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Abstract Decoding the activity of individual neural cells during natural behaviours allows 
neuroscientists to study how the nervous system generates and controls movements. Contrary 
to other neural cells, the activity of spinal motor neurons can be determined non-invasively (or 
minimally invasively) from the decomposition of electromyographic (EMG) signals into motor unit 
firing activities. For some interfacing and neuro-feedback investigations, EMG decomposition 
needs to be performed in real time. Here, we introduce an open-source software that performs 
real-time decoding of motor neurons using a blind-source separation approach for multichannel 
EMG signal processing. Separation vectors (motor unit filters) are optimised for each motor unit 
from baseline contractions and then re-applied in real time during test contractions. In this way, 
the firing activity of multiple motor neurons can be provided through different forms of visual 
feedback. We provide a complete framework with guidelines and examples of recordings to 
guide researchers who aim to study movement control at the motor neuron level. We first vali-
dated the software with synthetic EMG signals generated during a range of isometric contraction 
patterns. We then tested the software on data collected using either surface or intramuscular 
electrode arrays from five lower limb muscles (gastrocnemius lateralis and medialis, vastus later-
alis and medialis, and tibialis anterior). We assessed how the muscle or variation of contraction 
intensity between the baseline contraction and the test contraction impacted the accuracy of the 
real-time decomposition. This open-source software provides a set of tools for neuroscientists to 
design experimental paradigms where participants can receive real-time feedback on the output 
of the spinal cord circuits.

eLife assessment
This article compiles existing algorithms into an open-source software package that enables real-
time (and offline) motor unit decomposition from muscle activity collected via grids of surface 
electrodes and indwelling electrode arrays. The package is valuable given that many motor neuro-
science labs are using such algorithms and that there exists a host of potential applications for 
such data. Validation of the software package is compelling, suggesting that it can be successfully 
applied across a range of muscles and tasks.
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Introduction
Motor units transduce the neural signals that originate from supraspinal centres, spinal circuits, and 
sensory systems into force (Sherrington, 1925). In healthy individuals, each action potential propa-
gating along the axon of an alpha motor neuron elicits action potentials in all its innervated muscle 
fibres. The activity of motor neuron – in the form of spike trains – represents the neural code of move-
ment to muscles. Decoding this firing activity in real time during various behaviours can thus substan-
tially enhance our understanding of movement control (Basmajian, 1963; Formento et al., 2021; 
Bräcklein et al., 2022; Rossato et al., 2024). Real-time decoding is also essential for interfacing with 
external devices (Farina et al., 2023) or virtual limbs (Oliveira et al., 2024) when activity is present at 
the periphery of the nervous system. For example, individuals with a spinal cord injury can control a 
virtual hand with the residual firing activity of the motor units in their forearm (Oliveira et al., 2024). 
Furthermore, sampling the activity of motor units receiving a substantial portion of independent 
synaptic inputs may pave the way for movement augmentation – specifically, extending a person’s 
movement repertoire through the increase of controllable degrees of freedom (Eden et al., 2022). In 
this way, Formento et al., 2021 showed that individuals can intuitively learn to independently control 
motor units within the same muscle using visual cues. Having access to open-source tools that perform 
the real-time decoding of motor units would allow an increasing number of researchers to improve 
and expand the range of these applications.

To date, researchers classically identify a few motor units during relatively weak contractions 
using concentric needle or fine wire recording electrodes (LeFever and De Luca, 1982). They then 
separate the overlapping spike trains with a spike-sorting algorithm (e.g. McGill et  al., 2005). 
Recent developments of intramuscular (Farina et al., 2008b; Muceli et al., 2015; Muceli et al., 
2022; Chung et al., 2023) and surface (Farina et al., 2016; Caillet et al., 2023) electromyography 
(EMG) electrode arrays facilitate both a larger recording zone (i.e. the volume from which motor 
unit action potentials are recorded), and the recording of the same motor unit action potential 
across multiple channels. In conjunction with this hardware advance, the development of novel EMG 
decomposition software/programs, such as multichannel spike-sorting (Rey et al., 2015; Buccino 
et al., 2020; Steinmetz et al., 2021; Pachitariu et al., 2023) and blind-source separation (Holobar 
and Zazula, 2007; Holobar and Farina, 2014; Farina and Holobar, 2016; Negro et al., 2016; 
Chen et al., 2019) algorithms, enables a relatively large number of individual motor units to be 
decoded from each recording (Muceli et al., 2015; Muceli et al., 2022; Chung et al., 2023; Caillet 
et al., 2023). Contrary to spike-sorting algorithms, blind-source separation does not directly sort 
action potential shapes, but rather optimises a set of separation vectors, that is, motor unit filters, 
which maximises the sparseness of motor unit pulse trains from which discharge times are esti-
mated (Holobar and Zazula, 2007; Holobar and Farina, 2014; Farina and Holobar, 2016; Negro 
et al., 2016; Chen et al., 2019). The current open-source implementations of this approach rely on 
offline processing, which restricts its ability to be used for neurofeedback and human interfacing 
technologies.

Recent studies have reported real-time capabilities of motor unit identification by adapting the 
offline blind-source separation algorithm (Formento et al., 2021; Bräcklein et al., 2022; Barsakcioglu 
et al., 2021; Chen et al., 2020; Zheng and Hu, 2019). These studies used a two-step approach: (1) 
the separation vector for each motor unit is identified with offline decomposition during the training 
phase and (2) the same vectors are applied in real time to new EMG recordings. The real-time iden-
tification of motor units is only used by a few specialised research teams, and there are no publicly 
available algorithms or user interfaces for this task. In addition, the accuracy and capabilities of online 
decomposition have not been systematically tested in multiple muscles or intensities.

Here, we provide an open-source software that can be used to visualise and track motor unit firing 
activities in real time. We document the software validity and its capabilities on data collected from 
five lower limb muscles (gastrocnemius lateralis and medialis, vastus lateralis and medialis, and tibialis 
anterior) during isometric contractions of varying force levels, using either surface or intramuscular 
electrode arrays. The real-time identification of motor unit firing activity was first validated using 
synthetic EMG signals. Then, the accuracy of the algorithm was determined during experiments from 
the rate of agreement calculated between the motor unit spike trains identified in real time and those 
identified offline after manual editing. Data, codes, and a user manual are available at https://github.​
com/simonavrillon/I-Spin (copy archived at Avrillon, 2024).

https://doi.org/10.7554/eLife.88670
https://github.com/simonavrillon/I-Spin
https://github.com/simonavrillon/I-Spin
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Results
Overview of the approach
An EMG signal represents the sum of trains of action potentials from all the active motor units 
within the recorded muscle volume (Figure 1A). During stationary conditions, for example, isometric 
contractions, the train of motor unit action potentials can be modelled as the convolution of series of 
discrete delta functions, representing the discharge times, and motor unit action potentials that have 
a consistent shape across time. When EMG signals are recorded with an array of electrodes, the shape 
of the recorded potential of each motor unit differs across electrodes. This is due to (1) the varying 
conduction velocity of action potentials among the muscle fibres and (2) the location/depth of the 
muscle fibres that belong to each motor unit relatively to the electrodes, which impact the low pass 
filtering effect of the tissue on the recorded potential. Increasing the number and density of recording 
electrodes increases the likelihood that each motor unit will have a unique motor unit action potential 
profile (shape), that is, a temporal and spatial profile that differs from all the other active motor unit 
within the recorded volume (Caillet et al., 2023; Farina et al., 2008a). The uniqueness of motor unit 
action potential profiles is necessary for the blind-source separation to accurately estimate the motor 
unit discharge times. Conversely, the spike trains of two motor units with similar action potential 
profiles will be merged by the model.

