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Abstract

This paper introduces a novel approach to address the challenges associated with transfer-

ring blood pressure (BP) data obtained from oscillometric devices used in self-measured BP

monitoring systems to integrate this data into medical health records or a proxy database

accessible by clinicians, particularly in low literacy populations. To this end, we developed

an automated image transcription technique to effectively transcribe readings from BP

devices, ultimately enhancing the accessibility and usability of BP data for monitoring and

managing BP during pregnancy and the postpartum period, particularly in low-resource set-

tings and low-literate populations. In the designed study, the photos of the BP devices were

captured as part of perinatal mobile health (mHealth) monitoring programs, conducted in

four studies across two countries. The Guatemala Set 1 and Guatemala Set 2 datasets

include the data captured by a cohort of 49 lay midwives from 1697 and 584 pregnant

women carrying singletons in the second and third trimesters in rural Guatemala during rou-

tine screening. Additionally, we designed an mHealth system in Georgia for postpartum

women to monitor and report their BP at home with 23 and 49 African American participants

contributing to the Georgia I3 and Georgia IMPROVE projects, respectively. We developed

a deep learning-based model which operates in two steps: LCD localization using the You

Only Look Once (YOLO) object detection model and digit recognition using a convolutional

neural network-based model capable of recognizing multiple digits. We applied color correc-

tion and thresholding techniques to minimize the impact of reflection and artifacts. Three

experiments were conducted based on the devices used for training the digit recognition

model. Overall, our results demonstrate that the device-specific model with transfer learning

and the device independent model outperformed the device-specific model without transfer

learning. The mean absolute error (MAE) of image transcription on held-out test datasets
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using the device-independent digit recognition were 1.2 and 0.8 mmHg for systolic and dia-

stolic BP in the Georgia IMPROVE and 0.9 and 0.5 mmHg in Guatemala Set 2 datasets.

The MAE, far below the FDA recommendation of 5 mmHg, makes the proposed automatic

image transcription model suitable for general use when used with appropriate low-error BP

devices.

Author summary

Monitoring blood pressure (BP) is critical during pregnancy and the postpartum period,

especially in low-resource settings. Transferring BP data from devices to medical records

poses significant challenges, particularly for low-literate populations. To address this, we

developed an automated image transcription technique that accurately transcribes BP

readings from photos of BP devices, making this data more accessible for healthcare pro-

viders. Our research involved capturing BP device photos as part of mobile health

(mHealth) programs in rural Guatemala and Georgia, USA. Data were collected from

pregnant and postpartum women, supported by local midwives in these regions. We

designed a deep learning model that first locates the BP reading on the device screen

using the YOLO object detection model and then recognizes the digits using a convolu-

tional neural network. The model demonstrated high accuracy, with a mean absolute

error significantly below the FDA’s recommended limit, proving its suitability for general

use. This approach enhances the integration of BP data into health records, improving BP

monitoring and management in low-resource and low-literate populations, ultimately

contributing to better maternal health outcomes.

Introduction

Hypertensive disorders of pregnancy (HDP) are the most common medical complication

encountered during pregnancy [1]. HDPs are related to a combination of maternal, placental

and fetal factors and can lead to serious complications which can cause maternal and fetal

morbidity and mortality [2]. The burden of these complications is disproportionately borne by

women in low and middle-income countries (LMICs) and resource-constrained areas of high-

income countries. For example, in Latin America, pregnancy vascular disorders are the leading

cause of maternal mortality where up to 26% of maternal deaths are estimated to be related to

preeclampsia [3, 4]. In the USA, during 2017–2019, the prevalence of HDP among delivery

hospitalizations increased from 13.3% to 15.9% [5]. This trend is particularly concerning given

the existing disparities in maternal health outcomes across different regions. For example,

Georgia has among the most disparate maternal health outcomes in the US with significant

disparities in maternal morbidity and mortality rates and access to quality care [6]. These dis-

parities are driven by a combination of social, economics and systematic factors [7–9]. More-

over, both the US and LMICs exhibit geographic and neighborhood-level disparities in

hypertension burden [10]. These disparities highlight the importance of addressing systemic

healthcare issues related to health equity in monitoring HDPs. Early detection, effective man-

agement, and timely referral to specialized care are essential to improve hypertension out-

comes in pregnancy and reduce preventable maternal and fetal morbidity and mortality.

