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The effects of urban green space and road proximity to indoor
traffic-related PM2.5, NO2, and BC exposure in inner-city schools
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BACKGROUND: Since there are known adverse health impacts of traffic-related air pollution, while at the same time there are
potential health benefits from greenness, it is important to examine more closely the impacts of these factors on indoor air quality
in urban schools.
OBJECTIVE: This study investigates the association of road proximity and urban greenness to indoor traffic-related fine particulate
matter (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) in inner-city schools.
METHODS: PM2.5, NO2, and BC were measured indoors at 74 schools and outdoors at a central urban over a 10-year period.
Seasonal urban greenness was estimated using the Normalized Difference Vegetation Index (NDVI) with 270 and 1230m buffers.
The associations between indoor traffic-related air pollution and road proximity and greenness were investigated with mixed-
effects models.
RESULTS: The analysis showed linear decays of indoor traffic-related PM2.5, NO2, and BC by 60%, 35%, and 22%, respectively for
schools located at a greater distance from major roads. The results further showed that surrounding school greenness at 270m
buffer was significantly associated (p < 0.05) with lower indoor traffic-related PM2.5: −0.068 (95% CI: −0.124, −0.013), NO2: −0.139
(95% CI: −0.185, −0.092), and BC: −0.060 (95% CI: −0.115, −0.005). These associations were stronger for surrounding greenness at
a greater distance from the schools (buffer 1230m) PM2.5: −0.101 (95% CI: −0.156, −0.046) NO2: −0.122 (95% CI: −0.169, −0.075)
BC: −0.080 (95% CI: −0.136, −0.026). These inverse associations were stronger after fully adjusting for regional pollution and
meteorological conditions.
IMPACT STATEMENT: More than 90% of children under the age of 15 worldwide are exposed to elevated air pollution levels
exceeding the WHO’s guidelines. The study investigates the impact that urban infrastructure and greenness, in particular green
areas and road proximity, have on indoor exposures to traffic-related PM2.5, NO2, and BC in inner-city schools. By examining a 10-
year period the study provides insights for air quality management, into how road proximity and greenness at different buffers
from the school locations can affect indoor exposure.

Keywords: Air pollution; Child exposure/Health; Particulate matter; Environmental monitoring

Journal of Exposure Science & Environmental Epidemiology (2024) 34:745–752; https://doi.org/10.1038/s41370-024-00669-8

INTRODUCTION
Primary schools are the second most important indoor micro-
environment for children (other than homes) representing a
unique and important location. Exposures to traffic-related
pollutants in school may have a substantial impact on health of
children who typically are in classrooms for over 6 h/day [1].
Schools that are located in close proximity to busy roads have
higher exposures to traffic-related air pollutants (TRAPs) due to
daytime traffic peaks and during morning and afternoon drop off/
pick up times [2, 3]. Exposure to TRAPs at school has been
associated with a range of adverse health impacts including
respiratory conditions [4–6] and impaired neurodevelopment in

schoolchildren, which contribute to a considerable personal and
societal burden. In the USA, traffic-related sources account for 48%
of the transportation PM2.5 and are the largest source of NOx in an
urban environment [7] accounting for 55%. There have been
several studies that highlight the impact of road proximity to
indoor traffic-related pollutants [8–10]. However, the quantitative
aspect and the mitigation means of this association are less
explored in school environments.
The implementation of green infrastructure is increasingly

recognized as a promising strategy for mitigating the negative
impacts of traffic pollution. There is mounting evidence that
proximity of residence to city parks and regular visits to green
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spaces are associated with health benefits, including physical
activity, social coherence, and stress reduction pathways [11, 12].
Greenness around schools is thought to improve health through
direct effects on cognitive restoration and stress reduction [13] as
well as by mitigating exposure to air pollution, noise, and extreme
temperatures [14–16]. Past studies have shown that greenness
provides the beneficial effects of lowering levels of both outdoor
[17, 18] and indoor PM2.5 at residences [19] and schools [20].
However, these findings are inconsistent, and show strong
regional heterogeneity [21, 22]. As a concept, green space
represents diverse landscape features in myriad arrangements,
with a variety of functionalities [13]. Consequently, the interaction
between green infrastructure design (i.e., species selection, spatial
positioning) and air pollutants can either positively or negatively
affect personal exposure and thus human health [23].
Since traffic-related pollutants such as PM2.5, BC, and NO2 have