Our software uses a fast independent component analysis (fastICA) to retrieve motor unit spike 
trains from the EMG signals. For this, it iteratively optimises a separation vector (i.e. the motor unit 
filter) for each motor unit (Figure 1B; Negro et al., 2016; Chen et al., 2019; Barsakcioglu et al., 
2021; Negro et  al., 2016; Chen et  al., 2019; Barsakcioglu et  al., 2021). The projection of the 
EMG signals on this separation vector generates a sparse motor unit pulse train, with most of its 
samples close to zero and a smaller number of samples significantly greater than zero (Figure 1B). 
The discharge times are estimated from this motor unit pulse train using a peak detection function 
and a k-mean classification with two classes to separate the high peaks (spikes) from the low peaks 
(noise and other motor units). During the decomposition in real time, short segments of EMG signals 
are projected on the saved separation vectors, and the peaks are classified as discharge times if they 
are closer to the centroid of the class ‘spikes’ than to the centroid of the class ‘noise’ (Figure 1C). The 
algorithm used to identify motor units discharge activity is based on that proposed by Negro et al., 
2016 and Barsakcioglu et al., 2021.

Overview of the software
The software used in this article was coded as a MATLAB app (version 2022a, The MathWorks, Inc, 
USA), but an alternative version coded with Python is also available. It allows researchers to record 
and process signals from surface and intramuscular electrode arrays using multiple acquisition 
systems (EMG-Quattrocento, OT Bioelettronica, Italy; Open Ephys acquisition board, Open Ephys, 
USA; Intan RHD recording system; Intan Technologies, USA). As the accuracy of the algorithm relies 
on the consistency of motor unit filters, it is recommended to record these EMG signals during 
stationary conditions – for example, isometric contractions – to limit changes in muscle geometry 
or position/orientation of the active muscle fibres relative to the electrodes (Glaser and Holobar, 
2019; Oliveira and Negro, 2021). The framework to perform real-time identification of motor 
neuron activity has four steps (Figure 1—figure supplement 1). First, the EMG signal is recorded 
while participants perform a contraction at the requested intensity such that an electrode mask is 
manually generated to remove channels with artefacts or low signal-to-noise ratio. This electrode 
mask is then used for the rest of the experimental session. Second, the force offset is measured and 
removed before performing maximal voluntary contraction (MVC). The measured MVC is used to 
standardise all the submaximal isometric contractions. Third, a baseline contraction is performed at 
a force level close to, or slightly above, the intensity of the testing task, and the separation vectors 
are identified with offline blind-source separation. Fourth, the separation vectors are applied over 
incoming segments of EMG signals during a test contraction to identify motor unit firing activity in 
real time.

Three forms of feedback can be displayed to the participant: a raster plot of the discharge times 
for each motor unit of a given array, a quadrant displaying the firing rates of two motor units, and the 
smoothed firing rate of a given motor unit with a scrolling target to track (Figure 1C).

https://doi.org/10.7554/eLife.88670
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Figure 1. Overview of the approach. (A) During isometric contractions, electromyographic (EMG) signals can be considered as the sum of all action 
potentials that originate from the muscle fibres of all the active motor units that lie within the electrodes recording zone. The shape of the recorded 
action potentials differs across electrodes when recorded with an array of surface or intramuscular electrodes. The EMG signal and each individual 
MUAP profile depends on the position of the electrode, as highlighted by the different colours. (B) Decomposing EMG signals consists of solving 
the inverse problem, that is, to estimate the discharge times of the active motor units from the EMG signals. Our software uses a fast independent 
component analysis (fasICA) to optimise a set of separation vectors for each motor unit. To this end, each separation vector is iteratively optimised to 
maximise the sparseness of the motor unit pulse train. At the end of this step, the motor unit pulse train is refined, and a k-mean classification is applied 
to separate the high peaks, which represent the targeted motor unit spikes, from the low peaks (other motor units and noise). (C) During the online 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.88670
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Manual editing to improve the accuracy of the motor unit pulse train
Manual editing of motor unit discharge times identified with automatic decomposition (or spike-
sorting) generally improves the accuracy of the spike trains (Del Vecchio et al., 2020; Hug et al., 
2021; Avrillon et al., 2024). In the case of online decomposition, manual editing can be performed 
after the baseline contraction to improve the accuracy of the motor unit filters. It results in a motor unit 
pulse train with peaks easily separable from the noise. Several metrics have been proposed to auto-
matically remove the unreliable motor unit pulse trains (Negro et al., 2016; Holobar et al., 2014). 
For example, the silhouette value (SIL) measures the normalised distance between the spikes and the 
noise after k-mean classification (Negro et al., 2016). As an example, Figure 2A displays the silhou-
ette values of all the motor units identified after the baseline contraction in five different muscles 
(vastus lateralis [VL] and medialis [VM], gastrocnemius lateralis [GL] and medialis [GM], and tibialis 
anterior [TA]) with either grids of surface electrodes or intramuscular electrodes arrays. When consid-
ering the baseline contractions performed at 20% MVC, on average 20 ± 9 (VL), 14 ± 5 (VM), 25 ± 11 
(GL), 19 ± 9 (GM), 15 ± 4 (TA grid), and 10 (TA intra) motor units per participant were identified. Their 
SIL values calculated before manual editing were 0.89 ± 0.05 for VL, 0.83 ± 0.04 for VM, 0.82 ± 0.03 
for GL, 0.87 ± 0.04 for GM, 0.94 ± 0.01 for TAgrid, and 0.95 ± 0.02 for TAintra. After visual inspec-
tion, a significant number of motor units was removed as their pulse train showed no clear separation 
between the spikes and the noise. The number of motor units removed was 6 ± 5 for VL, 10 ± 5 for 
VM, 21 ± 12 for GL, 6 ± 5 for GM, and 1 for TA grid and TA intra (Figure 2A). The remaining motor 
units exhibited a SIL value of 0.91 ± 0.04, 0.89 ± 0.06, 0.89 ± 0.03, and 0.90 ± 0.02, 0.94 ± 0.01, and 
0.95 ± 0.02 for VL, VM, GL, GM, TAgrid, and TA intra, respectively (Figure 2B).

When considering the baseline contraction performed at 40% MVC, on average 17 ± 6 (VL), 15 ± 5 
(VM), 29 ± 13 (GL), and 13 ± 4 (GM) motor units were identified by automatic decomposition, with 12 
± 8 (VL), 3 ± 3 (VM), 5 ± 6 (GL), and 4 ± 3 (GM) motor units kept after visual inspection (Figure 2A). 
The SIL value of the selected motor units reached 0.91 ± 0.03 for VL, 0.89 ± 0.05 for VM, 0.87 ± 0.02 
for GL, and 0.88 ± 0.03 for GM after manual editing (Figure 2B). These results show how manual 
editing can improve the accuracy of spike detection from the motor unit pulse trains. Moreover, a 
SIL value around 0.9 can be used as a threshold to automatically remove the motor unit pulse trains 
with a poor quality a priori. Thus, these two steps were performed in the all the subsequent analyses. 
Importantly, it is worth noting that the motor unit pulse train must always be visually inspected after 
the session to check for errors of the automatic identification of discharge times.