However, there are limitations in management and control of hypertension in pregnancy

which includes delay in the decision to seek care, failure to identify signs of high risk
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pregnancies along with a delay in responding to the clinical symptoms [11]. Traditionally, BP

monitoring during pregnancy and postpartum is done through periodic visits to the healthcare

provider. However, this approach may not always be feasible or practical, particularly in low-

resource settings or for women with limited access to healthcare, and leaves gaps in care. The

use of mobile health (mHealth) technology for BP monitoring during pregnancy and postpar-

tum has the potential to address some of the challenges and disparities, enabling early detec-

tion and management of hypertension.

Routine BP monitoring has been shown to be an effective tool for identifying individuals at

risk. BP self-measurement is often utilized as part of telemonitoring process that can help over-

come issues related to poor healthcare access, white coat effect, and provide more detailed

insights into the BP lability. However, this approach is also prone to errors through incorrect

usage, poor choice of device and transcription and transmission errors [12]. In particular,

most BP monitors have not been evaluated for operational accuracy in HDP, and those that

have, often do not have easy and free Bluetooth connectivity [13]. This presents a key problem

for home-based BP monitoring in pregnancy and elaborates the need for efficient and reliable

methods for transcribing, reading, and transmitting data from standard BP devices.

In this study, our goal is to develop a low-cost and accessible mHealth system with auto-

matic AI-based transcription of BP from LCDs to address the challenges of BP monitoring

during pregnancy and postpartum in populations with low literacy levels, high rates of HDP

and limited access to healthcare. To achieve this goal, we developed an automatic BP image

transcription model and evaluated the model’s performance across multiple datasets and with

the varying BP device types available to our health care workers, considering the FDA recom-

mendation of less than a 5 mmHg error. Specifically, the developed BP image transcription

model was trained and validated using the data collected in two countries, including in perina-

tal monitoring study in Guatemala [14–16] and postpartum BP monitoring studies in Georgia,

USA. Fig 1 shows the overview of the developed model and datasets used in each phase of

training/validation and testing the model.

In the designed mHealth system the transmission of the BP measurement is based on using

ubiquitous cell phone cameras. We have developed a deep-learning-based digit recognition

model that automates the transcription of the images (Fig 1). In earlier work, we showed that

deep-learning-based digit recognition from photos of BP device displays can accurately cap-

ture such data [17]. Building upon our previous work, this study represents an enhancement

of the model. Specifically, in this work we have used the YOLO (You Only Look Once) [18]

object detection model to locate LCDs in the images to address the challenges observed in the

contour-based model. The limitations of the contour-based LCD detection included reduced

robustness when facing variations in angle, distance from the camera, lighting condition, and

device types. The adoption of the YOLO model brings a notable advantage as it demonstrates

an impressive ability to identify LCD displays in images of varying quality and across different

device types. Another contribution of this study involves the extensive expansion and compre-

hensive evaluation of our automatic transcription model’s applicability across different device

types, study designs, and diverse populations. This extensive exploration aims to identify and

establish a more robust training strategy, further enhancing the system’s effectiveness and

reliability.

The proposed model includes LCD localization, pre-processing and classification of digits

and has the potential to be applied in a wide range of applications where digit recognition in

LCDs is needed, such as in glucose or weight measurement devices. By monitoring BP outside

of clinical visits, and outside of office hours, we have the potential to capture BP in pregnancy

and postpartum at critical, typically unmonitored, times. This mHealth solution is entirely
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scalable with no required specialized equipment and has the potential to improve maternal

and fetal outcomes by enhancing access to accurate BP monitoring in low resource settings.

Background

mHealth system for BP monitoring

mHealth BP monitoring systems have demonstrated superior performance in comparison to

traditional methods of BP monitoring, particularly in terms of convenience and management

of hypertension [19, 20]. In these monitoring systems, once BP data has been measured, sev-

eral methods allow users to record and transmit this data to clinicians. Core elements of num-

ber digitization are manual transcription on both paper and smartphone, Bluetooth or cellular

data receivers and memory-card based and USB transfer. Each of these approaches has poten-

tial benefits and drawbacks, particularly in terms of risk of missing and inaccurate data. In the

manual transcription, users may introduce errors during the transfer of data from the device

display [21]. Furthermore, even trained clinical experts make significant errors when tran-

scribing medical information [22]. Transferring the data using wireless BP devices is also

prone to connectivity errors due to interference, variations in standards and various installed

apps and services interfering with the connection. Memory card-based storage and USB trans-

fer also introduce complications due to using cables. More importantly, given the implications

of inaccurate BP measurement, validation of BP devices in hypertensive populations, especially

