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Neuronal wiring diagram of an adult brain
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Connections between neurons can be mapped by acquiring and analysing electron 
microscopic brain images. In recent years, this approach has been applied to chunks 
of brains to reconstruct local connectivity maps that are highly informative1–6, but 
nevertheless inadequate for understanding brain function more globally. Here we 
present a neuronal wiring diagram of a whole brain containing 5 × 107 chemical 
synapses7 between 139,255 neurons reconstructed from an adult female Drosophila 
melanogaster8,9. The resource also incorporates annotations of cell classes and types, 
nerves, hemilineages and predictions of neurotransmitter identities10–12. Data 
products are available for download, programmatic access and interactive browsing 
and have been made interoperable with other fly data resources. We derive a 
projectome—a map of projections between regions—from the connectome and 
report on tracing of synaptic pathways and the analysis of information flow from 
inputs (sensory and ascending neurons) to outputs (motor, endocrine and 
descending neurons) across both hemispheres and between the central brain and the 
optic lobes. Tracing from a subset of photoreceptors to descending motor pathways 
illustrates how structure can uncover putative circuit mechanisms underlying 
sensorimotor behaviours. The technologies and open ecosystem reported here  
set the stage for future large-scale connectome projects in other species.

Although rudimentary nervous systems existed in more ancient ani-
mals, brains evolved around half a billion years ago13, and are essential 
for the generation of sophisticated behaviours. It is widely accepted 
that dividing a brain into regions is helpful for understanding brain 
function, but questions remain on the utility of finer-grain informa-
tion about connectivity. In fact, efforts to construct wiring diagrams at 
the level of neurons and synapses have been controversial14,15. Scepti-
cism has flourished largely owing to a lack of technologies that could 
reconstruct such wiring diagrams16,17, so obtaining such diagrams has 
remained hypothetical. The situation began to change in the 2000s 
owing to the efforts of a small community of researchers. Here we pre-
sent a neuronal wiring diagram of a whole adult brain and, here and in 
the accompanying studies, we analyse its connectivity to highlight the 
utility of this endeavour.

Although small, the brain of D. melanogaster contains 105 neurons 
and 108 synapses that enable a fly to see, smell, hear, walk and fly. Flies 
engage in dynamic social interactions18, navigate over distances19 and 

form long-term memories20. Portions of fly brains have been recon-
structed from electron microscopy images, which have sufficient 
resolution to reveal the fine branches of neurons and the synapses 
that connect them. The resulting wiring diagrams of neural circuits 
have provided crucial insights into how the brain generates social21,22, 
memory-related23 or navigation24 behaviours. Wiring diagrams 
of other fly brain regions have been mapped and related to visual2, 
auditory25 and olfactory23,26 functions. The circuit organization 
revealed by these wiring diagrams show similarities to mammalian  
brains27,28.

These wiring diagrams and many others from mammals4–6 have been 
derived from pieces of brain. However, recordings of Drosophila neural 
activity have revealed nearly brain-wide encoding of sensory29 and 
motor30 variables. These studies and others in vertebrates highlight 
that understanding how the brain processes sensory information or 
drives behaviour will require understanding global information flow 
at the scale of the entire brain.
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Until now, the closest antecedent to a wiring diagram of the whole 
brain has been the reconstruction of a fly ‘hemibrain’1, a pioneer-
ing resource that has already become indispensable to Drosophila 
researchers. It is estimated to contain around 20,000 neurons that are 
‘uncropped’—that is, minimally truncated by the borders of the imaged 
volume, and 14 million synapses between them. Our reconstruction 
of an entire adult brain contains 139,255 neurons (Fig. 1a and Supple-
mentary Video 1) and 54.5 million synapses between these neurons. To 
aid exploration and analysis, this connectome has been densely anno-
tated by the FlyWire Consortium. In our companion paper, Schlegel 
et al.12 provide a curated brain-wide hierarchy of annotations includ-
ing more than 8,400 distinct cell types, completing the description 
of this resource (and should therefore preferably be cited alongside 
this paper; https://codex.flywire.ai/about_flywire). These and many 
other data products (Fig. 1b and Supplementary Fig. 1) are available 
for download, programmatic access and interactive browsing and 
have been made interoperable with other fly data resources through a 
growing ecosystem of software tools (Fig. 1c). The primary portal to the 
data is the FlyWire Connectome Data Explorer (Codex; https://codex.
flywire.ai/), which makes the information visualizable and queryable.