Validation of the algorithm
We first validated the accuracy of the algorithm using synthetic EMG signals generated with an 
anatomical model entailing a cylindrical muscle volume with parallel fibres (see Farina et al., 2008a, 
Konstantin et al., 2020 for a full description of the model). In this model, subcutaneous and skin 
layers separate the muscle from a grid of 65 surface electrodes (5 columns, 13 rows), while an intra-
muscular array of electrodes is directly inserted in the muscle under the grid with an angle of 30°. A 
total of 150 motor units were distributed within the cross-section of the muscle. Recruitment thresh-
olds, firing rate/excitatory drive relations, and twitch parameters were assigned to each motor unit 
using the same procedure as Fuglevand et al., 1993. During each simulation, a proportional-integral-
derivative controller adjusted the level of excitatory drive to minimise the error between a predefined 
target of force and the force generated by the active motor units.

Figure 3A displays the raster plots of the active motor units during simulated trapezoidal isometric 
contractions with plateaus of force set at 10, 20, and 30% MVC. A sinusoidal isometric contraction 
ranging between 15 and 25% MVC at a frequency of 0.5 Hz was also simulated. We identified on 

EMG decomposition, the extended EMG signals recorded over 125 ms segments are projected on the separation vectors, and the peaks are detected 
using the function ‘islocalmax’. Each peak is classified as spike or noise depending on the distance separating them from the centroids of the classes 
identified during the calibration. At the end of this process, the motor unit firing activity is translated into visual feedback, in the form of a raster plot, a 
quadrant, or the smoothed firing rate of an identified motor unit.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Workflow of a typical experimental session with I-Spin live.

Figure 1 continued

https://doi.org/10.7554/eLife.88670


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Rossato et al. eLife 2023;12:RP88670. DOI: https://doi.org/10.7554/eLife.88670 � 6 of 23

average 10 ± 1 and 12 ± 2 motor units with surface and intramuscular arrays, respectively (Figure 3A). 
During the offline decomposition, the rate of agreement between the identified discharge times and 
the ground truth, that is, the simulated discharge times, reached 100.0 ± 0.0% for intramuscular EMG 
signals and 99.2 ± 1.8% for surface EMG signals (Figure 3B). The offline estimation of motor unit 
filters was therefore highly accurate, independently of the level of force or the pattern of the isometric 
contraction.

Motor unit filters estimated during a baseline contraction at 20% MVC were then applied in real 
time on signals simulated during a contraction with a different pattern (sinusoidal; Figure 3C). The 

Figure 2. Effect of the manual editing on the reliability of motor unit pulse trains. Once the participants completed the baseline contraction, we ran an 
automatic offline decomposition. Then, an operator visually inspected and removed all the motor units for which the spikes were not clearly separated 
from the noise (red dots in A). The remaining motor units were manually edited (black dots in A). (B) The manual editing consisted of removing false 
positives and adding the false negatives, before updating the motor unit filter. The effect of this step on the SIL value and the coefficient of variation 
of the interspike intervals (CoV of ISI, without units) is shown on the right panel. The CoV of ISI estimates the regularity of spiking for each motor unit, 
an expected behaviour during isometric contractions at consistent levels of force. The red dots are the motor units before editing and the green dots 
are the motor units after editing. These scatters are connected with a grey vector to show the changes in SIL value and CoV of ISI. Vastus lateralis (VL), 
vastus medialis (VM), gastrocnemius lateralis (GL), gastrocnemius medialis (GM), and tibialis anterior (TA).

https://doi.org/10.7554/eLife.88670
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Figure 3. Validation of the algorithm with synthetic electromyographic (EMG) signals. Surface and intramuscular EMG signals were generated using an 
anatomical model with 150 motor units. (A) Raster plots of the active motor units during simulated trapezoidal contractions performed at 10, 20, and 
30% of the maximal force (maximal voluntary contraction [MVC]), and during a sinusoidal contraction with the force varying between 15 and 25% MVC 
at a rate of 0.5 Hz. The spike trains in red, blue, or green were respectively identified from intramuscular, surface, or both EMG signals. (B) The identified 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.88670
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rates of agreement between the online decomposition and the ground truth reached 96.3 ± 4.6% and 
98.4 ± 2.3% for surface and intramuscular EMG signals, respectively. Finally, we tested whether the 
accuracy of the online decomposition changed when the level of force decreased or increased by 10% 
MVC when compared to the calibration performed at 20% MVC (Figure 3D). The rate of agreement 
remained high when applying the motor unit filters on signals recorded at 10% MVC: 99.8 ± 0.2% 
(surface EMG) and 99.5 ± 0.3% (intramuscular EMG). It is worth noting that only 3 out of 10 motor 
units identified from surface EMG at 20% MVC were active at 10% MVC, while 8 out of 12 motor units 
identified from intramuscular EMG were active at 10% MVC. This shows how the decomposition of 
EMG signals tends to identify the last recruited motor units, which often innervate a larger number 
of fibres than the early recruited motor units (Henneman, 1957). On the contrary, the application of 
motor unit filters on signals simulated at 30% MVC led to a decrease in the rate of agreement, with 
values of 88.6 ± 14.0% (surface EMG) and 80.3 ± 19.2% (intramuscular EMG). This decrease in accu-
racy did not impact all the motor units, with five motor units keeping a rate of agreement above 95% 
in both signals. For the other motor units, we observed a decrease in precision, which estimates the 
ratio of true discharge times over the total number of identified discharge times. This was caused by 
the recruitment of two motor units sharing a similar space within the muscle, which resulted in a merge 
in the same pulse train (Figure 3D).

Application of motor unit filters in experimental data
We then asked eight participants (four  males and four  females) to perform trapezoidal isometric 
contractions with plateaus of force set at 10 and 20% MVC during which surface EMG signals were 
recorded from the TA with 256 electrodes separated by 4 mm. The aim of this experiment was to 
confirm the results of the simulation; specifically, to test the accuracy of the online decomposition 
when the level of force was below, equal to, or above the level of force produced during the baseline 
contraction used to estimate the motor unit filters (Figure 4). We assessed the accuracy of the motor 
unit spike trains identified in real time using their manually edited version as reference. A total of 144 
motor units were identified at both 10 and 20% MVC. When the test signals were recorded at the 
same level of force as the baseline contraction, we obtained rates of agreement of 95.6 ± 6.8% (10% 
MVC) and 93.9 ± 5.9% (20% MVC). The sensitivity reached 95.9 ± 6.7% (10% MVC) and 94.4 ± 5.6% 
(20% MVC), and the precision reached 99.6 ± 1.3% (10% MVC) and 99.4 ± 1.9% (20% MVC).