Fig 1. Overview of the data collection and the developed model for transcribing BP images. Upper left: The screenshots of the

mobile apps employed in the Guatemala Perinatal, Georgia I3 and Georgia IMPROVE studies are shown. Upper right: In the

Guatemala Perinatal study, images were initially stored locally before being uploaded to cloud storage. However, in the Georgia

studies, data uploading was done directly from mobile devices. Lower left: Datasets utilized for model training, validation, and testing,

including Guatemala Set 1, Guatemala Set 2, Georgia I3, and Georgia IMPROVE are identified. The studies employed an Omron M7

automated oscillometric BP monitor for the Guatemala datasets, and Omron 3 devices for the Georgia datasets. Lower right: The BP

image transcription model consists of two steps: 1) LCD Localization and 2) Digit recognition.

https://doi.org/10.1371/journal.pdig.0000588.g001
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perinatal populations, should be verified. The definitive work evaluating devices in hyperten-

sive populations identified only a very small number of devices which are appropriate for pre-

eclampsia, and none with wireless connectivity [13].

Automatic transcription of the images can facilitate transferring the data from home-based

BP monitoring system, especially in populations with lower educational attainment and who

are less likely to use mHealth tools, potentially due to challenges related to digital literacy.

Digit recognition

Digit recognition, involving the identification of handwritten or printed digits through the uti-

lization of machine learning algorithms, finds practical application in mHealth systems by

facilitating automatic transcription. Optical Character Recognition (OCR) is one of the essen-

tial computer vision applications which involves converting images to editable and searchable

digital documents. OCR technology has been in use since the 1980s [23–25], and it continues

to advance with the integration of state-of-the-art methods. Over the years, digit recognition

algorithms have shown substantial improvements, using various classifiers such as support

vector machines [26], k-nearest neighbors [27], and more recently, deep learning techniques.

Among these, convolutional neural networks (CNNs) have demonstrated exceptional perfor-

mance in digit recognition across diverse applications [28–30].

Furthermore, commercial solutions like Google Vision OCR have gained prominence in

the field of OCR technology. However, they have generally been optimized for scanner-cap-

tured documents rather than camera-captured documents or images [31]. Image-based OCR

tools include Tesseract OCR [32, 33], Abbyy Mobile OCR Engine, and mobile applications

such as CamScanner and My Edison [34]. While some of these methods provide quick and

affordable data digitization, their accuracy drops significantly for images with distortions,

noise and unusual characters [17, 31]. In particular, there is virtually no research in the recog-

nition of digital characters formed by seven disjoint elements, which are common to LCD

devices. (See Fig 1, top left, for an example of such an image.) In our research, we have adopted

an image-based OCR approach employing CNNs for accurate recognition of sequences of dig-

its displayed on LCD screens.

Data collection

In this study we trained and validated the BP image transcription model on four datasets

which are described below. A summary of the datasets is provided in Table 1 and the distribu-

tion of BP readings is provided in Fig 2.

Table 1. Datasets used for model training, validation, and testing.

Datasets Number of

patient

Number of

images

Location Time of recording Inclusion criteria

Guatemala Set 1 1697 8192 7205

readable

Highland Guatemala Tecpan,

Chimaltenango

Second and third

trimesters

Indigenous Maya

Guatemala Set 2 584 1934 1744

readable

Highland Guatemala Tecpan,

Chimaltenango

Second and third

trimesters

Indigenous Maya

Georgia I3 23 475 427 readable Grady Hospital Georgia, US Up to 6 weeks

postpartum

African American 18 years or older

with HPD

Georgia

IMPROVE

49 776 720 readable 11 sites in Georgia, US Up to 3 months

postpartum

African American 18 years or older

https://doi.org/10.1371/journal.pdig.0000588.t001
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Guatemala Set 1

The Guatemala Perinatal mHealth Intervention study was conducted in rural areas of Guate-

mala to identify changes in outcomes of pregnant women due to the use of an Android

mHealth app [14–16]. At each visit, a traditional birth attendant recorded at least two maternal

BP recordings using the Omron M7 (Omron Co., Kyoto, Japan) self-inflating device and cap-

tured the photo of the BP device using the developed mobile application (Fig 1). Visits were

conducted in a mother’s home, where there might be poor lighting conditions. The user was

trained to align the image using a mask that appears in the app for capturing the photo.