been associated with adverse health effects, any amount of
exposure reduction due to green space may provide benefits to
children whose respiratory systems are still developing [14, 24]. In
this study, conducted in a north-eastern USA city, we evaluated
the long-term impacts of road proximity and quantified greenness
levels in an inner-city environment, on the traffic-related air
pollutant exposures inside school classrooms. This study is
building upon the data from The School Inner City Asthma Study
I & II (SICAS 1 & 2) where previously published results have
identified and quantified the controllable factors and sources that
influence outdoor and indoor air pollution exposures [2, 25]. How
proximity to major roadways at home and school increase asthma
symptoms [26] and how NO2 levels inside classrooms even at low
levels affect airflow obstruction [6].

METHODS
Study design
SICAS1 and SICAS2 investigated the effect of school- and classroom-based
environmental exposures on students with asthma in a city in the north-
eastern USA. The study spanned 10 years 2008–2014; 2015–2019 and
included classroom measurements throughout the academic school.
Weeklong indoor NO2, PM2.5, and BC measurements were conducted in
inner-city school classrooms during weekdays, incorporating both
occupied and non-occupied periods. SICAS1 is a prospective study
evaluating the school/classroom-specific risk factors and asthma morbidity
among urban children. It included 350 elementary school-aged children
with asthma from multiple classrooms in 38 inner-city schools. Recruitment
was ongoing for 5 years and started in spring 2008 with a follow-up
sampling in autumn or winter. SICAS2 was a randomized control trial of
247 students with asthma to test a school-classroom level intervention in
41 schools, where the baseline measurements occurred between October
and November, the first follow-up December–February, and the second
follow-up between March and May. In total, 309 unique classrooms of
unique 74 schools were studied here. The rationale of the studies is
described in detail elsewhere [27, 28].

Air pollution measurements
Weekday-period indoor PM2.5 samples were collected on Teflon filters at a
flow rate of 1.8 L/min [29]. A total of 518 indoor PM2.5 samples were
collected during the study period. PM2.5 collected on Teflon filters was
measured gravimetrically with an electronic microbalance (MT-5 Mettler
Toledo, Columbus, OH) in a temperature/RH-controlled room, following
USEPA guidelines. Indoor filters were also measured for BC concentrations
using a Smokestain Reflectometer (Model EEL M43D, Diffusion Systems
Ltd., UK). Indoor NO2 was collected using Ogawa passive samplers and
analyzed using ion chromatography. Concurrent daily outdoor PM2.5, BC,
and NO2 concentrations were also measured at a central monitoring site.
PM2.5 samples were collected using the Harvard Impactor [30], BC
concentrations were measured using a single (λ= 880 nm) channel
Aethalometer (model AE-16, Magee Scientific, Berkeley, CA), and NO2

was measured with chemiluminescent monitors. Indoor and outdoor
samples were compared by matching the weekly indoor samples to the
corresponding average daily outdoor samples. The median distance
between the central site and schools was 4974m. The contribution of

traffic to PM2.5 concentrations was estimated with receptor modeling as
described elsewhere [25]. This is a PM2.5 source that is derived by the PM2.5

mass and elemental composition using the positive matrix factorization
modeling technique developed by USEPA [31, 32]. After the source
apportionment 420 out of the 518 PM2.5 samples were found to have
contributions from traffic sources. This traffic-related PM2.5 component
(referred to as T-PM2.5) was abundant in organic and elemental carbon
from motor exhaust, and metals from brake and tire wear (Fe, Cu, Zn). For
traffic-related NO2 and BC we excluded samples when the indoor:outdoor
ratio of NO2 was higher than 1.2 which is likely to indicate influence of
indoor sources [33, 34].