When the filters identified at 20% MVC were applied on signals recorded at a lower level of force 
(10% MVC), the rates of agreement decreased to 87.9 ± 16.2%. The sensitivity also decreased to 88.0 
± 16.2%, but the precision remained high (99.4 ± 4.3). Thus, the decrease in accuracy was mostly 
caused by missed discharge times rather than the false identification of artefacts or spikes from other 
motor units. When the filters identified at 10% MVC were applied to signals recorded at a higher 
level of force, the rates of agreement decreased to 83.3 ± 13.5%. The sensitivity decreased to 90.7 
± 8.1%, and the precision also decreased to 90.9 ± 12.6%. This result confirms what was observed 
with synthetic EMG, that is, motor units recruited between 10 and 20% MVC can substantially disrupt 
the accuracy of the decomposition in real time, as highlighted in Figure 4 (lower panel). Importantly, 
this situation does not happen for all the motor units, as suggested by the distribution of the values 
in Figure 4.

Accuracy of the online decomposition in different muscles
Twenty-one male participants completed additional experiments to test the accuracy of the online 
decomposition in different muscles (vastus lateralis [VL] and medialis [VM], gastrocnemius lateralis [GL] 
and medialis [GM], and tibialis anterior [TA]). They all performed isometric contractions at 20 and 40% 

discharge times were compared to the ground truth, that is, the simulated discharge times, using the rate of agreement. Each dot is a motor unit, and 
the line is the median. (C) The motor unit filters identified from the reference contraction (i.e. trapezoidal contraction at 20% MVC) were then applied 
in real-time on the incoming EMG signals simulated during the sinusoidal contraction. The rates of agreement are displayed for each motor unit; the 
line is the median. (D) The motor unit filters identified at 20% MVC were applied in real-time on signals simulated during contractions at 10 and 30% 
MVC. Rates of agreement, sensitivity (sens.), false negative rates (FNR.), and precision (prec.) are displayed for each motor unit. The lower precision for 
motor units identified in real time at 30% MVC can be explained by the presence of a merged motor unit, as highlighted on this example. The red dots 
represent the discharge times of this merged motor unit while the green dots represent the discharge times of the targeted motor unit.

Figure 3 continued

https://doi.org/10.7554/eLife.88670
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MVC while EMG signals were recorded with either grids of 64 surface electrodes (VL, VM, GL, GM, TA) 
or an intramuscular array of 16 electrodes (TA).

At 20% MVC, 94 (VL; eight participants), 21 (VM; eight participants), 14 (GL; eight participants), 56 
(GM; eight participants), 68 (TA grid; five participants), and 9 motor units (TA intra; one participant) 
motor units were identified. At 40% MVC, 76 (VL), 21 (VM), 19 (GL), and 25 (GM) motor units were 
identified. For the sake of clarity, we only report in this section the rates of agreement for each inten-
sity and muscle. Values of sensitivity, precision, and rates of false negatives are reported in Figure 5. 
The highest rate of agreement was observed for the TA (93.6 ± 9.2% with the grid and 97.3 ± 5.2% 
with the intramuscular array). Those values were lower for the vastii (VL: 82.1 ± 19.7%; VM: 75.3 ± 
18.5%) and gastrocnemii muscles (GL: 88.1 ± 7.8%; GM: 81.0 ± 17.7). When considering the contrac-
tions performed at 40% MVC, the rate of agreement was 84.0 ± 15.6% for VL, 75.2 ± 20.6% for VM, 
82.5 ± 8.1% for GL, and 87.9 ± 8.7% for GM (Figure 5).

Accuracy of the real-time biofeedback
Because the accuracy of the raster plot feedback is directly related to the accuracy of the estimation 
of the discharge times reported in the previous sections, here we only focus on the accuracy of the 

Figure 4. Reapplication of motor unit filters on electromyographic (EMG) signals recorded at varying contraction intensities. Surface EMG signals were 
recorded during isometric contractions at 10 and 20% maximal voluntary contraction (MVC). We compared the motor unit spike trains identified in real 
time with their manually edited version. The contraction intensity of the test contraction was either equal to (20% => 20% in A; dark red & 10% => 10% 
in B; light red), below (20% => 10% in A; light red), or above (10%=>20% in B; dark red) the level of the baseline contraction. We calculated the rate of 
agreement (ROA), the sensitivity (Sens.), the false negative rate (FNR.), and the precision (Prec.) for each motor unit. Each dot is an individual motor unit, 
each box represents the 25th and 75th percentiles of the distribution of values, and each line is the median. The lower precision in (B) was caused by the 
presence of a merged motor unit in the motor unit pulse train. The red dots represent the discharge times of this merged motor units while the green 
dots represent the discharge times of the targeted motor unit.

https://doi.org/10.7554/eLife.88670
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Figure 5. Accuracy of the online electromyographic (EMG) decomposition. We compared the motor unit spike trains identified in real time with 
their manually edited version. We calculated the rate of agreement, the sensitivity, the false negative rate, and the precision for each motor unit. 
Each dot is an individual motor unit, each box represents the 25th and 75th percentiles of the distribution of values, each bar represents the 5th and 
95th percentiles of the distribution of values, and each line is the median. VL: vastus lateralis, VM: vastus medialis, GL: gastrocnemius lateralis, GM: 

Figure 5 continued on next page
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smoothed firing rates. It can either be displayed in a quadrant, with a cursor moving within a two-
dimensional space according to the firing rates of two motor units, or with one cursor for a given 
identified motor units moving in the vertical direction and following a scrolling path.

At 20% MVC, the root mean squared error (RMSE) between the firing rate estimated in real time 
and its edited version was consistently below two pulses per second for all the motor units (Figure 6). 
The lowest RMSE was observed with the TA muscle (0.64 ± 0.77 pps and 0.44 ± 0.43 pps with grids 
and intramuscular arrays of electrodes). RMSE was 1.4 ± 1.5 pps for VL, 1.8 ± 1.5 pps for VM, 1.7 ± 
1.1 pps for GL, and 1.1 ± 1.1 pps for GM. At 40% MVC, the RMSE reached 1.1 ± 1.2 pps for VL, 1.8 ± 
1.1 pps for VM, 0.8 ± 0.5 pps for GL, and 0.6 ± 0.4 pps for GM. Overall, these RMSE provides strong 
evidence that the biofeedback accurately reflects the motor unit firing activity. It is highlighted by the 
two examples displayed in Figure 6B, with a raw smoothed firing rate with an RMSE at 0.83 pps, and 
in Figure 6C, with firing rates displayed in a quadrant with an average RMSE of 1.75 pps. Videos of 
the different forms of feedback are available in the GitHub.

