 

SMRij = Y ij/Eij) shown in Figure 1 exhibit evidence of correlation both across space and 

between cancers, motivating use of our proposed GMCAR models. The bottom row shows 

the smoothed maps obtained from the GMCAR model specified using a CAR prior for 

the conditional distribution [lung|esophagus] and another CAR for the marginal distribution 

[esophagus].

We fit the model Banerjee & Carlin (4) to this data set. To determine Eij, we account 

for each county’s age distribution by calculating the expected age-adjusted number of 

deaths due to cancer j in county i as Eij = ∑k = 1
m ωjkNik for i = 1, …, 87 and j = 1, 2, where 

ωjk = ∑i = 1
87 Dijk / ∑i = 1

87 Nik  is the age-specific death rate for cancer j and age group k over 

all Minnesota counties, Dijk is the number of deaths in age group k for county i and 

cancer j, and Nik is the total population at risk in age group k for county i. Jin et al. (28) 

conducted exploratory analysis on the basis of least-squares estimation as well as formal 

Bayesian model comparison methods to show that a GMCAR model specified using CAR 

distributions for [lung|esophagus] and [esophagus] was preferable to modeling [esophagus|

lung]. The GMCAR models are easily implemented in the Bayesian modeling language 

BUGS (see http://www.biostat.umn.edu/~brad/software.html for the code and the data). 

Figure 2 presents maps of the smoothed standardized mortality ratios (SMRs) for lung and 

esophagus cancer in Minnesota from the GMCAR.

Jin et al. (28) also reported that the estimate of the parameter η1 was statistically significant 

for the GMCAR with [lung|esophagus] and not significant in the reverse order. We also saw 

that the posterior distribution of the linking parameters η0 and η1 had mostly positive support, 
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meaning that the two cancers had positive spatial correlation. This is also evident from the 

maps of the posterior means of the SMRs for the two cancers under the full model shown in 

Figure 2. Incidence of the two cancers is clearly strongly correlated, with higher fitted ratios 

extending from the Twin Cities metro area (eastern side, about one-third of the way up) to 

the mining and tourism-oriented north and northeast, regions where conventional wisdom 

suggests that cigarette smoking may be more common.

The GMCAR delivered point and 95% equal-tail interval estimates of 0.602 and (0.0267, 

0.979) for ρ1, and 0.699 and (0.0802, 0.973) for ρ2. These are spatial parameters, but while 

their values are between 0 and 1 they are not “correlations” in the usual sense; the moderate 

point estimates and wide confidence intervals suggest a relatively modest degree of spatial 

association in the random effects. Note also that in this setup, ρ2 measures spatial association 

in the esophagus random effects ϕ1, whereas ρ1 measures spatial association in the lung 

random effects ϕ1 given the esophagus random effects ϕ2. Turning to τ1 and τ2, under 

the GMCAR we obtained 32.65 (16.98, 66.71) and 13.73 (4.73, 38.05) as our point and 

interval estimates, respectively. Because these parameters measure spatial precision for each 

disease, they suggest slightly more variability in the esophagus random effects, although 

again comparison is difficult here because τ2 is a marginal precision for ϕ2 whereas τ1 is a 

conditional precision for ϕ1 given ϕ2.

SPATIAL SURVIVAL ANALYSIS

Survival models, such as in Cox & Oakes (15), are widely used in biostatistics and 

epidemiology for analyzing time-to-event data, where a subject is followed up to an event 

(e.g., death or onset of a disease) or is “censored,” whichever comes first. Right censoring 

refers to situations where the event does not occur for a subject during the period of 

the study and the subject’s time to event is censored at the study end point. Certain 

study designs can produce left-censored or interval-censored data, defined analogously. 

As opposed to modeling disease incidence and mortality, survival models focus on how 

many are expected to survive after a certain period of time and the rate of failure, as well 

as to ascertain which underlying factors (e.g., gender, race, age, type of cancer, treatment 

obtained, and access to health care facilities) generate shortened or prolonged survival.

The past decade has seen much demand for the analysis of spatially referenced survival 

data. When each subject can be referenced with respect to a clinical site or geographical 

region, we might suspect that random effects corresponding to proximate regions will be 

similar in magnitude. Models for spatially arranged survival data customarily introduce 

spatial frailties, such as in Banerjee et al. (7). How these spatial frailties are introduced in 

survival models depends on the specific model. We briefly discuss a few alternate spatial 

survival models. Apart from the spatial distribution for the frailties, one needs to model a 

spatial hazard function with the understanding that expected survival times (or hazard rates) 

will be more similar in neighboring regions, owing to underlying factors (access to care, 

willingness of the population to seek care, etc.) that vary spatially. This expectation is in 

contrast to the similarity observed among survival times from subjects in proximate regions, 

which is not necessarily implied by spatially associated frailties.
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Survival Models with Spatial Frailties