The wiring diagram from our whole-brain reconstruction is suffi-
ciently complete to be designated a ‘connectome’ (defined in Discus-
sion). It represents substantial progress over neuronal reconstructions 
of Caenorhabditis elegans31,32 (300 neurons, 104 synapses) and the 1st 
instar larva of Drosophila33 (3,000 neurons, 5 × 105 synapses). Our 
connectome advances beyond the hemibrain in several ways. For 
example, it includes the suboesophageal zone (SEZ) of the central 
brain, which is important for diverse functions such as gustation and 
mechanosensation34,35, and contains many of the processes of neurons 
that descend from the brain to the ventral nerve cord to drive motor 

behaviours. Additionally, it includes annotations for descending and 
ascending neurons36 for many sexually dimorphic neurons (analysed by 
Deutsch et al. (manuscript in preparation); available at https://codex.
flywire.ai) and an entire optic lobe11. Our reconstruction of both optic 
lobes goes far beyond existing maps of columnar visual circuitry. Con-
nections between the optic lobes and central brain are included, as 
explored by refs. 37,38. Also included are neurons that extend into the 
brain through the nerves and neck connective, which are essential for 
tracing sensorimotor pathways, as illustrated here and in the accom-
panying studies11,12,34,36–45.

Our reconstruction utilized image acquisition and analysis tech-
niques that are distinct from those used for the hemibrain (Methods 
and Discussion). However, we have built directly on the hemibrain in 
an important way. Schlegel et al.12 used the cell types proposed for the 
hemibrain as a starting point for cell typing neurons in the central brain 
in FlyWire. This approach was enabled by a growing ecosystem of soft-
ware tools serving interoperability between different fly data sources 
(Fig. 1c). Additional annotations in the SEZ and optic lobes, which are 
largely absent from the hemibrain, were contributed by Drosophila 
research groups in the FlyWire Consortium as well as citizen scientists, 
and are described in more detail here and in the accompanying papers. 
Synapse predictions7 and estimates of neurotransmitter identities10 
were also contributed by the community.

After matching, Schlegel et al.12 also compared our wiring diagram 
with the hemibrain where they overlap and showed that cell-type counts 
and strong connections were largely in agreement. This means that the 
combined effects of natural variability across individuals and ‘noise’ 
due to imperfect reconstruction tend to be modest, so our wiring dia-
gram of a single brain should be useful for studying any wild-type Dros-
ophila melanogaster individual. However, there are known differences 
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Fig. 1 | A connectomic reconstruction of a whole fly brain. a, All neuron 
morphologies reconstructed with FlyWire. All neurons in the central brain and 
both optic lobes were segmented and proofread. Note that image and dataset 
are mirror inverted relative to the native fly brain. b, An overview of many of the 
FlyWire resources that are being made available. FlyWire leverages existing 
resources for electron microscopy imagery by Zheng et al.9, synapse predictions 
by Buhmann et al.7 and Heinrich et al.118, and neurotransmitter predictions by 
Eckstein et al.10. Annotations of the FlyWire brain dataset such as hemilineages, 
nerves and hierarchical classes are established in the accompanying paper12.  
c, FlyWire uses CAVE50 for proofreading, data management and analysis back 

end. The data can be accessed programmatically through CAVEclient, navis, 
fafbseg and natverse119, and through the browser in Codex, Catmaid Spaces and 
braincircuits.io. Static exports of the data are also available. d, The Drosophila 
brain can be divided into spatially defined regions based on neuropils80 
(Extended Data Fig. 1). Neuropils for the lamina are not shown. D, dorsal;  
L, lateral; P, posterior. e, Synaptic boutons in the fly brain are often polyadic 
such that there are multiple postsynaptic partners per presynaptic bouton. 
Each link between a pre- and a postsynaptic location is a synapse. f, Neuron 
tracts, trachea, neuropil and cell bodies can be readily identified from the 
electron microscopy data acquired by Zheng et al.9. Scale bar, 10 μm.
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between the brains of male and female flies46. In addition, principal 
neurons of the mushroom body, a brain structure required for olfac-
tory learning and memory, show high variability12. Some mushroom 
body connectivity patterns have even been found to be near random47, 
although deviations from randomness have since been identified48. 
In short, Drosophila wiring diagrams are useful because of their ste-
reotypy, yet also open the door to studies of connectome variation.