Discussion
Assumptions of the algorithm
There are processing assumptions for the blind-source separation algorithm to accurately identify 
motor unit discharge times from multichannel EMG signals. Among them, the most important is the 
uniqueness of the distribution of motor unit action potentials across electrodes (that defines the sepa-
ration vector) among all the other active motor units within the recording volume (Caillet et al., 2023; 
Farina et al., 2008a). When this condition is not met, merged motor units appear in the motor unit 
pulse train, causing an increase in false positives (Figures 3 and 4) One way to satisfy this condition 
is to increase the selectivity of the electrodes to record the discharge activity of only a few motor 
units from a small volume of muscle (LeFever and De Luca, 1982). For example, Figure 1A shows 
motor unit action potentials detected only over 3–4 electrode sites along the array of intramuscular 
electrodes, while a motor unit action potential can be observed across many more electrodes with 
grids of surface electrodes. Therefore, the likelihood of having spatially overlapping motor unit action 
potentials – and thus merged motor units – is lower, which explains why the rate of agreement of 
motor units identified from intramuscular arrays of electrodes is much higher than grids of surface 
electrodes (Muceli et al., 2015; Muceli et al., 2022). A second way to increase the percentage of 
discriminable motor units among all the active motor units in the recording volume is to increase 
the spatial sampling of their activity using multiple electrodes (Farina et  al., 2016; Caillet et  al., 
2023; Farina and Holobar, 2016; Farina et al., 2008a). This has led to the growth of EMG recording 
systems with dense grids of surface electrodes (Farina et al., 2016), which compensate for the lack 
of specificity of motor unit action potential profiles that are recorded when using a pair of traditional 
bipolar EMG electrodes (Lindstrom and Magnusson, 1977).

Another necessary condition for EMG decomposition using the blind-source separation algorithm 
is the consistency of the motor unit filters across time. An obvious reason inducing changes in motor 
unit filters would be the displacement of the electrodes relatively to the source. Such drifts also exist 
with intracortical arrays and can be corrected with appropriate methods that track waveforms across 
electrodes (Steinmetz et al., 2021). However, the geometry of the muscle tissue is much more vari-
able than that of the cortical tissue, especially during movements. For example, muscle bellies become 
bulkier while shortening (Herbert et al., 2019), increasing the distance between the surface electrodes 
and the deep sources. In addition, the pennation angle of muscle fibres can change with contraction 
intensity (Fukunaga et al., 1997), modifying the direction of the propagation of motor unit action 
potentials along the fibres relatively to the position of the electrodes. All these factors impact the 
recorded motor unit action potential profiles across electrodes, which in turn will reduce the capacity 
to discriminate the same motor unit from the EMG signal (Oliveira and Negro, 2021; Farina et al., 
2004; Glaser et al., 2017). For these reasons, we recommend applying our approach during isometric 

gastrocnemius medialis, TAg: tibialis anterior recorded with a high-density grid of electrodes, and TAi: tibialis anterior recorded with an intramuscular 
array of electrodes.

Figure 5 continued
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Figure 6. Accuracy of the visual feedback based on the motor unit smoothed firing rates. The online electromyographic (EMG) decomposition was 
provided to the participants in the form of different visual feedback. We estimated the accuracy of the feedback by calculating the root mean squared 
error (RMSE) between the smoothed firing rates estimated from the motor unit spike trains identified in real time and from their manually edited 
version at 20% maximal voluntary contraction (MVC) (A) and 40% MVC (B). Each dot is an individual motor unit, each box represents the 25th and 75th 
percentiles of the distribution of values, each bar represents the 5th and 95th percentiles of the distribution of values, and each line is the median. VL: 
vastus lateralis, VM: vastus medialis, GL: gastrocnemius lateralis, GM: gastrocnemius medialis, TAg: tibialis anterior recorded with a high-density grid 
of surface electrodes, and TAi: tibialis anterior recorded with an intramuscular array of electrodes. (C) Smoothed firing rate of a motor unit provided in 
real time (Real time, red) vs. its manually edited version (Reference, grey). (D) Quadrant plot provided in real time (Real time, red) vs. its manually edited 
version (Reference, grey). Each dot represents the position of the cursor during one window of 125 ms.

https://doi.org/10.7554/eLife.88670
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contractions with a stable level of force, as even large changes in force during isometric contractions 
can impact the orientation of the muscle fibres relatively to the skin within muscles (Ito et al., 1998).

Usage of the software
The first step of the algorithm consists of identifying motor unit separation vectors (motor unit filters) 
from EMG signals with fastICA (Negro et  al., 2016; Barsakcioglu et  al., 2021; Chen and Zhou, 
2016). Classically, metrics such as the Pulse to Noise ratio (Holobar et al., 2014) or the silhouette 
value (Negro et al., 2016) are used to assess the reliability of the identified motor units by estimating 
the distance between the spikes and the noise. Here, we purposely reported all the motor units 
identified from offline decomposition in Figure 2 to illustrate the importance of manual editing, but 
a threshold should be used to automatically remove inaccurate spike trains (i.e. 0.9 in Negro et al., 
2016). It is noteworthy that such approach must always be associated with extensive manual editing 
to remove the discharge times incorrectly selected and to add missing spikes (Del Vecchio et al., 
2020; Hug et al., 2021). This necessary step precedes the update of the motor unit filter with all the 
detected spikes (Holobar et al., 2010), leading to an increase in the silhouette value and a decrease 
in the coefficient of variation of the interspike intervals (Figure 2B). Alternatively, one could speed up 
the processing flow by setting a higher threshold for the silhouette value. This would decrease the 
burden of manual editing at the cost of decreasing the number of identified motor units. However, 
it is important to note that using more stringent criteria does not preclude the manual editing, even 
for motor units with a high silhouette value (see motor units 1 and 2 with missed spikes in Figure 1B).

The second step of the algorithm consists of identifying motor units discharge times in real time by 
projecting extended segments of EMG signals on separation vectors (motor unit filters) to estimate 
motor unit pulse trains (Figure 1B; Barsakcioglu et al., 2021; Chen et al., 2020). This method was 
effective at identifying motor unit discharge times, with rates of agreement >0.75, regardless of the 
contraction intensity and muscle (Figure 5). It is noteworthy that the performance was particularly high 
for the recordings made with an intramuscular array of electrodes (rate of agreement of 0.97 ± 0.05, 
Figure 5). As mentioned above, the better performance of blind-source separation on multichannel 
intramuscular EMG has already been reported with offline analyses (Muceli et al., 2015; Muceli et al., 
2022; Chen et al., 2019). This is explained by the higher spatial selectivity of the electrodes (LeFever 
and De Luca, 1982), the larger bandwidth of the signal (Lindstrom and Magnusson, 1977), and the 
higher robustness of the motor unit filter as the signal is less affected by the geometric changes of the 
volume conductor. In contrast, precision and rates of agreements were lower for motor units identified 
over the vastii and gastrocnemii muscles when compared to the TA muscle (Figure 5). Even though 
the reason for this between-muscle difference is unclear, it is possible that the specific activation 
level of the vastii and gastrocnemii muscles varied more than that of TA between the baseline and 
test contractions because of muscle redundancy leading to multiple coordination strategies possible 
to perform knee flexion or plantarflexion. For example, a decrease in activation would decrease the 
height of the peaks of the estimated sources, potentially classified in the noise class during the online 
decomposition (Chen et al., 2020). Conversely, an increase in activation may activate motor units 
spatially close to those observed during the baseline contraction, corrupting their pulse train with 
merged sources (Holobar and Farina, 2014; Farina and Holobar, 2016). This explanation is in line 
with the lower rate of agreement observed when participants tracked a force target higher than the 
level of the baseline contraction (Figures 3 and 4). One way to overcome these challenges would 
be to dynamically update the motor unit filters and the centroids of the ‘spikes’ and ‘noise’ classes 
(Chen et al., 2020; Yeung et al., 2024; Mendez Guerra et al., 2024). While appealing, this approach 
is also computationally demanding (Chen et al., 2020; Yeung et al., 2024; Mendez Guerra et al., 
2024). We propose to update the motor unit filters and the centroids of the ‘spikes’ and ‘noise’ classes 
during the resting periods. In addition, it is recommended that the operator displays the motor unit 
pulse trains and identified discharge times between contractions to check for decomposition accuracy 
across the session.