Let T  be the waiting time for a subject to experience an event (e.g., disease onset, 

relapse, death). The subject’s survival function is defined as S(t) = P(T ≥ t) and the hazard 

function as ℎ(t) = f(t)/S(t), where f(t) is the probability density function of T . Let (i, j) index 

the j-th subject in region i and let tij, δij : i = 1,2, …, I; j = 1, 2, …, ni  be observations from 

n subjects in a study, where tij indicates the time at which either subject (i, j) experienced the 

event or the subject was censored. Associated with each tij is an event indicator, δij, where 

δij = 1 if the event occurred before the termination of the study and δij = 0 if the subject was 

censored. For right-censored data, we have the likelihood

∏
j = 1

ni
f(tij)δijS(tij)1 − δij = ∏

j = 1

ni
ℎ(tij)δijS(tij) .

6.

If δij = 1, then subject j contributes f tij = ℎ tij S tij  to the likelihood, whereas if δij = 0, 

then it contributes S tij  to the likelihood. Cox & Oakes (15) provide the corresponding 

expressions for left-censored and interval-censored data.

Let xij be a p × 1 vector of observed explanatory variables associated with subject (i, j). 
To account for heterogeneity in the population, most survival models will introduce these 

explanatory variables in Equation 6 in the hazard function. For example, the proportional 

hazards model stipulates that

ℎ(tij; xij) = ℎ0(tij)exp(xij
⊤β),

7.

where ℎ0(t) is a baseline hazard function affected only multiplicatively by the exponential 

term involving the explanatory variables. Another option is a “proportional odds” model (9), 

which requires the survival function for subject (i, j) to satisfy

S(t ∣ xij)
1 − S(t ∣ xij) = S0(t)

1 − S0(t)exp(xij
⊤β) .

8.

Yet another alternative is the accelerated failure time model. Here, the survival function 

for subject (i, j) is S(t) = S0 t/γij , where S0(t) is any parametric survival function and 

γij = exp xij
⊤β . The corresponding hazard function for subject (i, j) is ℎ(t) = ℎ0 t/γij /γij, where 

ℎ0(t) is the hazard derived from S0(t). In each of the above situations, the hazard function can 

be modeled using parametric or nonparametric statistical methods. The data-analytic settings 

where the above specifications are appropriate, or not, have been comprehensively explored 

and documented in the survival analysis literature. For example, the proportional odds model 

posits that the hazard ratio approaches unity over time, i.e., the covariate effects on the 

hazards disappear over time, which is clearly distinct from the proportional hazards model. 
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The interpretation of the regression component significantly differs. The term exp x⊤β  in 

the proportional odds model reflects the change in the odds of survival (or failure, depending 

on the parameterization) given the observed covariates or risk factors.

Li & Ryan (31) provided the basis for legitimate likelihood-based inference from 

semiparametric spatial survival models. They proposed modeling the hazard function 

nonparametrically and the spatially correlated frailties using different spatial covariance 

functions. These models were applied to the East Boston Asthma Study to detect 

prognostic factors leading to childhood asthma. Henderson et al. (23) proposed using 

multivariate Gamma distributions to investigate spatial association and variation in the 

survival of acute myeloid leukemia patients in northern England. Banerjee et al. (7) 

proposed a Bayesian hierarchical framework to introduce spatially correlated frailties 

and compared performances between frailties modeled using Markov random field and 

geostatistical covariance functions. Data from a large infant mortality study in the state of 

Minnesota were analyzed. Subsequent papers explored Bayesian semiparametric modeling 

(2), spatiotemporal modeling (3, 8), semiparametric proportional odds models with spatial 

frailties (6), joint survival and longitudinal modeling with frailties (44), and parametric 

accelerated failure time models (42). Finally, we refer the reader to Lawson et al. (29) for 

spatial survival models that do not deploy spatial frailties.

Spatial Cure Rate Models

In light of significant progress in medical and health sciences, scientists and health 

professionals increasingly encounter data sets in which patients are expected to be cured. 

Models accounting for cure are important for understanding prognosis in potentially 

terminal diseases. Traditional parametric survival models such as Weibull or Gamma [see, 

e.g., Cox & Oakes (15)] do not account for cure, assuming instead that individuals who do 

not experience the event are censored. The subtle distinction between censoring and cure 

is worth noting: A subject who does not fail within the time window of the experiment is 

considered censored, whereas a subject is cured if he will never relapse. The latter is clearly 

a more abstract concept because we are never able to observe a cure, yet there is interest in 

estimating the probability of such an outcome, especially in various disease-relapse settings.