Urban green space
We estimated the greenness around schools by the use of Normalized
Difference Vegetation index (NDVI). NDVI is a satellite-derived measure that
captures photosynthetic activity of vegetation [35]. NDVI values range from
−1.0 to 1.0, with negative values indicating clouds, snow and water, positive
values near zero indicating bare soil, and higher positive values of NDVI
ranging from sparse vegetation (0.1–0.5) to dense green vegetation (0.6 and
above). NDVI data for every season between 2008 and 2019 at a 30m
resolution were obtained from Google Earth Engine [36]. Landsat 7 data were
used for 2008–2013 and Landsat 8 for 2014–2019. We applied Google Earth
Engine’s cloud cover algorithm to retain the least cloudy image within each
season (January–March, April–June, July–September, October–December).
NDVI within each season were assessed within 270 and 1230m surrounding
each geocoded school address, to represent viewable and walkable areas
around each school. The 270m buffer was selected to represent greenness
directly accessible outside each school, while the 1230m buffer represent a
walkable distance buffer as reported in the literature [37].

Distance to roadway
The distance between each school to the nearest primary or secondary
road was calculated using Arc-GIS 10.2.2 (Environmental Systems Research
Institute, Redlands, CA) software with 80% spelling sensitivity and 10-meter
offset. First, a state-wide school database provided by the Office of
Geographic Information to geocode school locations was mapped. We
used a buffer of 300m around each address to calculate the straight-line
distance to the nearest primary and secondary roads [26]. Primary and
secondary roads were defined using TIGER/Line files within the federal
highway system. According to the US Census Bureau, primary roads are
limited-access highways within the Federal interstate highway system or
under state management with interchanges and accessible by ramps,
including some toll highways. Secondary roads are main arteries, usually in
the U.S. highway, state highway, or county highway system, with one or
more lanes of traffic in each direction, may or may not be divided, and
usually have at-grade intersections with many other roads and driveways.

Statistical analysis
Following the approach of Dadvand et al. [21], we developed mixed-effects
models for each pollutant, with schools included as a random effect to
account for the repeated measurements within each school. We used
weeklong indoor levels of each pollutant as the dependant variable and
greenness in the 270 or 1230m surrounding each school as a fixed-effect
predictor. Given that schools were monitored in different weeks during each
campaign period, we adjusted the analyses of each TRAP for the weekly
average level of that TRAP (during the corresponding sampling week for
each weeklong school indoor concentration with its corresponding from the
central urban background site) measured by an urban background
monitoring station to remove temporal fluctuation in background TRAP
levels from our analyses [38]. Because we only had one background site
when adjusting for background levels we included a random slope which
represents the spatial relationship of each school to that site [2]. We further
adjusted the models of indoor T-PM2.5, BC, and NO2 for outdoor
concentrations, seasonality (cosd= cos (2 × p × d/365)) due to variations in
greenness and differences in emissions, meteorological parameters
(ambient temperature, wind speed, and boundary layer height), number
of windows, and window orientation (facing toward bus drop off/pick up
area), and school characteristics including building age and ventilation as
fixed-effect predictors. The model is illustrated in the following equation:

Yij ¼ β0 þ Xijβ
0 þ μi þ uij þ εij

where Yij represents the response variable weeklong indoor concentrations
in school i and week j. Xij is a matrix of fixed effects predictors in school i and
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week j (i.e., outdoor concentration, boundary layer height, greenness,
seasonality, etc.). β0 is a vector of fixed-effect coefficient. μi is the random
intercept representing school-specific variability (between classrooms). uij is
the random slope representing slope of the fixed-effect predictors that
varies randomly across different schools. εij is the error term. The inclusion of
both school-specific variations (μi) and variations in the slopes of the fixed
effects across schools (uij) can be particularly useful when the relationship
between predictors and the response varies across different schools.