Between January 2013 and July 2019, a total of 8,192 images were captured from 1,697 preg-

nant women carrying singletons between 6 weeks and 40 weeks gestational age. Before pro-

cessing the images, the systolic BP (SBP), diastolic BP (DBP), and heart rate (HR) of each BP

image were manually transcribed by three independent annotators. Annotators screened each

of the images for readability as well as image quality labels. Readability was defined as the abil-

ity to clearly transcribe the full numerical values. A total of 7,205 images were annotated for

the values of SBP, DBP, HR along with a quality label. Segregation of these images based on

their quality metric yielded 1,261 “Good Quality” images and 5944 poor quality images (inclu-

sive of images with “Blur,” “Dark,” “Far,” “Contains Reflections,” and “Cropped” quality

labels).

Fig 2. Distribution of BP data in the four datasets used in this study. The demographics of the individuals are given

in Table 1.

https://doi.org/10.1371/journal.pdig.0000588.g002
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Guatemala Set 2

Between August 2019 and October 2021, a total of 1934 blood pressure (BP) recordings were

collected from 570 pregnant women by 28 midwives in Guatemala. The BP images were anno-

tated by 10 independent annotators, with each image being labeled by three annotators. The

labeling web interface was designed to collect the SBP, DBP and heart rate, with each of them

being manually transcribed by the annotators. Additionally, the annotators labeled the quality

of the images by choosing the defined quality labels. Fig 3 shows the examples of the app

screens and the labeling interface.

Georgia I3

The Georgia I3 was conducted in an urban setting in Georgia, US to study the feasibility of

mHealth BP monitoring for the early detection of exacerbation of hypertension. Participants

were postpartum women 18 years or older who delivered a liveborn infant at Grady Memorial

HospitSet1al in Atlanta, Georgia and were diagnosed with hypertensive disorders during preg-

nancy or at delivery. Consenting participants were given an Omron BP710N Series 3 upper arm

BP monitor. Participants measured their BP twice daily for a 6-week period. They used the

smartphone application (Moyo Mom) created by our team to capture the photo of the BP device

and transcribe the numbers manually. A clinician had access to the participant data via a back-

end interface that serves as a case management portal (Fig 4). A study coordinator reviewed the

collected data labeled the images as “study device”, “not study device” and “unidentified”. A

study coordinator validated/corrected the numbers entered by participants using the designed

clinical dashboard. The data were collected between March 2021 and November 2021 and con-

sists of 475 BP images recorded by 23 participants. 427 images were captured from study

devices, 36 from other BP devices and 5 were from unidentified BP devices.

Fig 3. The designed labeling web interface for transcribing and labeling the quality of the images in the

Guatemala Perinatal study.

https://doi.org/10.1371/journal.pdig.0000588.g003
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Georgia IMPROVE

The Georgia IMPROVE study was designed to determine the association between cardiovas-

cular complications during perinatal period, postpartum depression and symptoms of Covid-

19. We recruited women 18 years or older during the late third trimester or early postpartum

period in 11 sites in Georgia, including the Grady Memorial Hospital. The Moyo Mom app,

used in the Georgia I3 study, was adapted for the IMPROVE study. The app, which is available

on both iOS and Android platforms, is designed for participants to self-report metrics includ-

ing but not limited to symptoms related to severe hypertension, effects of COVID-19 as well as

personal experiences related to mental health, structural racism and discrimination. Partici-

pants are able to upload pictures of their BP readings which are then reviewed for accuracy by

study coordinators and clinicians using the clinical dashboard. We have incorporated several

alert features into the app design process in order to notify providers of potential poor out-

comes, such as repeated high BP (SBP>160 mmHg or DBP>110 mmHg) readings, a reported

symptom of severe hypertension and when a participant indicates self-harm ideation during

the Mood Survey. Similar to Georgia I3, a study coordinator reviewed the collected data using

the designed clinical dashboard. The data was collected between March 2022 and November

2022 and includes 776 images from 48 participants where 720 images were captured from the

study device, 6 other BP devices and 49 were unidentified BP devices.

Method

In this section the step-by-step approach to convert BP images into numerical format is

described including LCD localization and the digit recognition methods.

