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Integrated rate equations are presented that describe irreversible enzyme-catalysed
first-order and second-order reactions. The equations are independent of the detailed
mechanism of the reaction, requiring only that it be hyperbolic and unbranched. The
results should be directly applicable in the laboratory.

In two previous papers (Boeker, 1984a,b) I have
shown that the general integrated rate equation for
enzyme-catalysed reactions that are second-order
in substrates and/or products is:

eot = Cr [In +] .n (1

In this equation, Pe- P0 is a concentration
expressing the conversion of substrate into product
at equilibrium. This quantity is one root of the
quadratic equation for Pe-P0 in terms of Ke and
the initial concentrations of the substrates and the
products. The second, physically impossible, root
of this equation is D+Pe-P0, which appears in
the second logarithmic term of eqn. (1), and
represents a concentration greater than the amount
of substrate initially present. For any given
reaction, the coefficients Cf, CS, C, etc. in eqn. (1)
depend on the macroscopic constants (KA, kcat
etc.) and the equilibrium concentrations of the sub-

Abbreviations used: A, B, P, and Q are the instantan-
eous concentrations of substrates and products; the
subscripts 0 and e indicate the initial and equilibrium
concentrations respectively. AP is P-PO, the net change
in product concentration at time t. K, is the equilibrium
constant, k, is the forward rate constant for uncatalysed
reactions, Vf is the maximum velocity in the forward
direction, kca. is the catalytic constant or turnover
number, eo is the enzyme concentration, and KA is the
Michaelis constant for the substrate. For A=P+Q,
D =-(Pe+Qe+Ke); for A+B=aP, D = Ae+Be+ liKe;
for A+B=P+Q, D = [Ke(Ae+ Be)+Pe+ Qe]/(Ke -1)
(Boeker, 1984a). The coefficients J are collections of
microscopic rate constants whose specific definition, for
any particular mechanism, can be obtained directly from
a derivation in accordance with King & Altman (1956).
Definitions of the coefficients C for reversible catalysed
reactions are given in Boeker (1984b).

strates and products. They do not depend on the
enzyme concentration. The exact dependences
(Boeker, 1 984b) are a function of the stoichiometry
of the reaction.

AP
D+PPe-Po + C1AP + IC2 (Ap)2 + +C3(AP)3 (1)

e 0

Eqn. (1) describes all linear hyperbolic mechan-
isms, including those with dead-end inhibition, but
is strictly valid for random (i.e. branched) mechan-
isms only if the rapid-equilibrium assumption
holds. If the reaction is first-order in both substrate
and product, C, and C3 are necessarily zero. If the
reaction is uncatalysed, but second-order, C1, C2
and C3 are zero and Cf and C, are equal; if it is first-
order, Cs is also zero. As the equilibrium constant
in eqn. (1) increases, PJ-Po approaches the initial
concentration of the limiting substrate, and
D + Pe-Po approaches the initial concentration of
the other substrate.

In principle, eqn. (1) should be applicable
experimentally, but the analysis will be compli-
cated greatly by the need either to know or to fit
the equilibrium constant. This problem can be
avoided by examining irreversible reactions, i.e. by
examining reactions where the limit of eqn. (1) as
l/KeO is applicable.
Obtaining this limit by starting with eqn. (1) and

letting l/Ke,-0 is not a straightforward process. A
simpler approach, in fact, is to begin with a form of
the derivative rate equation appropriate for irre-
versible reactions and repeat the integration. In the
present paper I give the results of that process for
the stoichiometries A P, A P+ Q, A+ B-P and
A + B P + Q. In addition, results are given for two
experimentally likely but mathematically unique
special cases, one where the initial substrate con-
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centrations are equal, and one where one substrate
concentration greatly exceeds the other.

Integrated rate equations specifically for irre-
versible first-order reactions have been presented
previously by a number of authors (Henri, 1902;
Huang & Niemann, 1951; Sch0nheyder, 1952;
Laidler & Bunting, 1973; Orsi & Tipton, 1979).
These equations have been derived for reactions
that follow a particular mechanism; with this
limitation, they are consistent with the general
form presented here. As far as I am aware,
equations specifically for irreversible second-order
reactions do not appear in the literature. First-
order equations have been applied to second-order
reactions under pseudo-first-order conditions
(Duggleby & Morrison, 1977, 1978).