In addition to describing the FlyWire brain resource, this Article also 
presents analyses that illustrate how the data products can be used. 
Additional whole-brain network analyses are provided by Lin et al.49 
and Pospisil et al.39. From the connectome, we derive a projectome, 
a reduced map of projections between 78 fly brain regions known as 
neuropils (Fig. 1d, Extended Data Fig. 1 and Supplementary Video 2). We 
trace synaptic pathways and analyse information flow from the inputs 
to the outputs of the brain, across both hemispheres, and between 
the central brain and the optic lobes. In particular, the organization 
of excitation and inhibition in pathways from photoreceptors in the 
ocelli to descending motor neurons immediately suggests hypotheses 
about circuit mechanisms of behaviour.

Reconstruction of a whole fly brain
Images of an entire adult female fly brain (Fig. 1e,f) were previously 
acquired by serial section transmission electron microscopy and 
released into the public domain by Zheng et al.9. We previously rea-
ligned the electron microscopy images, automatically segmented all 
neurons in the images, created a computational system that allows 
interactive proofreading of the segmentation50, and assembled an 
online community8 (FlyWire). During the initial phase, much of the 
proofreading was done by a distributed community of Drosophila 
research groups in the FlyWire Consortium, and focused on neurons 
of interest to these groups. During the later phase, the remaining neu-
rons were mainly proofread by centralized teams at Princeton and 
Cambridge, with contributions from citizen scientists worldwide. 
The recruitment and training of proofreaders and their workflows 
are described in the Methods.

Chemical synapses were automatically detected in the images as 
pairs of presynapse–postsynapse locations7. The whole brain contains 
0.0175 mm3 of neuropil volume and around 130 million synapses. This 
equates to 7.4 synapses per μm3, a much higher density than that of 
mammalian cortex51,52 (less than 1 synapse per μm3). The central brain 
and left and right optic lobes (including the lamina) contain 0.0103, 
0.0036 and 0.0036 mm3 of neuropil volume, respectively, with synapse 
counts in approximately the same proportion. Synapses were combined 
with proofread neurons using the Connectome Annotation Versioning 
Engine50 (CAVE) to yield the connectome.

We next assessed completeness and accuracy of proofreading. 
We had already shown that FlyWire proofreading can yield accurate 
results8 through comparison with light microscopic reconstructions 
of neurons that are known to be highly stereotyped across individual 
flies. A second method is to subject reconstructed neurons to an addi-
tional round of proofreading, which was previously shown to yield 
few changes8. Because proofreading workflows and personnel have 
changed over time, and accuracy can vary across brain regions, we 
repeated this evaluation by subjecting 826 neurons from the central 
brain to a further round of proofreading. Relative to this additional 
round, our proofread dataset achieved an average F1 score of 99.2% by 
volume (Extended Data Fig. 2a,b).

By quantifying how many of the automatically detected synapses are 
attached to proofread segments, as opposed to being isolated in tiny 
‘orphan’ segments, we can estimate completeness of the proofreading. 
We found high attachment rates of presynapses (approximately 122 mil-
lion presynapses (93.7%) attached), whereas attachment rates of post-
synapses were lower (approximately 58.1 million postsynapses (44.7%) 
attached) owing to less proofreading and reattachment of twigs, which 

contain most of the postsynapses8 (Extended Data Fig. 2c,d). Attach-
ment rates were generally in agreement between the two hemispheres 
of FlyWire and with the hemibrain (Extended Data Fig. 2e–g) and varied 
by neuropil (Supplementary Fig. 2). As with the hemibrain1, false nega-
tive synapses are the dominant type of error but false positives also 
exist. For this reason, analyses using the connectome should consider 
thresholding to remove spurious connections. Thresholds should be 
adjusted to the individual analyses. For the analyses presented below 
(and connections indicated at https://codex.flywire.ai), we use a thresh-
old of five synapses to determine a connection between two neurons. 
The accompanying paper by Matsliah et al.11 found a threshold of two 
synapses appropriate for analysing connections in the optic lobes. 
Assuming that such errors are statistically independent, accuracy is 
expected to be high for detection of connections involving multiple 
synapses1,12,53.