Fig 4. The backend dashboard used in the Georgia I3 and Georgia IMPROVE studies for postpartum BP monitoring.

https://doi.org/10.1371/journal.pdig.0000588.g004
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Automatic LCD localization

Accurately localizing the LCD frames is essential for converting the images into a numerical

format, but this can be challenging due to orientation and zooming effects, resulting in differ-

ences in the size and location of the frames. Over the past decade, rapid advancements in deep

learning have driven extensive research and significant contributions aimed at improving the

performance of object detection. The YOLO model, currently represents the state of the art in

this domain and have demonstrated success in accurately localizing objects in images in differ-

ent applications such as detection of vehicles to improve transportation systems [35], surveil-

lance and security [36], medical imaging [37], agriculture [38] and document processing [39].

In this work, to perform LCD localization using YOLO, the model was re-trained on a data-

set of BP images for the task of LCD detection. During the training process, the model divides

the image into a grid of cells and predicts the likelihood that an object, i.e., the LCD display, is

present in each cell. The model also predicts the coordinates of the bounding box that sur-

rounds the object, resulting in precise localization of the LCD display within the image.

Digit recognition

Our approach to transcribe the BP images is based on the recognition of sequence of digits in

the LCD images. Specifically, we aim to learn a model of P(S|X) where S represents the output

sequence and X represents the input image. To model S, we define it as N random variables

s1, s2, . . ., sN representing the elements of the sequence. In the task of BP transcription the max-

imum value of BP is a 3-digit number, therefore N is chosen to be 3 and each digit variable has

10 possible values. An additional “blank” character was incorporated for shorter sequences. In

the preprocessing step of the developed digit recognition model we applied a bilateral filter to

smooth the images while preserving edges. Then, the images were fed to the gamma correction

to reduce the effect of the illumination levels. In this work, the CNN-based model [17] was

used to detect the sequences of digits. In this model a softmax classifier, receives extracted fea-

tures from X by a CNN and returns the probability of each digit (Fig 5).

Experimental setup

The bounding box of the LCDs were annotated in 80 images from Guatemala Set 1 and Geor-

gia I3 datasets (40 images per dataset) using the LabelImg toolbox [40]. Subsequently, the

YOLO V5 model was re-trained using the labeled dataset for the task of LCD detection. Using

the extracted LCDs, the SBP and DBP images were created and resized to a matrix size of 180 x

80. In the digit recognition model, a three-layer CNN architecture with 32, 64, 128 filters of

dimension 5x5 was used and each layer was followed by batch normalization, ReLU activation,

and maxpooling. The resulting feature vector from the CNN was then fed into three softmax

classifiers.

To optimize the model parameters, a sparse categorical cross entropy loss function and

mini batch stochastic gradient descent were used. In our model training process, we employed

a batch size of 50, an initial learning rate of 0.001, and a learning rate decay mechanism that

reduced the learning rate by a factor of 10 during training. Additionally, we implemented early

stopping with a patience of 10 epochs, which allowed us to monitor and halt training. The best

model was saved based on validation loss, ensuring that we retained the most optimal configu-

ration for subsequent evaluation and analysis. The contour-based LCD detection and digit rec-

ognition models has been made available through an open-source licensing, as detailed in [41].
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Model evaluation

In the model evaluation, first, we compared the performance of the BP transcription using two

different LCD localization methods: YOLO-based and contour-based [17] LCD detection.

Additionally, we investigated the effect of including LCD images extracted from two differ-

ent BP devices (the Omron M7 and Omron 3) in the training phase. The performance of the

digit recognition model was evaluated by defining three experiments. We conducted model

evaluation through a five-fold cross-validation procedure applied to a randomly chosen subset

of the images. As mentioned in the data collection section, the training and validation of the

model were conducted using images captured from Omron M7 devices in the Guatemala Set 1

and Omron 3 BP devices in the Georgia I3 datasets. We conducted a series of experiments to

evaluate the performance of our model, as illustrated in Fig 6. Following is the details of per-

formed experiments:

• Device-Specific: Separate models were trained for each of the BP devices. Guatemala Set 1

dataset was used to train the digit recognition model for the Omron M7 device and the

Georgia I3 dataset was used for the device-specific model corresponding to the Omron 3 BP

device. The five fold cross validation was used to assess the performance of the model.

• Device-Specific with transfer learning: In this experiment, training the model was based on

using transfer learning. Specifically, we used a pre-trained model and fine-tuned the model.

For example, in the digit recognition from the Omron M7 BP device, we used the model

trained on images of Omron 3 and re-trained the model.