Cure models, such as survival models, also enjoy a rich literature too vast to be 

comprehensively reviewed here. The reader should see Ibrahim et al. (26) for a 

methodological introduction, whereas Othus et al. (34) offer a more recent review and 

practical introduction. Cooner et al. (14) build on their previously proposed flexible 

framework [13; also see Hurtado Rúa & Dey (25)] to introduce spatial frailties in cure 

models for geographically referenced data. Banerjee & Carlin (4) propose a spatial extension 

of earlier work by Chen et al. (12), which assumes that some latent biological process is 

generating the observed data. Suppose that subject (i, j) has Nij potential latent (unobserved) 

risk factors, the presence of any of which (i.e., Nij ≥ 1) will ultimately manifest the event. 

Chen et al. (12) consider the case of multiple latent factors, assuming that the Nij are 

distributed as independent Poisson random variables with mean θij, i.e., p Nij ∣ θij  is Poi θij . 

For example, in cancer settings, these factors may correspond to metastasis-competent tumor 

cells within the individual. Subjects who do not experience the event during the observation 
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period are considered censored. Thus, if Uijk, k = 1,2, …, Nij is the time to an event arising 

from the k-th latent factor for subject (i, j), the observed time to event for an uncensored 

individual is generated by T ij = min Uijk, k = 1,2, …, Nij .

Given Nij, the Uijks are independent with survival function S t ∣ Ψij  and corresponding 

density function f t ∣ Ψij . The parameter Ψij is a collection of all the parameters (including 

possible regression parameters) that may be involved in a parametric specification for the 

survival function S. In this section, we work with a two-parameter Weibull distribution 

specification for the density function f t ∣ Ψij , where we allow the Weibull scale parameter 

ρ to vary across the regions, and η, which may serve as a link to covariates in a regression 

setup, to vary across individuals. Therefore, f t ∣ ρi, ηij = ρitρi − 1exp ηij − tρi exp ηij .

Banerjee & Carlin (4) analyze smoking cessation data using interval-censored spatial cure 

rate models. The outcome of interest is the time for a subject to relapse into smoking. Here, 

we observe only a time interval (tijL, tijU) within which the event (smoking relapse) is known 

to have occurred. For patients who did not resume smoking prior to the end of the study, we 

have tijU = ∞, yielding the case of right-censoring at time point tijL. Thus we now set vij = 1
if subject ij is interval-censored (i.e., the subject has experienced the event) and vij = 0 if the 

subject is right-censored.

Following Finkelstein (20), the general interval-censored cure rate likelihood is given by

∏
i = 1

I
∏

j = 1

ni
[S(tijL ∣ ρi, ηij)]Nij − vij{Nij[S(tijL ∣ ρi, ηij) − S(tijU ∣ ρi, ηij)]}vij

= ∏
i = 1

I
∏

j = 1

ni
[S(tijL ∣ ρi, ηij)]Nij Nij 1 − S(tijU ∣ ρi, ηij)

S(tijL ∣ ρi, ηij)
vij

.

If Nij ∼
iid

Ber θij , then the marginal likelihood obtained by summing over the Nijs is 

L tijL, tijU ∣ ρi , θij , ηij , vij  and can be written as

∏
i = 1

I
∏

j = 1

ni
S*(tijL ∣ θij, ρi, ηij) 1 − S*(tij ∣ θij, ρi, ηij)

S*(tijL ∣ θij, ρi, ηij)
vij

.

9.

As with the covariates, we introduce the frailties ϕi through the Weibull link as intercept 

terms in the log-relative risk; that is, we set ηij = xij
⊤β + ϕi. Here we allow the ϕi to be spatially 

correlated across the regions; similarly we would like to permit the Weibull baseline hazard 

parameters, ρi, to be spatially correlated. A natural approach in both cases is to use a 

univariate CAR prior. Although one may certainly employ separate, independent CAR 

priors on ϕ ≡ ϕi  and ζ ≡ log ρi , another option is to use a bivariate CAR model for the 

δi = ϕi, ζi = ϕi, log ρi . For further details, see Banerjee & Carlin (4).
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Illustration

We present part of a more elaborate data analysis as part of a smoking cessation study 

reported by Murray et al. (33), which is of particular relevance to studies of lung health 

and primary cancer control. For our illustration here, we restrict attention to 223 subjects 

from 54 zip codes in southeastern Minnesota. These subjects were all smokers at study 

entry and were randomized into either a smoking intervention (SI) group or a usual care 

(UC) group, which received no antismoking intervention. On the basis of a consecutive 

five-year monitoring period between 1994 and 1998, each of these subjects were known to 

have quit smoking at least once during these five years. The event of interest is whether 

they relapse into smoking (resume smoking). The raw data revealed that 29.7% resumed 

smoking, producing an empirical cure fraction of 0.703. Additional information available for 

each subject includes sex, years as a smoker, and the average number of cigarettes smoked 

per day prior to the quit attempt.