We estimate that FlyWire’s brain reconstruction took around 33 
person-years of manual proofreading. The reconstruction remains 
open for proofreading and annotations, and new versions of the 
resource will be released in future (the analysis presented here is from 
version 783). This enables correction of remaining errors as they are 
discovered and further rounds of validation to be performed.

Intrinsic neurons of the brain
A brain is defined as a structure of the nervous system that is co-localized 
with the sense organs in the head of an animal. Often left implicit in the 
definition is the idea of centralization—that most central nervous sys-
tem (CNS) neurons are located in the brain. The idea involves a subtlety 
arising from the fact that neurons are spatially extended objects. If all 
of the synapses of a neuron are wholly contained in the brain, we say 
that the neuron is intrinsic to the brain. This contrasts with a neuron 
that straddles the brain and other CNS regions. The fraction of intrinsic 
neurons can be interpreted as the degree to which the CNS is central-
ized in the brain.

Of the 139,255 proofread neurons in FlyWire (Supplementary  
Video 1), 118,501 are intrinsic to the brain (Fig. 2a–c), which is defined 
as the central brain and optic lobes (Fig. 1a). Intrinsic neurons of the 
brain make up three-quarters of the adult fly nervous system54–56 and 
amount to 85% of brain neurons. Their predominance means that the 
brain communicates primarily with itself, and only secondarily with 
the outside world (Fig. 2b).

For comparison, intrinsic neurons of the larval fly brain make up 
one-quarter to one-third of its nervous system33. Intrinsic neurons of 
the C. elegans brain make up 8–15% of its nervous system (Methods).

Afferent and efferent neurons
Brain neurons that are not intrinsic can be divided into two categories, 
depending on the locations of their cell bodies. For afferent (sensory 
and ascending) neurons, the cell body is outside the brain, whereas for 
efferent (descending, motor and endocrine) neurons, the cell body is 
contained in the brain. It is generally accurate to think of an afferent 
neuron as a brain input, and an efferent neuron as a brain output. The 
relation to information flow is actually more subtle, however, as most 
fly neurites carry a mixture of presynapses and postsynapses on both 
dendrites and axons10,33,53.

Our companion paper12 exhaustively identifies all afferent and 
efferent neurons contained in cross sections of nerves and the neck 
connective running between the brain and ventral nerve cord (VNC) 
(Fig. 2d). Almost 95% of these neurons were in the neck connective, 
antennal nerve and maxillary–labial nerve. Although afferents are 
truncated in our reconstruction, Schlegel et al.12 and other community 
members35,57 were able to determine the sensory organs correspond-
ing to the 5,375 non-visual sensory neurons (Fig. 2e,f) on the basis of 
morphology and nerve assignments. Non-visual sensory neurons enter 

https://codex.flywire.ai
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the brain through nerves (Fig. 2d) that mostly terminate in the antennal 
lobe or the SEZ (we define the SEZ as containing the following neuro-
pils: saddle (SAD), gnathal ganglia (GNG), antennal mechanosensory 
and motor centre (AMMC) and prow (PRW) (neutropils definitions 
are provided in Extended Data Fig. 1))58. The antennal lobe is the first 
relay centre for processing of olfactory information, and many of the 
olfactory receptor neuron (ORN) inputs to the antennal lobe were also 
reconstructed in the hemibrain. The SEZ receives more diverse inputs, 
including the projections of both mechanoreceptor and gustatory 
receptor neurons—these projections were not contained in the hemi-
brain. The nerves contained few efferent neurons, among which were 
head motor neurons (n = 106) or endocrine neurons (n = 80) (Fig. 2a–c). 
Many efferent neurons have branches in the SEZ, including most of the 
106 motor neurons.