• Device-Independent: In this experiment, we merged the LCD images from both datasets

and trained a single model. To evaluate the performance of the device-Independent model,

Fig 5. Overview of the BP image transcription. The LCD detection step uses the YOLO object detection model (top)

and the CNN-based digit recognition model is for extracting numbers from SBP and DBP images (bottom).

https://doi.org/10.1371/journal.pdig.0000588.g005
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we conducted a five fold cross validation on each dataset. In this evaluation, we included the

images from the other BP device in the training set to assess the model’s robustness.

To evaluate the transcription performance, we used two evaluation metrics: classification

accuracy and mean absolute error (MAE). Classification accuracy was defined as the percent-

age of correctly transcribed BP values out of the total number of samples. We also calculated

the MAE between the automatic transcriptions generated by the model and validated BP val-

ues provided by the study coordinator or annotators depending on the dataset. Once the final

model was trained, we utilized it to transcribe the images in the test datasets. The overview of

the datasets used for training, validation and testing the model is presented in Fig 1. To deter-

mine the statistical significance of the results, we performed the rank sum test to compare the

manual and the automatic transcriptions. The null hypothesis was that there was no significant

difference between the two methods, while the alternative hypothesis was that the automatic

transcription was significantly different from the manual transcription.

Results

We compared two different LCD localization methods and their impact on BP transcription

accuracy. The YOLO-based method and the contour-based method were tested on the same

set of data previously used in a study by Kulkarni et al. [17]. Our results show that the YOLO-

based method outperformed the contour-based LCD localization method as shown in Table 2.

In this experiment, the model was trained on 5020 single LCD images and tested on 1677

images. The results of BP transcription, showed that the YOLO-based method improved both

the accuracy and MAE of transcribing SBP and DBP. This suggests that the YOLO-based

method is more accurate in detecting LCDs in the images which leads to having better perfor-

mance in BP transcription reducing the MAE of SBP and DBP detection to 1.04 and 0.91

mmHg, respectively. Fig 7 illustrates examples of the bounding boxes around the LCD screens

Table 2. Comparison of contour-based LCD localization and YOLO object detection method in performance of

the BP image transcription in Guatemala perinatal data.

LCD localization method: Contour-based YOLO-based

Evaluation metrics Acc MAE Acc MAE

SBP 90.7 3.19 93.7 1.04

DBP 91.1 0.94 96.6 0.91

https://doi.org/10.1371/journal.pdig.0000588.t002

Fig 6. Figure depicting experimental setups for model performance evaluation: a) Device-Specific: Separate models trained and validated for each BP

device using a cross-validation approach. b) Device-Specific with Transfer Learning: Utilizing a pre-trained model on Dataset 1 (dark red) during the

cross-validation process, followed by fine-tuning on Dataset 2 (blue) for evaluation on Dataset 2. c) Device-Independent: Employing cross-validation

with data concatenation from both datasets in the training subset.

https://doi.org/10.1371/journal.pdig.0000588.g006
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detected using the YOLO-based method, along with the corresponding confidence scores gen-

erated by the model.

Our evaluation of the digit recognition model using three training strategies, as described

in the “Model Evaluation” section, is summarized in Tables 3 and 4. The results obtained

through five-fold cross validation on the Guatemala Set 1 and Georgia I3 (Table 3), indicates

that the best-performing models were achieved using transfer learning for each BP device and

device independent model trained on images from both devices. In the training and validation

phase, both transfer learning and Device-Independent models have better performance than

the Device-Specific approach. For the Guatemala Set 1 dataset, in the estimation of SBP, the

Device-Independent approach achieved the lowest MAE at 1.4±1.5 mmHg. For DBP estima-

tion, both Transfer Learning and Device-Independent models yielded comparable results,

Fig 7. Examples of LCD detection results on images captured from Omron M7 and Omron 3 devices.

https://doi.org/10.1371/journal.pdig.0000588.g007

Table 3. Five-fold cross validated results of the digit recognition model using three training strategies. Accuracy

(Acc) is in percent and Mean Absolute Error (MAE) is in mmHg.

Device-Specific Device-Specific+Transfer

Learning

Device-Independent

Evaluation metrics Acc MAE Acc MAE Acc MAE

Guatemala Set 1-SBP 94.3±1.8 1.5±0.6 94.4±1.7 1.5±0.5 94.2±1.9 1.4±0.5

Guatemala Set 1-DBP 93.8±2.4 0.9±0.4 94.3±1.7 0.8±0.1 94.1±1.7 0.8±0.2

Georgia I3-SBP 94.1±5.5 0.6±0.6 96.9±2.9 0.5±0.4 96.2±3.2 0.7±0.8

Georgia I3-DBP 92±6 1.4±1.3 96.2±3.5 0.4±0.4 95.7±4.3 0.5±0.6

https://doi.org/10.1371/journal.pdig.0000588.t003

Table 4. Testing the top model across folds on held-out test datasets. Accuracy (Acc) is in percent and Mean Absolute Error (MAE) is in mmHg.