Derivations

The steady-state rate equations used in this
paper have been described previously (Boeker,
1984b). For a reversible reaction with stoichio-
metry A + B = P, for example, the general deriva-
tive equation is:

special case where Bo = AO, B = A is used, and,
where Bo > AO, B = Bo is used. The denominators
are then sorted to give a polynomial in A.

For reactions with one substrate, the result of
this process is:

-dA

dt
eOkcat.JAA

a +/JA + yA2 +5A3

a, fi, y and 6 are collections of concentrations and J
coefficients that are defined in the sorting process.
The same equation is obtained for two-substrate
reactions when Bo > Ao except that JA is replaced
by BOJAB. It can be re-arranged and integrated in a
straightforward fashion. If, after integration,
AO-A is replaced by AP, the result is:

IAP
kcatJAeot =-aln(I - + (/ + yA0 +

AAo

6A 2)AP - I (y + 23AO) (Ap)2 + 1 3(AP)3
The coefficients a, ,B, y and 6 must now be replaced
with the use of the definitions obtained when the
original denominator was sorted. Many terms

dP eokcat.JAB (AB- PIKe)
dt Jo + JAA + JBB + JpP + JABAB +JApAP + JBpBP + JABpABP

For A = P + Q, the numerator term in parentheses
is A - PQ/Ke; the denominator lacks terms in B but
has additional terms in Q, AQ, PQ and APQ. For
A + B = P+ Q, the numerator term is AB-PQIKe
and the denominator contains all 16 terms in
substrates and products. For a first-order reaction,
the numerator term is A - PIKe and the denomina-
tor has terms in JO, JA, JP and JAP. As these
equations are written, the coefficients J are not all
independent; division by JAB (two substrates) or JA
(one substrate) is normally used to accomplish this.
The equations become mechanism-specific when
the appropriate coefficients J are set equal to zero.

If the reaction is irreversible, the second term in
the parentheses in the numerator is zero. The
necessary conditions are discussed rigorously in the
Results section. It is important to note that
irreversibility does not imply the absence of
product inhibition; these terms still appear in the
denominator.
The method of integration is a modification of

that described for reversible reactions (Boeker,
1984b). Of the several concentration variables
available, the most economical (in terms of the
complexity of the resulting derivation) appears to
be the instantaneous concentration of one sub-
strate, e.g. A. The other concentrations, B, P
and Q, are eliminated from the derivative equa-
tions with the substitutions B= Bo-AO+A,
P=Ao+P0-A and Q=Ao+Q0-A. For the

cancel, substantially simplifying the final equa-
tion. The results are described in the next section.
The process is more complex when there are two

substrates. After the concentration substitutions
have been carried out, the equation has the form:

-dA eokcat.JABA (Bo-A + A)

dt a + AA + yA2 +3A3 +CA4
(3)

Before integration, a + ,A +yA2 +6A3 +gA4 must
be divided by A(Bo-AO+A). This can be accom-
plished by algebraic long division in which the
final two terms are obtained by the method of
partial fractions. One of these terms will depend on
A'- and the second on (Bo- Ao + A)-1. Integration
is then straightforward, and replacing Ao-A by
AP gives:

kcat.JABeot =

a- f(Bo-A0) + y(B0-AO)
b(Bo-A0)3 e(Bo-A0)4J

AO-Bo

AP
in

Bo

a / AP\
*ln l-I

B - Ao Ao~~~0

+ (y + 25Ao- 3Bo + 3AM02 -3&AoBo + eBO2)AP
- l(3 + 3EAO- BO) (Ap)2 + ac(AP)3
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For two-substrate reactions where Bo = Ao, the
equation that results from the concentration substi-
tutions is eqn. (3) above except that Bo- Ao = 0.
The algebraic long division is now greatly simpli-
fied; of the last two terms, one is PA-' and the
second is aA-2, thus changing the form of the final
result. After re-arrangement and integration:

kcat.JABeot o ( Ao-P- (
AO 'AO -AP)fln1

AP

AO
+ (y + 5Ao + cAO2)AP
- l( + 2cAo) (Ap)2 + S(p

Results

The general form of the integrated equation for
these reactions is:

e0t= Cfr-InxI - A ] + CS -IBn J

+ C,AP+-LC2(AP)2 +*C3(AP)3 (4)
Definitions of the coefficients C in terms of the
fundamental kinetic constants are given in Tables
1-4. The information in these Tables has been
ordered according to initial concentrations. Thus,
for example, for the reaction A- P +Q in Table 1,
the first terms shown are those that depend only on
AO. Next are the additional terms that occur when
one product is present initially, then those for the
second product, and finally those that occur only
with both. When the initial concentrations of
products are zero, the expressions in Tables 1-4
simplify greatly. Again, with A-PP+Q as an
.example, Cf is now simply a quadratic in AO, and
C, a linear function.
An interesting aspect of the results in Tables 1-4

is the relationship between the C and the J
coefficients. This is most clearly seen when the
numbers of substrates and products are balanced.
For the stoichiometry A-+P, the highest-order C
coefficient is C, which depends only on JAP/JA, a
'two-way' constant. C, depends on this constant
and on the one-way constants JA/JA and JP/JA,
whereas Cf depends on these three plus JO/JA. An
identical trend can be seen for A + B-P + Q: C3
contains only JABPQ/JAB, C2 contains all the three-
way constants as well, and C, adds the two-way
constants. Cs contains all the constants except JB,
and Cf omits only JA. This trend in the C
coefficients is completely obscured by the usual
kinetic notation: in A-_P, for example, JAP/JA and
JP/JA are the uncompetitive and competitive pro-
duct inhibition constants, and might be written as
Kip and Kp. JA/JA is of course 1, and JO/JA is KA.

In comparing the integrated equations for

reversible (Boeker, 1984b) and irreversible reac-
tions, one feature stands out. When a reaction of
stoichiometry A= P+Q approaches irreversi-
bility, the logarithmic term characteristic of
second-order equations drops out, and the order of
the polynomial in AP increases by one. In other
words, this stoichiometry is correctly treated as
second-order when reversible, but as first-order
when irreversible.
One additional result can be obtained from

Tables 1-4. For reactions with one substrate, the
sum C1 + Cf/AO can, simply by adding the terms in
Tables 1 and 3, be shown to be the reciprocal of the
initial velocity; compare the appropriate version of
eqn. (2). For two substrates, Cl + Cf/Ao+ CS/BO is
the reciprocal of the initial velocity. This result
immediately suggests that complete time courses
could be analysed with the same plots etc. as are
used for initial-rate studies. However, this does not
make good use of the information in each progress
curve; in the Discussion section I suggest better
ways to obtain the macroscopic kinetic constants.
That a particular sum of the coefficients should

give the reciprocal of the initial velocity may at
first glance seem surprising, but there is a straight-
forward reason for it. One of the series expan-
sions for -ln(l -AP/Ao) is AP/Ao+4(AP/
AO)2 +i(AP/Ao)3 + .... If the logarithmic terms
in eqn. (4) are each expanded, and if the equation is
then sorted according to dependence on AP, the
resulting coefficient of the first-power term is
either Cl + Cf/Ao or Cl + Cf/Ao + CS/BO, depending
on the stoichiometry. This is the first virial
coefficient when t is a function of AP. Its reciprocal
must be the first virial coefficient when AP is a
function of t, and this virial coefficient is the initial
rate. Techniques in which initial rates are ex-
tracted from progress curves by obtaining a first
virial coefficient are based on this principle.
The results shown in Tables 1-4 depend on the

assumption of irreversibility in the derivative
equation. The conditions for irreversibility depend
on the stoichiometry, and can be formulated
explicitly. The simplest is A-+P, where, when the
reaction is irreversible, the numerator term
A - P/Ke reduces to A. A - P/Ke can be rewritten as
(1 +l/Ke) (Pe-P) (see Boeker, 1984a). This re-
duces to A when Ke> 1 and when P,-P ap-
proaches A, i.e. when A, approaches 0. To
determine when Pe-P approaches A, let X be the
minimum desired ratio between Pe-Po and A,).
Eliminate Pe from this expression in favour of Ke,
AO and Po, and solve the result for Ke. This gives:

PO

Ke> A_
I1-x
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Table 1. Interpretations ofCf
The units of Cf are those of (enzyme concentration)(time), e.g. ug-ml' -min.