Visual afferents are by far the most numerous type of sensory input, 
and enter the brain directly rather than through nerves. There are pho-
toreceptor axons projecting from the compound eyes (n = 11,118), ocelli 
(n = 273) and eyelets (n = 8, of which 4 have been identified).

The neurons traversing the neck connective were grouped into 
1,303 efferent (descending) and 2,362 afferent (ascending) neurons 
(Fig. 2a–c). Cell-type annotations for many of these neurons are avail-
able36, facilitating a matching of reconstructions from two separate 
electron microscopy datasets of a VNC54–56,59 and enabling circuits 

spanning the whole CNS (brain and VNC) to be at least schematically 
mapped.

Optic lobes and central brain
Of the 118,501 intrinsic neurons, 32,388 are fully contained in the cen-
tral brain and 77,536 are fully contained in the optic lobes and ocellar 
ganglia (this number excludes the photoreceptors, which are sensory 
afferent neurons). The domination of the count by visual areas reflects 
the nature of Drosophila as a highly visual animal.

The optic lobes and ocellar ganglia also contain 8,053 neurons—the 
visual projection neurons12 (VPNs)—that project into the central brain. 
We provide a more detailed analysis of connections in the ocellar gan-
glion in Fig. 7. Many VPNs are columnar types that tile the visual field. 
VPNs target specific neuropils (for example, anterior optic tubercle 
(AOTU), posterior lateral protocerebrum (PLP) and posterior vent-
rolateral protocerebrum (PVLP)) or optic glomeruli60,61 in the central 
brain. The influence of VPNs can be very strong; 892 central neurons 
receive more than half their synapses from VPNs.

The hemibrain already characterized several VPN types along with 
their outputs in the central brain1. Our whole-brain reconstruction 
reveals many other aspects of VPN connectivity, such as their inputs 
in the medulla, lobula and lobula plate62. In addition to feedforward 
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targeting of central neurons, VPNs make 20% of their synapses onto 
other VPNs and 21% onto optic lobe neurons. Ganguly et al.38 and Garner 
et al.37 further investigated the visual projections to the central complex 
and the mushroom body.

There are 524 neurons that project from the central brain to the optic 
lobes. We call these visual centrifugal neurons61 (VCNs). They are dis-
tinct from previously defined types of VCNs that are fully contained 
in the optic lobe and their functions are mostly unknown. VCNs are 
15 times less numerous than VPNs. Nevertheless, half of all optic lobe 
neurons receive five or more synapses from VCNs, showing that much 
early visual processing incorporates feedback from the central brain. 
Centrifugal inputs to the retina are found in many vertebrate species, 
including humans63.

Many VCNs arborize broadly in the optic lobe, appearing to cover 
the entire visual field. Some VCNs, however, cover only a subset of 
columns within a portion of the visual field. A few optic lobe neurons 
receive as many as 50% of their synapses from VCNs. These belong to 
the class of peptidergic neurons involved in circadian rhythms40. Tm5c 
is a columnar type (necessary for the preference of Drosophila for UV 
over visible light64), with more than 10% of its inputs coming from VCNs.

Neuron superclasses
The neuron classes introduced above are organized into a hierarchy, as 
explained in our companion paper12. The three ‘flow’ classes (afferent, 
intrinsic and efferent) are divided into the nine superclasses (Fig. 2a). A 
simplified representation of the connectome as a graph in which nodes 
are superclasses is shown in Fig. 2b. Node sizes reflect neuron number 

and link widths indicate connection number. This is the first of several 
simplified representations of the connectome that we introduce here.

Neurons and glia
A basic property of the fly brain is that cell bodies are spatially segre-
gated from neurites. Cell bodies reside near the surface (‘rind’) of the 
brain (Fig. 3a), surrounding a synapse-rich interior that comprises 
mainly of entangled neurons and glia, fibre bundles or tracts, and 
tubules of the tracheal system (Fig. 1f and Supplementary Fig. 3a).