RESULTS
The median greenness around schools at 270m between 2010
and 2019 was 0.204 (IQR= 0.163), with a mean value of 0.198
(s.d.= 0.122). It had a clear seasonal pattern with higher values
during spring and lower values during winter. The mean (±s.d.)
values were 0.217 (±0.107), 0.060 (±0.064), and 0.272 (±0.100) for
autumn, winter, and spring, respectively (Fig. 1). Similar seasonal

variations were observed with the 1270m buffer. Figure 1 shows
the seasonal variations of greenness and indoor T-PM2.5, NO2, and
BC. Mean T-PM2.5 levels were 6.4 (±3.9), 8.8 (±5.7), and 8.4 (±6.8)
for autumn, winter, and spring, respectively. Mean indoor NO2

concentrations were 10.5 (±3.3), 11.9 (±4.5), and 9.0 (±3.6) while
BC levels were 0.40 (±0.2), 0.9 (±0.3), and 0.7 (±0.8) for autumn,
winter, and spring, respectively.
Figure 2 shows the relationship between the normalized (to the

mean) indoor T-PM2.5, NO2, BC, and roadway proximity. It is
evident that all traffic-related pollutants follow a linear decay with
distance. The sharpest decrease with distance is for T-PM2.5

followed by NO2, while BC has a smoother decrease with distance.
Schools that are more than 3 km away from roadways experience
(on average) a 63%, 35%, and 22% decrease in T-PM2.5, NO2, and
BC compared to those that are close to major roadways. Schools
that have increased green areas directly accessible outside each

Fig. 1 Seasonal levels of NDVI around schools and indoor T-PM2.5 (n= 420), NO2 (n= 351), and BC (n= 372) levels between 2008 and
2015; 2015–2019. Box parameters are the interquartile range (IQR), the hash mark is the median, and whiskers extend to 1.5 times the IQR
above the 75th and below the 25th percentiles.
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Fig. 2 Effects of green space and road proximity. a Relationship between normalised indoor traffic-related air pollution and road distance,
b relationship between normalised indoor traffic-related air pollution and greenness at 270 m. The shaded area indicates confidence intervals
at 95%. T-PM2.5 (n= 420), NO2 (n= 351), BC (n= 372).
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school at 270m showed great reductions in traffic-related
pollutants by 64%, 61%, and 107% in T-PM2.5, BC, and NO2

compared to schools with little to no greenness. NO2 showed a
sharper and more abrupt decrease with increased greenness while
T-PM2.5 and BC showed similar less abrupt decreases. Similar
decreases were found for the 1230m buffer where NO2 decreased
by 118% while T-PM2.5 and BC showed 68% and 67% reductions,
respectively.
The results from the regression analysis of greenness and road

proximity to traffic-related indoor PM2.5, NO2, and BC are shown in
Table 1. For the road proximity in the unadjusted model there were
inverse associations with T-PM2.5 and BC, however, they were not
significant as in the case of NO2. After adjusting the models all
relationships became significant (p < 0.05). Higher NDVI was
statistically significantly (p < 0.05) associated with lower indoor
T-PM2.5, NO2, and BC at a buffer of 270m from schools. The
coefficient of the association was stronger for greenness at a buffer
of 1230m from the schools. Analyses additionally adjusted for
regional outdoor PM2.5, NO2, and BC, as well as meteorological
parameters such as wind speed, temperature, boundary layer
height, seasonality, and school characteristics: ventilation type and
number of windows. The relationship between greenness and
indoor T-PM2.5, NO2, and BC for the adjusted models had stronger
coefficients for both 270 and 1230m. Indoor T-PM2.5, NO2, and BC
levels are influenced to some extent by regional pollution and the
meteorological factors. Therefore, when controlling for these factors
the associations between greenness and indoor T-PM2.5, NO2, and
BC became stronger, allowing for a more accurate assessment of
the effect of greenness and road proximity on indoor air pollution
and minimizing the potential confounding effects of other variables.