Device-Specific Device-Specific+Transfer

Learning

Device-Independent Average Human Transcription

Evaluation metrics Acc MAE Acc MAE Acc MAE Acc MAE

Guatemala Set 2-SBP 95.1 1.0 96.2 0.8 96.6 0.9 93.1 4.1

Guatemala Set 2-DBP 96 0.6 95.6 0.7 96.7 0.5 92.6 2.7

GA IMPROVE-SBP 90 2.6 96.1 0.8 96.3 1.2 96.8 0.5

GA IMPROVE-DBP 89.1 2.1 92.7 2 96.3 0.8 96.9 0.3

https://doi.org/10.1371/journal.pdig.0000588.t004
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with MAEs of 0.8 (±0.1 and ±0.2 standard deviations, respectively). For the Georgia I3 dataset,

transfer learning model outperformed other approaches, with the lowest MAEs of 0.5±0.4 and

0.4±0.4 mmHg for SBP and DBP estimation. We applied the rank-sum test to assess statistical

significance. In the case of the Guatemala Set 1 dataset, we observed that there was no statisti-

cally significant difference between the MAEs of the Device-Specific and Transfer Learning

models (p = 0.1), as well as between the Device-Specific and Device-Independent model

(p = 0.08). On the other hand, when we conducted the rank-sum test on the results from the

Georgia I3 dataset, we found a statistically significant difference between the Device-Specific

and Device-Independent models (p = 0.04). No statistical difference was found for the Device-

Specific and Transfer Learning approach.

In the next step, we assessed the performance of the optimized models on two held out test

datasets, the Georgia IMPROVE and the Guatemala Set 2, as detailed in Table 4. We employed

the MAE of SBP and DBP transcription as a metric to determine the top model across folds

from the training/validation datasets. Overall, the Device-Specific model with Transfer Learn-

ing and Device-Independent models demonstrated the best performance. The result of the

transfer learning approach was reported as MAE of 0.8 mmHg for SBP and 0.7 mmHg for

DBP in the Guatemala Set 2 dataset and 0.8 mmHg, 2 mmHg for SBP and DBP in the Georgia

IMPROVE dataset. And, using the device independent model the MAE was 0.9 mmHg for

SBP and 0.5 mmHg for DBP in the Guatemala Set 2 dataset and 1.2 mmHg and 0.8 mmHg for

SBP and DBP in the Georgia IMPROVE dataset. We applied the rank-sum test on the results

of the test datasets (Guatemala Set 2 and Georgia IMPROVE) and we found a statistically sig-

nificant difference between the Device-Independent and Transfer Learning methods

(p = 0.009). However, the test did not show a statistical difference between the Device-Specific

and Device-Independent models.

These results demonstrate the capability of the developed model to accurately transcribe BP

images. Our analysis indicates the superiority of incorporating images from two types of BP

device, whether through the transfer learning approach or by merging the datasets in the train-

ing phase. The model’s performance on both held out test datasets underscores its effectiveness

in capturing and generalizing important features, enabling it to provide precise SBP and DBP

predictions.

We compared the manual and automatic transcriptions in the Georgia IMPROVE and the

Guatemala Set 2 datasets. The results of the Device-Independent model were used in this

experiment. Detailed information regarding the manual transcription and validation of BP val-

ues for each dataset are provided in the “Data Collection” section. In the Georgia IMPROVE

study, participants were instructed to input their BP values after capturing a photo of the

device, and the study coordinator subsequently validated these transcriptions. For the Guate-

mala dataset, the data was transferred to our HIPAA compliant backend, where each image

was labeled by three annotators. Table 4 presents the MAE and accuracy metrics for an average

human transcription. In the IMPROVE study, the analysis of manual transcription of SBP and

DBP values resulted in an accuracy of 96.8% and 96.9%, respectively. The corresponding MAE

values were 0.5 mmHg for SBP and 0.3 mmHg for DBP. In the Guatemala study, the accuracy

of human transcription was lower than the IMPROVE study which might be due to lower

quality of the images. The accuracy of the SBP and DBP annotations were 93.1% and 92.6%

with MAE of 4.1 and 2.7 mmHg respectively. It should be noted that, during the processing of