A typical non-sensory Drosophila neuron is unipolar and consists 
of a primary neurite (also known as cell body fibre) that leaves the cell 
body (soma), enters the neuropil, and branches into secondary and 
higher-order neurites (Fig. 3b). Secondary neurites can sometimes be 
classified as axons if presynapses clearly dominate, or as dendrites if 
postsynapses clearly dominate10,33,53. Such an axon–dendrite distinction 
was made, for example, when defining VPNs and VCNs above.

However, in general, a mixture of presynapses and postsynapses 
is found on all non-primary neurites10,33,53,65 (Fig. 3b). In addition, the 
soma of insect neurons is separated from the main processes (Fig. 3b). 
Given this structure, the concept that signals pass from dendrites to 
soma to axon, which is often a good approximation for mammalian 
neurons, does not apply for non-sensory neurons in the fly.

Neurons vary greatly in size and shape (Fig. 3c). We computed skel-
etons for all reconstructed neurons (Fig. 3d) to measure neuronal path 
lengths. The median path length of an intrinsic neuronal arbor was 
685 μm (Fig. 3d). It has been argued that branched arbors are opti-
mal for achieving a high degree of connectivity with other neurons66. 
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Neurons with short path lengths are interesting exceptions, and can 
be found in both the optic lobes and central brain. Path length and 
volume of intrinsic neurons both varied over two orders of magnitude 
(Fig. 3d; path length percentiles: 0.1%, 0.138 mm; 99.9%, 19.15 mm; 
volume percentiles: 0.1%, 16 μm3; 99.9%, 3,001 μm3). The whole brain 
contains approximately 122 million attached presynapses with a total 
neuronal path length of around 149 m, an average of 0.82 presynapses 
per micrometre of path length.

Sizes vary significantly between different cell superclasses 
(Extended Data Figs. 3a–f and 4). Optic lobe neurons are on average 
much shorter than central brain neurons (0.69 mm versus 2.13 mm 
on average) and take up a smaller volume (0.0069 mm3 versus 
0.0086 mm3 total neuronal volume), which is why the optic lobes 
dominate the brain by neuron number but not by volume or synapse 
count. Visual centrifugal neurons are among the largest in the brain, 
and are larger on average than VPNs (4.92 mm versus 1.56 mm path 
length on average). We measured much shorter path lengths and vol-
umes for afferent neurons because only part of their axonal arbors is 
contained within the brain (Extended Data Fig. 3b,e), whereas arbors 
of efferent, motor and descending neurons which also have some of 
their arbor outside the brain, were among the largest we measured 
(Extended Data Fig. 3c,f).

A small fraction of brain volume is made up of glial cells, which are 
categorized into six types67. We estimated that 13% of the cell bodies 
in the electron microscopy dataset are non-neuronal or glial. Only a 
few astrocyte-like glia have been proofread (Supplementary Fig. 3b). 
Sheet-like fragments of ensheathing glia are readily found near fibre 
bundles in the automated reconstruction. Further proofreading of 
glia could be prioritized in the future if there is community demand.

Synapses and connections
Our connectome includes only chemical synapses; the identification 
of electrical synapses awaits a future electron microscopy dataset with 
higher resolution (Discussion). Therefore, we use the term ‘synapse’ to 
mean chemical synapse. A Drosophila synapse is generally polyadic, 
meaning that a single presynapse communicates with multiple target 
postsynapses (Fig. 1e). In FlyWire, a polyadic synapse is represented as 
multiple synapses, each of which is a pair of presynaptic and postsyn-
aptic locations7. Polyadic synapses are common in other invertebrate 
species, such as C. elegans, and exist in some mammalian brain struc-
tures (for example, retina).

We define a connection from neuron A to neuron B as the set of syn-
apses from A to B. A connection typically contains multiple synapses, 
and the number of synapses can be large (Fig. 3e,f). Connections with 
fewer than 10 synapses are typical, but a single connection can comprise 
more than 100 synapses (n = 15,837) or even more than 1,000 synapses 
(n = 27). The strongest connection that we identified was from a VCN 
(LT39) onto a wide-field lobula neuron (mALC2), and contained more 
than 2,400 synapses.