Inter-individual differences in motor unit yields
An important consideration regarding the implementation of offline or real-time surface EMG decom-
position is the difference between individuals, with an overall lower yield in number of identified 
motor units in females (here: 9 ± 12) than in males (here: 30 ± 13). Typically, the number of identified 
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motor units from surface EMG is twice as low in females than males (Del Vecchio et al., 2020; Lulic-
Kuryllo and Inglis, 2022; Taylor et al., 2022). The cause for this difference remains unclear. It may be 
related to variations in properties of the tissues separating the motor units from the recording elec-
trodes, or to differences in the morphological and physiological properties of muscle fibres, as well as 
to the innervation ratios of motor units. These sex-related differences have so far only been supported 
by data extracted from animal experiments (Mierzejewska-Krzyżowska et al., 2011). However, the 
recent developments of simulation frameworks capable of generating highly realistic EMG signals 
for anthropometrically diverse populations may help understanding the impact of sex-related differ-
ences in humans (Maksymenko et al., 2023). Specifically, these simulations can account for diverse 
anatomical (e.g. muscle volume and architecture, thickness of subcutaneous tissues) and physiological 
characteristics (e.g. innervation ratio, number of motor units, fibre cross-sectional area, fibre conduc-
tion velocity, contribution of rate coding vs. spatial recruitment). Generating such dataset could help 
identifying the primary factors affecting EMG decomposition performance, ultimately enabling the 
refinement of algorithms and/or surface electrode design.

Summary
Overall, the main purpose of our software is to display to the participant a real-time visual feed-
back based on the activity of individual motor units or populations of motor units. The RMSE of the 
smoothed discharge rates was constantly below two pulses per second, with values as low as 0.44 
± 0.43 pps for the TA muscle recorded with intramuscular electrode arrays. Thus, the movement of 
the cursors accurately represented the variations in motor unit firing activity to the participant. In this 
study we have presented results of control of smoothed firing rates over a relatively large smoothing 
window, but the duration of the smoothing filter can be chosen by the user according to the needs 
and applications. Operators could use the provided software to interact with a virtual environment, 
such as typing on a keyboard with a cursor moved by modulating motor unit firing rates (Formento 
et al., 2021). In the field of motor control, neuroscientists may train participants to selectively acti-
vate individual motor units (Bräcklein et al., 2022), testing the concept of rigid versus flexible motor 
control (Formento et al., 2021; Bräcklein et al., 2022; Marshall et al., 2022), or movement augmen-
tation (Eden et al., 2022). Generally, we hope that this open-source software will open perspectives 
for neuroscientists to design experimental paradigms that takes advantage of online EMG decompo-
sition to study the neural control of movements at the motor neuron level.

Materials and methods
Simulation of EMG signals
We generated synthetic EMG signals using an anatomical model of a cylindrical muscle volume with 
parallel fibres surrounded by subcutaneous tissues and skin (Farina et al., 2008a; Konstantin et al., 
2020). The muscle radius was 10 mm, and the thicknesses of the subcutaneous and skin layers were 
4 mm and 1 mm, respectively. The centres of 150 motor unit territories were randomly and evenly 
distributed across the muscle cross-section. The number of fibres innervated by each motor neuron 
followed an exponential distribution, ranging from 66 to 3321 (Enoka and Fuglevand, 2001). The 
fibres of the same motor unit were positioned around the centre of the motor unit within areas of 
0.8–78.5 mm². The fibre density in the muscle reached 400 fibres/mm². The motor unit action poten-
tials were detected in the model by either a grid of 64 circular surface electrodes with a diameter of 
1 mm arranged in 5 columns and 13 rows (inter-electrode distance: 4 mm) or 16 circular intramuscular 
electrodes arranged in a single array (inter-electrode distance: 1 mm). The grid was centred over the 
muscle in the transverse direction. The intramuscular electrode array was centred with respect to the 
grid and inserted at an angle of 30° along the longitudinal direction of the volume toward the centre 
of the muscle.

Four profiles of force were generated, with either trapezoidal patterns reaching 10, 20, or 30% of 
the maximal force, or a sinusoidal pattern with the force varying between 15 and 25% MVC at a rate 
of 0.5 Hz. Each discharge time elicited single-fibre electrical potentials, summed together within each 
motor unit. The profile of each motor unit action potential changed between electrodes according 
to the morphology of the fibres and the distance of the fibres relative to the electrode. Ultimately, 
the synthetic EMG signal represented the sum of all motor unit action potentials and Gaussian noise.

https://doi.org/10.7554/eLife.88670


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Rossato et al. eLife 2023;12:RP88670. DOI: https://doi.org/10.7554/eLife.88670 � 15 of 23

Electromyographic recordings
The accuracy and capabilities of the online EMG decomposition algorithm was tested on a series 
of experimental data collected with either surface or intramuscular arrays of electrodes from five 
different muscles.

Surface EMG signals were recorded from the gastrocnemius medialis and lateralis (GM and GL; 
triceps surae protocol) or the vastus medialis and lateralis (VM and VL; quadriceps protocol) with 
two-dimensional adhesive grids of 64 electrodes (13 × 5 electrodes with one electrode absent on a 
corner, gold-coated, interelectrode distance: 8 mm; GR08MM1305, OT Bioelettronica). Surface EMG 
signals were recorded from the tibialis anterior with four two-dimensional adhesive grids of 64 elec-
trodes (13 × 5 electrodes with one electrode absent on a corner, gold-coated, interelectrode distance: 
4 mm; GR04MM1305, OT Bioelettronica). Before the placement of the grids, the skin was shaved and 
cleaned with an abrasive gel (Nuprep, Weaver and Company, USA). Each adhesive grid was held on 
the skin using a disposable adhesive foam layer. The cavities within the adhesive layer were filled with 
conductive paste (SpesMedica, Italy) to facilitate the skin-electrode contact. A 10-cm-wide elastic 
band was placed over the electrodes to ensure good contact between the electrodes and the skin 
throughout the experiment.

An intramuscular linear array of 16 electrodes on a thin-film (platinum-coated, interelectrode 
distance: 1 mm) was inserted into the tibialis anterior in one participant at an approximate angle of 
30°. The insertion was guided with a portable ultrasound probe (Butterfly IQ+, Butterfly Network, 
USA).

A reference electrode was positioned over the tibia of the right limb (triceps surae protocol), 
over the patella of the right limb (quadriceps protocol), or over the medial malleolus (tibialis ante-
rior protocol). A strap electrode dampened with water was placed around the ankle (ground elec-
trode) for each data collection. The EMG signals were recorded in monopolar mode and digitized 
together with the torque signal at a sampling rate of 2048 Hz for the grids of surface electrodes and 
10,240 Hz for the intramuscular array of electrodes (EMG-Quattrocento, 400 channel EMG amplifier; 
OT Bioelettronica).