DISCUSSION
The study investigated the associations of roadway proximity and
greenness with exposures to traffic-related PM2.5, NO2, and BC
inside inner-city schools. The analysis was based on 420, 362, and
372 PM2.5, NO2, and BC sample pairs, respectively that were
collected indoors, in 74 inner-city schools, and outdoors, at a
central urban background location. The results showed statistically
significant declines of indoor traffic-related PM2.5, NO2, and BC
with increases in roadway distance and greenness.
The decreases in T-PM2.5 exposure with road distance were greater

than 60% for schools that are located 3 km away from roadways,
while NO2 dropped by one third and BC by one fifth for the same
schools. Amram et al. [39] showed similar findings for NO and
ultrafine particles (both tracers for traffic-related pollution). These
results show the importance of school location to indoor exposures
to traffic-related air pollution which consequently have been shown

to affect children’s lung development and health [40, 41]. Road
proximity also affects indoor PM2.5 composition and elements related
to tires, brakes, and road dust have more dramatic decreases [10].
Studies have also shown that road proximity of schools is associated
with increased asthma symptom days for asthmatic children [26],
while it has also been associated with increased childhood leukemia
[42] and neurobehavioral disorders [43]. Furthermore, road proximity
in general has been shown to influence birth outcomes [44] and has
been associated with increased Parkinson’s disease risk [45],
cognitive impairment [46], and with insidious effects on structural
brain aging, even in dementia- and stroke-free persons [47].
The results further showed that surrounding school greenness

was associated with a >60% reduction in traffic-related pollutants
providing evidence for an urban level intervention to reduce
children’s exposure to traffic-related air pollution. School green-
ness was also significantly associated with lower indoor traffic-
related pollutants. These associations were stronger for surround-
ing greenness at a greater distance from schools highlighting the
importance of open green areas at an inner-city environment.
Open green areas can offer more protective means in buffering
indoor school pollution levels by gradually reducing traffic-related
pollution over space. Additionally, more green areas at a greater
distance could also potentially mean fewer roadways. Our results
were consistent with findings of previous studies reporting inverse
associations between exposures to traffic-related pollutants inside
schools and surrounding greenness at different distances from the
school locations [21]. Improvements between indoor PM2.5

exposure in areas with high surrounding green space have been
more consistent in the literature [48]. This link is straightforward
since trees, shrubs, and hedges often act as filtration media (dry
deposition) to outdoor PM2.5 [49, 50] and BC [51], however, their
type (i.e., needle leaf, broad leaf, etc.), effective density, and
porosity strongly influence their effectiveness [52, 53]. Even
though there have been studies reporting NO2 reductions
naturally onto vegetation [54, 55] or in artificial biofilters [56] via
dry deposition, the reality is more complicated since more
vegetation will result in greater biogenic volatile organic
compound (BVOC) emissions in the near-school environment.
These increased BVOC emissions are involved in complex
photochemical reactions with NO2 and ozone (O3) and in the
generation of secondary organic aerosols, therefore, might offset
some of the health benefits of the overall greenness.
Previous studies that investigated factors that affect indoor school

exposure to PM2.5, NO2, and BC showed that the biggest contributor
to indoor air pollution is the infiltration of outdoor air pollution [2].
The association between surrounding greenness and indoor
exposure to traffic-related pollution is, therefore, affected by the
reductions of the outdoor traffic-related pollution with greenness.

Table 1. Regression coefficients and confidence intervals (CI) at 95% indicating the change of indoor T-PM2.5, NO2, and BC per NDVI increase at 270
and 1230m of the school boundaries and road proximity.

Model NDVI 270m NDVI 1230m Road distance

Coefficients (95% CI) p Coefficients (95% CI) p Coefficients (95% CI) p

T-PM2.5

Unadjusted −0.068 (−0.124, −0.013) <0.01 −0.101 (−0.156, −0.046) <0.01 −5.48e-05 (−1.24e-04, −1.46e-05) 0.12

Adjusteda −0.109 (−0.149, −0.068) <0.01 −0.136 (−0.174, −0.098) <0.01 −1.00e-04 (−1.48e-04, −5.39e-05) <0.01

NO2

Unadjusted −0.139 (−0.185, −0.092) <0.01 −0.122 (−0.169, −0.075) <0.01 −1.21e-04 (−1.61e-04, −8.10e-05) <0.01