As is not unusual in spatial data sets, the 54 zip codes that contributed the data were not 

contiguous, which made it difficult to fit neighborhood-based models. Banerjee & Carlin (4) 

considered 81 contiguous zip codes shown in Figure 3, which included the 54 dark-shaded 

regions that had patients in the data set; the 27 regions that did not contribute patients were 

treated as if the data were missing.

Table 1 presents estimated posterior quantiles for the fixed effects β, cure fraction θ, and 

hyperparameters. Smoking intervention, expectedly, produces a significant decrease in the 

log relative risk of relapse. Women seem to be more likely to relapse than men. This result 

is often attributed to the (real or perceived) risk of weight gain following smoking cessation. 

The number of cigarettes smoked per day seems to be less significant; however, what 

is perhaps somewhat counterintuitive is that shorter-term smokers relapse sooner, perhaps 

attributable to subjects being better able to quit smoking as they age.

CONCLUDING REMARKS

This article has provided a glimpse of the different types of statistical spatial models 

available for analyzing regionally aggregated data (or areal data) and the type of statistical 

inference that is obtained from such models. Although the illustrations provided here 

aggregated the data over a number of years and did not attempt to model associations 

across time, such associations can also be modeled by allowing the spatial random effects 

to vary across time. Also, this review has restricted attention to the CAR models, which are 

especially congruous with Bayesian statistical inference. Other types of spatial dependence 

structures, such as simultaneous autoregressive (SAR) models, are very popular, and perhaps 

better suited, for maximum-likelihood-based inference. Comparisons between these models 

can be found in Wall (39). Several other variants of such models, including spatiotemporal 

extensions, can be found in Banerjee et al. (5) and references therein.
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SUMMARY POINTS

1. Statistical modeling and scientific inference using spatially referenced data 

sets are becoming increasingly common in public health research. Examples 

include disease mapping and spatial survival analysis.

2. Researchers are formulating more complex spatially oriented hypotheses that 

require formal model-based testing and inference.

3. Statistical models for spatial data introduce dependence on the basis of 

whether the data are point referenced or areally referenced. The latter, which 

are usually presented as aggregates or summaries over regions, are more 

common in public health research and practice because they protect patients’ 

privacy.

4. Much of the statistical research over the past decade has focused on stochastic 

models for spatial dependence and how they can be introduced as random 

effects within Bayesian hierarchical models. These models are estimated 

using computationally intensive MCMC methods and have been applied to 

diverse data-analytic settings, including multiple disease mapping and spatial 

survival analysis.
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FUTURE ISSUES

1. As the accessibility to GIS and related computational resources continues to 

expand, spatial statisticians are encountering increasingly complex data sets 

with more demanding research questions. The scope for spatial modeling 

and analysis within public health will continue to expand, ushering in new 

domains of application.

2. A large part of methodological research will be devoted to the development 

of probability models, estimation methods, and computational algorithms for 

analyzing such data sets.

3. Statistical methods for analyzing spatially referenced data sets are 

computationally expensive and become unfeasible for large data sets. As 

spatial data sets become larger, statisticians start encountering the so-called 

“big data” problems in geostatistics. This area has started to garner much 

attention over the past five years or so and is seeing increasing research 

activity with regard to statistical models, methods, and algorithms for massive 

spatial data sets.
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Figure 1. 
Maps of raw standard mortality ratios (SMRs) of lung and esophagus cancer in Minnesota 

between 1991 and 1998.
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Figure 2. 
Maps of posterior means of standardized mortality ratios (SMRs) of lung and esophagus 

cancer in Minnesota between 1991 and 1998 from the generalized multivariate conditionally 

autoregressive (GMCAR) model with conditioning order [lung|esophagus].
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Figure 3. 
Map showing a missingness pattern for the smoking cessation data between 1994 and 1998 

from 54 zip codes in southeastern Minnesota: Lightly shaded regions are those having no 

responses.
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Table 1

Posterior quantiles, full model, interval-censored case

Parameter Median (2.5%, 97.5%)

Intercept −2.720 (−4.803, −0.648)

Sex (male = 0)  0.291 (−0.173, 0.754)

Duration as smoker −0.025 (−0.059, 0.009)

SI/UC (usual care = 0) −0.355 (−0.856, 0.146)

Cigarettes smoked per day  0.010 (−0.010, 0.030)

θ (cure fraction)  0.694  (0.602, 0.782)

ρϕ  0.912  (0.869, 0.988)

ρζ  0.927  (0.906, 0.982)

Spatial variance component for ϕi  0.005  (0.001, 0.029)

Spatial variance component for ζi  0.007  (0.002, 0.043)

Abbreviations: SI, smoking intervention; UC, usual care.
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