Experimental procedure
A total of 29 individuals participated in the experiments (4 females/25 males; 28 ± 5 years old; 178 ± 
6 cm; 73 ± 16 kg). None of the participants reported lower limb injury or pain in the 6 months prior 
to testing. Ethical committees approved the study (triceps surae and quadriceps protocols: CERNI – 
Nantes Université, n°04022022; tibialis anterior protocol: Imperial College London, no. 18IC4685). All 
participants provided their informed written consent before the beginning of the experiment.

The right side of the body was tested for all participants and for all protocols. For the triceps surae 
protocol, participants sat on a dynamometer (Biodex System 3 Pro, Biodex Medical, USA) with their 
hip flexed at 80°, 0° being the neutral position, and their right leg fully extended. Their ankle angle 
was set to 10° of plantarflexion, 0° being the foot perpendicular to the shank. For the quadriceps 
protocol, participants sat on the dynamometer with their hips flexed at 80° and the knee of their right 
leg flexed at 80°, 0° being the full extension. Inextensible straps were tightened during both tasks to 
immobilise the torso, pelvis, and thigh on the test side. For the tibialis anterior protocol, participants 
sat on a chair while their foot was fixed onto the pedal of a dynamometer (OT Bioelettronica) coupled 
with a load cell (CCT Transducer, Italy) and positioned at 30° in the plantarflexion direction (0° being 
the foot perpendicular to the shank). The foot was fixed to the pedal with inextensible straps posi-
tioned around the proximal phalanx, metatarsal, and cuneiform. Force signals were recorded using 
the same acquisition system as for the EMG recordings (EMG-Quattrocento; OT Bioelettronica).

All experiments began with a standardised warm up, which included five 3  s isometric plantar 
flexion or knee extension contractions at 50, 60, 70, and 80%, and three 3 s contractions at 90% of 
the participants’ subjective maximal torque. Then, after 2 min of rest, participants performed three 
MVCs for 3–4 s, with 60 s of rest in between. Peak MVC torque was considered as the maximal value 
obtained from a moving average window of 250 ms.

For the triceps surae and quadriceps protocols, participants performed three trapezoid isometric 
contractions at 40% of the MVC (referred to as baseline contractions) to identify motor unit filters 
offline. Each of these contractions involved a 5  s ramp-up, a 20  s plateau, and a 5  s ramp-down 
phase and was separated by 60 s of rest. The separation vectors were identified offline from these 
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contractions and then applied in real time to estimate the firing activity of each identified motor unit 
during three additional trapezoid contractions (referred to as the online task). Each of these online 
tasks involved a 5 s ramp-up, a 30 s plateau, and a 5 s ramp-down phase and was separated by 60 s 
of rest. To test the effect of variations in contraction intensity between the online task and the base-
line contraction used to identify the separation vectors, each plateau consisted of three successive 
10 s targets at 35, 40, or 45% of the MVC performed in a random order. During these online tasks, 
feedback of motor unit discharge times and torque output was displayed in real time on a monitor to 
the participants.

To test the effect of the baseline contraction intensity on the accuracy of real-time identification 
of motor unit discharge activity; the procedure was repeated with a baseline intensity of 20% MVC. 
During the last three trapezoidal contractions, each plateau consisted of three successive 10 s targets 
at 15, 20, or 25% of the MVC performed in a random order.

For the tibialis anterior protocol with grids of surface electrodes, participants performed a trape-
zoid contraction at 10 and/or 20% of the MVC, involving a 10 s ramp up, a 60 s plateau, and a 10 s 
ramp-down phase (baseline contraction). The separation vectors were identified from this contraction 
and then applied in real time over a second identical contraction (online task). The same procedure 
was repeated for the tibialis anterior protocol with an intramuscular array of electrodes, with contrac-
tions involving a ramp up phase of 2 s, a plateau of 20 s, and a ramp-down phase of 2 s.

Data processing
Mathematical modelling of the recorded spike trains
The spike train of a motor neuron recorded over time ‍t ∈ [0, T]‍ can be described as the result of a 
convolution between a delta function (δ) representing the firing times (φ), and finite impulse responses 
(h) representing action potentials of duration ‍L :

∑L−1
l=0 h(l)

∑
r δ(t − ϕr − l)‍. In practice, the nature of 

h and the duration L depend on the type of recordings. For electrophysiological measurements, h 
characterises the local electrical field generated by the spike and conducted through the surrounding 
tissues.

As the recorded volume of tissue comprises many active neurons, each recording can 
be considered as a convolutive mixture of multiple sources, and the previous equation can 
be expressed in the form of a matrix to also consider all the electrodes of an array: given 

‍s(k) =
∑

r δ(k − φr); X(t) =
∑L−1

l=0 H(l)S(k − l) + N(t)‍, where ‍X(t) = [x1(t), x2(t), ..., xm(t)]T
‍ is a matrix of m 

electrophysiological signals, ‍S(t) = [s1(t), s2(t), ..., sn(t)]T
‍  is a matrix of n motor neurons’ spike trains, 

and ‍H(l)‍ is a m by n matrix containing the lth sample of action potentials from n neurons and m signals. 
In this situation, we can reformulate the model as an instantaneous mixture of an extended set of 
sources, that is, the motor neurons’ spike trains and their delayed versions. This allows us to simply 
write the previous equation as a multiplication of matrices, in which each source is delayed L times, 
L being the duration of the impulse response h. This model can be inverted for neural decoding with 
source-separation approaches.

Identification of separation vectors (motor unit filters) with blind-source 
separation
The monopolar EMG signals collected during the baseline contractions were extended with an exten-
sion factor of ‍

1000
m ‍ (Holobar and Zazula, 2007), where m is the number of channels free of any noise 

or artefact. The signals were then demeaned and whitened. A contrast function was iteratively applied 
to estimate a separation vector that maximised the level of sparseness of the motor unit pulse train 
(Figure 1B). This loop stopped when the variation of the separation vector between two successive 
iterations reaches a predefined lower bound. After the application of a peak detection algorithm, the 
motor unit pulse train contained high peaks (i.e. the spikes from the identified motor unit) and low 
peaks from other motor units and noise. High peaks were separated from low peaks and noise using 
k-mean classification with two classes (Figure 1B). The peaks from the class with the highest centroid 
were considered as spikes of the identified motor unit. A second algorithm refined the estimation of 
the discharge times by iteratively recalculating the separation vector and repeating the steps with 
peak detection and k-mean classification until the coefficient of variation of the interspike intervals 
was minimised. The accuracy of each estimated spike train was assessed by computing the silhouette 
(SIL) value between the two classes of peaks identified with k-mean classification (Negro et al., 2016). 
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When the SIL exceeded a predetermined threshold, the motor unit filter was saved for the real-time 
decomposition, together with the centroids of the ‘spikes’ and ‘noise’ classes (Figure 1B).