Stoichiometry Cfkcat.JAB *

A -P

A-P+Q

A + B- P

A + B - P
BO > AO

A + B -_P
BO =AO

A + B - P + Q

A + B - P+ Q
BO > AO

A + B -P + Q
BO =AO

JO + JPAO + JPO

JO + (JP + JQ)AO + JPQAO2 + (JP + JPQAO)PO + (JQ + JPQAO)QO + JPQPOQO

J+ JB + (JP +JBP) (AO+PO)

Jo / N
A O ( B-+ O +J + JBQPO

Bo B0 JI

JA Q+ B _+ (Ap +JBP)(A° P( ))

Jo p/J+JQ JPQ
JJ + +JBP+JBQAO+ ( +JBPQ AO

BO-AO \BO-AO BO-AO

[O (JBP BPQ)OO+BO + JBPQ)AA0 PO

J JQ+ + J (Q+ JPQ +J AOQ+ JPQ + [JP +Q
BO-AO BoJPB1-AO Bo-AOPQ+JBPQQ +JAPQ)POQO

!Jo (J +JBQ)AO+ (PQ +JBpQ~A02 +(Q +JBPQ)POQO

B
+ JB+(JBP

B1 r JQ (Jo
+[ '+JBP+(JPQ +JBpQ)AO Po + -Q+JBQ+ JQ+JBPQ Ao]Qo

JA +JB-(JP+JQ) + (JAP +JAQ +JBP +JBQ -2JPQ)Ao+ (JAPQ + JBPQ)AO2 + [jAP +jBP jpQ
+ (JApQ + JBpQ)AOIPO + [JAQ + JBQ -JpQ + (JApQ + JBpQ)AOIQo + (JApQ + JBPQ)PoQo

* CfkCatJA when there is only one substrate.

Since this condition also requires that Ke > 1, it is
both necessary and sufficient.

For A+B-P or A+B-P+Q, the numerator
term AB-PIKe or AB-PQ/Ke is equal to (Pe-P)
(D+Pe-P) (Boeker, 1984a). Ps-P must again
approach A, and D+ Pe-P must approach B. For
A4P+Q, A-PQ/Ke=(Pe-P) (D+Pe-P)
( l/KJ); Pe-P must approach A and (D+ Pe-P)
(I iKe) must approach 1. Explicit conditions for
these limits are shown in Table 5.

Discussion

A fundamental requirement of progress-curve
analysis is that the enzyme is not subject to

inactivation during the experiment. The equations

presented in this paper have been written in terms
of eot, rather than t alone, in order to make explicit
a test for enzyme instability (Selwyn, 1965; see also
Cornish-Bowden, 1979, for relevant early litera-
ture). Selwyn (1965) pointed out that, regardless of
the actual quantities in the integrated rate equa-
tion, the value of eot depends only on AP and the
initial substrate and product concentrations. This
is clear from eqns. (1) and (4). If no inactivation
occurs, two progress curves at different values of eo
will be superimposable if plotted as product
formed versus eot, even though a much longer time
is required to reach a given AP at the lower eo. If
inactivation is occurring, for example as a first-
order process, there will be more inactivation at
the lower value of eo (where t will be longer) and
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Table 2. Interpretations ofCs
The units of Cs are the same as Cf (see Table 1).