Guatemala Set 2, we removed images for which there was no agreement among the three

annotators and the images with non-readable labels. Therefore, the reported results reflect the

human transcription error for readable images with at least two consistent annotations. Con-

sidering all the images, we found that 91.9% and 91.3% of the images had consistent labels by

all three annotators in annotating SBP and DBP values.
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In addition, we conducted a comparative analysis using a rank-sum test to assess the perfor-

mance of the manual and the automatic transcriptions. In the evaluation of the Georgia

IMPROVE dataset we found no statistically significant difference between the manual tran-

scription by a single individual when compared to our automatic machine learning approach

for both SBP (p-value = 0.9) and DBP (p-value = 0.9) transcriptions. Similar results were

obtained for the Guatemala Set 2 dataset, with p-value of 0.7 and 0.4 for SBP and DBP respec-

tively, as determined by the rank-sum test. These findings suggest that the developed auto-

matic transcription method performs at a comparable level to manual transcription,

demonstrating its potential as a reliable alternative.

Limitations

While our study demonstrates promising results in automating the transcription of BP data

from oscillometric devices in diverse settings, it is important to acknowledge certain limita-

tions. Firstly, the performance of our model may still be influenced by varying lighting condi-

tions, image quality, and device types beyond those tested in our study. Although we applied

color correction and thresholding techniques to mitigate these issues, there are still image

quality issues which cause errors in transcription. Therefore, it is crucial to address the quality

assessment of images in real-time. To enhance the user experience and ensure reliable results,

it is important to develop an algorithm capable of identifying image quality issues that can run

on a mobile device and alert the user to retake the photo if necessary. Secondly, our study has

provided valuable insights into the effectiveness of our automated image transcription tech-

nique with the specific devices used in the Guatemala and Georgia datasets. However, the

diversity of BP monitoring devices available is substantial, with variations in design and dis-

play characteristics. To address this limitation and enhance the generalizability of our

approach, future research should involve a more extensive evaluation on a wider selection of

device types validated to be used in self-measured BP monitoring systems. This expansion

would allow us to assess the adaptability and performance of our model across a diverse set of

devices, taking into account potential variations in image quality, screen layouts, and digit

presentation.

Discussion and conclusion

While accuracies were generally greater than 90%, it is important to note that the error rates

were generally very low, indicating that even when a transcription was incorrect, it was often

in the last digit, and did not produce a clinically significant error. However, the error varied

between datasets, which reflects the differences in both the lighting conditions (generally

darker in less well-lit Guatemalan homes) and the different devices. In particular, without

retraining, the results exhibited lower performance on a different dataset. However, device-

specific training with transfer learning and device-independent digit recognition models

reduced the errors down to 1-2 mmHg, demonstrating that the errors are negligible (within

the error bounds of the device itself). The device-specific approach is particularly useful when

the type of device being used is known and can be taken into account during the transcription

process. We note that our analysis demonstrates that the mean absolute error is far below the

FDA recommendation of 5 mmHg [42], which therefore makes the proposed model suitable

for general use if the compound error with the chosen BP device remains within this limit. As

such, we expect the continual updating of the model with more examples of a variety of BP

models will eventually create a fully generalized model. In addition, we aim to enhance the

model by adding an image quality assessment step which can provide real-time feedback to

users to trigger recapture of data.
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The integration of this technology into a clinical pathway for BP monitoring, recording and

communication to healthcare professionals may enhance the management of hypertension

and cardiovascular health. By automating the transcription of BP readings, this technology

addresses critical challenges in capturing accurate data, particularly in low-literacy settings,

and offers a range of transformative benefits. Firstly, the automated transcription reduces the

potential for human errors in the recording of BP measurements. By eliminating manual data

entry, the technology can help to increase quality and consistency in the data captured. This,

in turn, leads to more reliable diagnostic assessments and treatment decisions. Secondly, the

developed model can enhance the efficiency and convenience of BP monitoring by simplifying

the process of capturing and documenting BP readings. Moreover, the automated communi-

cation of BP data to healthcare professionals enables real-time monitoring and timely inter-

vention. In conclusion, by mitigating errors, enhancing convenience, and enabling real-time

communication, this innovative solution has the potential to significantly improve patient out-

comes and strengthen the communication between patients and healthcare professionals.
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