Manual editing
There is a consensus among experts that automatic decomposition should be followed by visual 
inspection and manual editing (Martinez-Valdes et al., 2023). Manual editing involves the following 
steps: (1) removing spikes that result in erroneous firing rates (outliers), (2) adding discharge times that 
are clearly distinguishable from the noise, (3) recalculating the separation vector, (4) reapplying the 
separation vector on the EMG signals (either a selected window or the entire signal), and (5) repeating 
this procedure until no outliers are present and all clearly distinguishable spikes have been selected. 
Importantly, the manual editing of potentially missed or falsely identified discharge times should not 
be accepted before the application of the updated motor unit separation vector, thereby generating 
a new pulse train. Manual edits should be accepted only if the silhouette value improves following 
this operation or remains well above the pre-established threshold. A more extensive description of 
the manual editing of motor unit pulse trains can be found in Del Vecchio et al., 2020. Even though 
some of the aforementioned steps involve subjective decision-making, evidence suggests that manual 
editing after EMG decomposition with blind-source separation approaches remains highly reliable 
across operators (Hug et al., 2021). Specifically, the median rate of agreement calculated for 126 
motor units over eight operators with various experience in manual editing was 99.6%. All raw and 
processed data have been made available on a public data repository so that they can be used for 
training new operators (http://doi.org/10.6084/m9.figshare.13695937).

Real-time identification of motor neuron activities
EMG signals were transmitted by packages of 256 data points for the surface grid recordings (125 
ms with a sampling frequency of 2048 Hz) or 1280 data points for the intramuscular array recordings 
(125 ms with a sampling frequency of 10,240 Hz). The electrode mask determined from the baseline 
contractions was applied to remove the channels with noise or artefacts and the data was extended 
using the same extension factor as for the baseline contraction (see the section on EMG decomposi-
tion above). The matrix of separation vectors identified during the baseline contraction was applied 
over the extended EMG signal. Local peaks were identified for each motor unit using the MATLAB 
function ‘islocalmax’ with a minimal separation of 25 ms between peaks to limit the number of false 
positives (Figure 1C). These peaks were considered as spikes when their distance from the centroid of 
the ‘spike’ class was shorter than the distance from the centroid of the ‘noise’ class (Figure 1C). Both 
centroids were identified from the offline decomposition made on the baseline contraction.

We calculated the firing rate (i.e. spikes per second) of individual motor units as the sum of the 
spikes over a moving window of eight consecutive epochs of 125 ms. We chose this approach to 
facilitate the smoothness of the visual feedback, in contrast to the instantaneous firing rate, which is 
calculated as the instantaneous inversed interspike interval, which oscillates more due to the presence 
of synaptic noise. While this approach introduces a delay of 500 ms in the estimation of the firing rate, 
we identified in pilot testing that this also facilitates the control of motor unit firing activities by the 
participant. To further increase the smoothness of the online biofeedback, we added the option in 
the software to average individual firing rates using a moving window. For the data reported in this 
article, we selected a value of four consecutive values, corresponding to a window of 500 ms. Note 
that researchers who aim to minimise the delay of the visual feedback can disable this option, change 
its value, or use the real-time raster plots that displays the instantaneous discharge times of each 
motor unit.

Computational time
The computational time depends on the number of identified motor units during the baseline contrac-
tion, the number of peaks sorted during each epoch, and the number of EMG channels retained for 
the analysis. We considered the computational time for the decomposition as the time between the 
reception of the EMG signals by the computer and the estimation of the discharge times of all the 
identified motor units. We considered the computational time for the feedback as the time between 
the decomposition of the EMG signals and the update of the online feedback. The computational 
times were calculated on a laptop equipped with an Apple M1 Max chip and 64 GB of RAM.

https://doi.org/10.7554/eLife.88670
http://doi.org/10.6084/m9.figshare.13695937
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On average, the time between the reception of an epoch of EMG signals and the identification of 
the spikes was 4.9 ± 3.0 ms for data collected with high-density grids of surface electrodes. To esti-
mate the computational time per motor unit, we performed a linear regression between the number 
of identified motor units and the computational time per epoch using data from all the experiments 
made with high-density surface electrodes. The slope of the linear fit, that is, the computational time 
per motor unit, was 0.37 ms (Figure  7A). Across all the experiments, the maximal computational 
time was 13.1 ms for 26 identified motor units. Of note, when considering the experiment made with 
intramuscular arrays of electrodes, the computational time reached 32.0 ms for nine identified motor 
units. This was longer than observed for the same number of identified motor units using high-density 
surface electrodes (5.2 ms; Figure 7B) and was due to the greater sampling frequency used for the 
intramuscular recordings.

Figure 7. Computational time of the online electromyographic (EMG) decomposition. (A) We considered the computational time for the decomposition 
as the time between the reception of the EMG signals and the identification of the spikes for all the motor units. We computed the linear regression 
between the number of identified motor units and the computational time and considered the slope as the computational time per motor unit. Each 
dot represents one decomposition, and the colour scheme depends on the muscle. (B) As the sampling frequency differed between recordings 
with high-density grids and intramuscular arrays of electrodes, we compared the computational times for both techniques with the same number of 
identified motor units (i.e. 9). (C, D) After the decomposition, the motor unit discharge activity was translated into visual feedback, either in the form of 
a raster plot or the smoothed firing rates for all the identified motor units. As for the decomposition, we normalised the computational time per motor 
unit using a linear regression.

https://doi.org/10.7554/eLife.88670
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We then calculated the additional computational time to display visual feedback in the form of 
a raster plot or smoothed firing rates of all the identified motor units. On average, we observed 
computational times of 8.6 ± 5.7 ms and 11.2 ± 7.6 ms for raster plots and smoothed firing rates, 
respectively. The computational time per motor unit was 0.74 ms and 0.99 ms for raster plots and 
smoothed firing rates, respectively (Figure 7). Of note, the computational time for the quadrant plot 
made from the activity of two motor units reached 14.8 ± 0.0 ms on average. The standard deviation 
of computational times across windows reached 5.4 ± 4.0 ms (raster plot), 4.0 ± 3.2 ms (smoothed 
firing rate), and 2.8 ± 2.5 ms (quadrant). It is noteworthy that the computational times for experiments 
with grids of electrodes or intramuscular arrays of electrodes was similar regardless of the type of 
visual feedback (Figure 7). Overall, as the total computational time was constantly shorter than the 
duration of an epoch of EMG signals, the visual feedback was always updated during the recording of 
the next epoch of EMG signals. Therefore, the only delay was the incompressible recording time per 
epoch of signals, that is, 125 ms.

Accuracy of the real-time identification of motor unit firing activity
To assess the accuracy of the real-time identification of motor unit spike trains, we compared the 
motor unit spike trains identified in real time with those obtained after manual editing. The manual 
editing was performed offline as described above (Del Vecchio et al., 2020; Hug et al., 2021).

The accuracy of the real-time decomposition was assessed for each motor unit by computing the 
sensitivity [TP/(TP + FN)], the precision [TP/(TP + FP)], the false negative rate [FN/(TP + FN)], and the 
rate of agreement [TP/(TP + FN + FP)] between the manually edited spike train (offline) and the spike 
train identified in real time.

Here, TP (true positive) is the number of spikes identified in both the real time and edited spike 
trains, FP (false positive) is the number of spikes only identified in the real-time spike train and FN 
(false negative) is the number of spikes only identified in the edited spike train.

To assess the accuracy of the biofeedback provided by the software, we measured the RMSE 
between the path drawn by the smoothed firing rate of motor units estimated in real time and the 
path estimated from the manually edited motor unit spike trains.

Data availability
The entire data set (raw and processed data) codes and a user manual of the software are available at 
https://github.com/simonavrillon/I-Spin, copy archived at Avrillon, 2024.
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