Cs kcat. JABStoichiometry*

A + B- P

A + B -Pt
Bo =AO

A + B -P + Q

A + B -P + Qt
Bo =Ao

A JO +A+JA B +JAP) (Bo+PO)

AO AO

A0-B0 \A0-B0 AP JAQ)Ok(A- B0 + 0APQ)A
JO
_

JQ( JPQ )2j
+[A A + JAQ + J(A p + JAPQ)BO+ QO APQBO o

+IAO -Bo AO- Bo OB

+p JA + JQ+JAPQIBo]Qo(JQ
+ JQ AQ + JPQBo Q + APQEOQOIAO-Bo \-Bo A]\A-Bo

Jo+Jp+JQ+JpQA +
JP (AQ PQ

A +JPQ PO+ PQ Q +
A POQO

~0 0

* Cs is 0 for A -P or P + Q and when BO >Ao for A + B --,P.
t Cs is the coefficient of AP/(AO- AP) rather than -ln (1 - AP/BO).

Table 3. Interpretations ofC,
The units of CI are those of (enzyme concentration)(time)/(substrate concentration), e.g. ug * ml- I mm mm-'.

Stoichiometry

A -P

A -P + Q

A + B -Pt

Clkcat.JAB*

JA JP + JAPPO

JA- (JP + JQ) - JPQAO + (JAp- JPQ)PO + (JAQ - JPQ) Q° + JAPQPOQO

JAB - (JAP + JBP) + JABPPO

JABJBP+ ( + JABP) PO
Bo Bo

A + B - P
Bo > AO

A + B -P + Qt

A + B -P + Q
Bo > Ao

JAB + JPQ - (JAP + JAQ + JBp + JBQ) - JBPQAO -JAPQBO + (JABP - JAPQ - JBPQ)PO
+ (JABQ JAPQ JBPQ)QO + JABPQPOQO

( JAB-(JBP+JBQ)- -+JBpQIAO+
A +JABP-JBPQP

Bo B0o / Bo

+ ( Q

B + JABQ JBPQ) QO + B + JABPQ) PoQo

* ClkCat JA if the reaction has but one substrate.
t C, is unchanged when Bo = AO.
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Table 4. Interpretations ofC2 and C3
The dimensions of C2 and C3 are those of (enzyme concentration) (time)/(substrate concentration)2 and
(substrate concentration)3 respectively. For C2, for example, this might be ug * ml-' * min *mM-2.

Stoichiometry C3kcat.JAB C2kcat.JABt
A-P

A-P+Q
A + B -P:
A + B- P

BO >AO

A+B-.P+ Qt

A + B- P + Q
BO > AO

0

JAPQ
0
0

JABPQ

JAPQ J

BoBPQ

JAP

JAP + JAQ JPQ + JAPQ(PO + QO)

JABP

JAP
+ JABPBo

JABP + JABQ - (JAPQ + JBPQ) + JABPQ(PO + QO)

BA + JABP + JABQ JPBQ + (AB + JABPQ (PO + QO)

* C3kcatJA if the is only one substrate.
t C2kcat.JA if there is only one substrate.
T C2 and C3 are unchanged when BO = A .

Table 5. Conditionsfor irreversibilitv
X is the desired ratio of Pe - PO to A 0.

P0
X+

Ke. A0
1-x

Ke

AO

{P + Q 8
AO

I -X

POQO
A 20

P0
X+

AO
KeAo> Bo

(1-X) _--X
\AO /

X2+(P + QO POQO
A A 2

Bo

(1-X) --XI
AO

would at first seem reasonable to obtain these best-
fit coefficients by a multiple regression of eot on the
terms in eqn. (4). However, this procedure mini-
mizes the error in eot, i.e. it predicts values of eot
given values of AP. In fact, we wish to predict AP,
given eot; the major source of experimental error
lies in the measurement of AP.
The straightforward solution to this problem

would be to solve eqn. (4) for AP in terms of t, and
then to perform a regression that predicts AP for a
given t. Since eqn. (4) is complex, this is not
possible; what can be done is to minimize the
errors in AP by using a non-linear-regression
technique to fit eqn. (4). The principles of non-
linear regression, as applied to enzyme kinetics,
were first discussed by Wilkinson (1961) and
Johansen & Lumry (1961). The technique has been
employed by Fernley (1974), Darvey et al. (1975)
and Duggleby & Morrison (1977, 1978) to fit first-
order integrated rate equations. A computer
program has been published for one of these
applications (Duggleby, 1981).
Once the coefficients C have been extracted

from a set of progress curves, the kinetic constants
must be obtained from them. This is less difficult
than it first appears. If the stoichiometry A + B-P
is used as an example, we have, from Table 1:

the curves will separate. Progress curves at two
values of eo can therefore provide a test for enzyme
inactivation as well as duplicate data.