Adjusteda −0.550 (−0.843, −0.262) <0.01 −0.361 (−0.656, −0.067) 0.016 −6.69e-05 (−1.03e-04, −3.07e-05) <0.01

BC

Unadjusted −0.060 (−0.115, −0.005) 0.032 −0.080 (−0.136, −0.026) 0.004 −1.20e-05 (−8.01e-05, −5.64e-05) 0.18

Adjusteda −0.069 (0.119, −0.019) 0.048 −0.103 (−0.147, −0.058) <0.01 −8.62e-05 (−1.35e-04, −3.68e-05) <0.01
aAdjusted model for regional pollution levels, wind speed, temperature, seasonality, number of windows, window orientation, and school ventilation.

V.N. Matthaios et al.

749

Journal of Exposure Science & Environmental Epidemiology (2024) 34:745 – 752



To examine that here, we fully adjusted our models for factors such
as regional pollution and meteorological variables (such as wind
speed, temperature), school ventilation practices, and seasonality.
We found that the association between greenness and indoor
exposure becomes stronger after adjusting for these variables,
suggesting that part of the benefits inside schools are likely due to
the benefits of the overall reduction of outdoor traffic-related
pollutants by greenness. Surrounding school greenness, not only
reduces overall traffic-related air pollution, but it can also improve
cognitive performance of children [57], even when children are
exposed only for short time periods to nature [58]. Other benefits
related to residential greenness for children include lower obesity
levels [20], fetal growth [59], reduction of the risk of cardiovascular
disease [60], and decreased risk of cancer mortality [61].
Despite that our results can be considered robust, spanning

74 schools over 10 years, there are several limitations in this study.
The data are from one region in north-eastern US and the findings
might vary for other regions depending on the city/region – specific
urban infrastructure, greens species variety (i.e., trees, shrubs,
plants, etc.) and vehicle fleet emissions (i.e., proportion of heavy
duty vehicles vs passenger cars vs light duty vehicles, diesel vs
gasoline vehicles, etc.). In addition, the study did not include
outdoor sampling directly outside the schools and instead included
one regional background site location and surrogates to adjust for
outdoor concentrations. To ensure consistency and robustness
future studies should also consider expanding this approach by
including multiple cities that can represent both north and south
multinational environments as well as high-middle and low-middle
income countries. Due to city-wide air pollution exposure disparities
future studies should also consider if and how socioeconomic
factors play a role in these associations.

IMPLICATIONS FOR CHILDREN’S EXPOSURE AND
RECOMMENDATIONS FOR IMPROVEMENT
According to the World Health Organization (WHO), more than 90%
of children under the age of 15 worldwide are exposed to air
pollution levels exceeding the WHO’s recommended guidelines
[62]. Given that children spend a significant portion of their day in
school, it is crucial to enhance our knowledge regarding their
exposure pathways to air pollution. In this large school indoor
exposure study conducted in 74 schools across 10 years, the
findings showed that children attending schools located near busy
roads, not necessarily highways, and schools that have less nearby
green infrastructure are exposed to greater traffic-related PM2.5,
NO2, and BC and are likely at a greater health hazard risk. In a recent
literature review regarding the air quality around schools, Osborne
et al. [63] indicated that nearby traffic is a key determinant of
concentrations outside schools and that factors related to planning
and urban design such as green playgrounds, and amount of
surrounding green space can reduce school site air pollution. Given
the adverse health impacts of traffic-related air pollution and the
improved health benefits of greenness, actions are needed to
improve children’s health and well-being during their early years of
development. Green infrastructure, natural or artificial via botanical
biofilters, in and around schools as well as the creation of clean air
zones at an effective road proximity from schools are two key
reduction measures that local authorities, policy makers, school
managers, and urban planners should evaluate and consider as
unique or combined interventions in order to reduce children’s
exposure to air pollution and improve their health and well-being.

DATA AVAILABILITY
The data are available from the corresponding author on reasonable request.
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