For a given set of initial concentrations, the
progress curve will be described by the set of
coefficients C that gives the best fit to eqn. (4). It

Cfkcat.JAB B A + JB
(o-O

BO-AO- + JBPJ (A O + PO)

1985

A P

A -P+ Q

A +B-P

A + B-P + Q
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From this it is apparent that, given a set of progress
curves in which the initial substrate concentrations
are varied with a constant difference between
them, a plot of Cf versus Ao (or Ao + PO if desired)
will be linear and will have:

1 JO/JAB JBIntercept = +
kcat. B°0AO JAB

1 f JP/JAB JBPSlope = +
kcat. B°-AO JAB

A second set of curves with a different value of
Bo- Ao will allow separation of the two sums into
their components.
From Table 2 it can be seen that, if C, from the

same set of progress curves is plotted against Bo,
the intercept term in JB is replaced by one in JA,
and the slope term in JBP by one in JAP. Two
additional constants can then be calculated. The
only constants that remain are kcat. and JABP/JAB,
and both of these can be obtained from Cl. Similar
analyses can be applied to the other
stoichiometries.

In principle, for a reaction with a total of three
substrates plus products, it is possible to obtain a
complete set of kinetic constants from as few as
three progress curves, done under different initial
conditions. For a reaction with four substrates plus
products, four curves are needed. How well each of
the constants is estimated of course depends on its
magnitude and the accuracy of the data. Three or
four curves will probably never be an adequate
number in practice, but does serve to show the
power of the technique.
A further advantage of integrated rate equations

is that product inhibition constants can be ob-
tained even when a product is for some reason
unavailable. For reactions with one product, the
product inhibition constants can be obtained
simply by varying Ao and (if there are two sub-
strates) Bo, i.e. without the need for any product at
all. If there are two products, only one or the other
is required.
The equations presented here are limiting cases

of the complete equations for reversible reactions
(Boeker, 1984b). They are reliable only if applied to
reactions that are truly irreversible. The math-
ematical requirements for this are shown in Table
5. If we assume that a 1% error in measuring the
product formed is within the limits-of experimental
error, a reaction that proceeds to 99% of comple-
tion is essentially irreversible. For the stoichio-
metry A-+ P, it can be calculated from Table 5 that
AGO' must then be less than - 11.3kJ/mol
(-2.7 kcal/mol), assuming that no product has
been added to the reaction initially. For
A+B-+P+Q, AGO' must be less than

-22.6kJ/mol (-5.4kcal/mol), if the initial sub-
strate concentrations are equal. If one concentra-
tion is at least twice the other, AGO' must be less
than - 11.3 kJ/mol. A goodly number of reactions
of biochemical interest have standard free-energy
changes of this magnitude.
The situation is more complex when the sub-

strates and products are unbalanced. For
A-P+Q, again assuming that products are not
added initially, the ratio of Ke to Ao must be 98 or
more. This corresponds to AGO' of 5.9 kJ/mol
(1.4kcal/mol) or less, but this value assumes the
(rather unrealistic) standard state, where the
substrate concentration is 1 M. For a substrate con-
centration near I mM, Ke must be 0.1 M or greater
for 99% reaction.

For the stoichiometry A+ B- P, the situation is
less favourable. The dimensionless quantity KeA0
must be greater than 9900 if the two substrates are
present at equal concentrations. This corresponds
to a AG0' less than -39.7kJ/mol (-9.5 kcal/mol),
or, at an initial substrate concentration of 1 mm, an
equilibrium constant of 107M-1. However, this
equilibrium constant is decreased by a factor of
100-fold if one substrate is twice the concentration
of the other, and by an additional factor of 10-fold
if the ratio is 11.

I thank Dr. Athel Cornish-Bowden for stimulating and
helpful discussion.
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