Setting a threshold of at least five synapses for determining a strong 
connection is likely to be adequate for avoiding false positives in 
the dataset while not missing connections (Methods). We observed 
2,700,513 such connections between 134,181 identified neurons. There 
are several reasons to focus on strong connections. First, a connection 
with many synapses is expected to be strong in a physiological sense, 
other things being equal68. Second, strong connections are more repro-
ducible across individuals12. Third, higher accuracy (both precision 
and recall) of automatic detection is expected for strong connections, 
assuming that errors are statistically independent1,53.

One of the most basic properties of a node in any network is its 
degree, the number of nodes to which it is linked to. To characterize 
the degree distribution in the Drosophila connectome, we focused on 
intrinsic neurons because unlike afferent and efferent neurons, they 
do not suffer from undercounting of connections owing to truncation.

For any neuron, in degree is defined as its number of presynaptic 
partners (input neurons), and out degree is defined as its number of 
postsynaptic partners (output neurons). The median in degree and 
out degree of intrinsic neurons are 11 and 13 (Fig. 3g), respectively, 
with the restriction mentioned above to connections involving five 
or more synapses. These median values do not appear to be substan-
tially different from the median in degree and out degree of 10 and 19, 
respectively, for neurons in the C. elegans hermaphrodite, considering 
that it contains several hundred times fewer neurons than Drosophila.

The neuron in the Drosophila brain with maximum degree is a visual 
GABAergic (γ-aminobutyric acid-producing) interneuron (CT1), with 
6,399 postsynaptic partners and 5,080 presynaptic partners (CT1 in 
the left hemisphere). Most neuropils of the Drosophila brain contain 
one or a few large GABAergic neurons private to that neuropil, with 
high in degree and out degree (see Lin et al.49 for further analysis on 
connectivity motifs); these neurons are considered to be important 
for local feedback gain control69. The Drosophila brain contains neu-
rons with much higher degree than—for example—the C. elegans 
hermaphrodite32 for which the neuron with maximum degree is a 
command interneuron (AVAL) with 110 postsynaptic partners and 
64 presynaptic partners.

The number of synapses established by a neuron is correlated with 
its total neurite path length (R = 0.80 (presynapse), R = 0.89 (postsyn-
apse); Extended Data Fig. 3g). Presynapse and postsynapse counts are 
similarly correlated per neuron (R = 0.81; Fig. 3h). We tested whether 
large neurons tend to use their many synapses to create stronger con-
nections with individual neurons versus more connections with many 
different neurons. The total number of synapses established by a neu-
ron was much better correlated with its in and out degrees (R = 0.93 and 
R = 0.94, respectively) than its average connection strength (R = 0.25 
and R = 0.3, respectively; Extended Data Fig. 3h,i). This indicates that 
on average, neurons scale their number of target neurons much more 
than the strength of an individual connection. It remains to be tested 
whether the additional target neurons are from the same type or from 
different cell types.

Connections and neurons are not necessarily the functional units 
of neural computation. For certain large fly neurons, the arbors are 
composed of multiple compartments that function somewhat inde-
pendently70. These subcellular compartments, rather than whole cells, 
should perhaps be regarded as nodes of the connectome. In this case, 
CT1 would be replaced by many nodes with lower degrees, and the 
connection from LT39 to mALC2 would be replaced by many connec-
tions with fewer synapses between compartments of these neurons. 
A connectome of neuronal compartments can in principle be studied 
using our resource, which includes the location of every synapse.

Neurotransmitter identity
A statistical prediction of the small molecule neurotransmitter (GABA 
(γ-aminobutyric acid), glutamate, acetylcholine, serotonin, dopamine 
and octopamine) secreted by each neuron is available. A number of vali-
dations suggest that the predictions are highly accurate in aggregate10, 
but for any given synapse the prediction could be wrong. We assume 
that every neuron secretes a single small molecule neurotransmitter 
and combine the predictions for all outgoing synapses to an estimate 
that we assign to all outgoing synapses of a neuron—that is, we provi-
sionally assume that neurons obey Dale’s law, although it is known that 
co-transmission does occur in the fly brain71.

GABAergic neurons had higher degrees on average than glutamater-
gic and cholinergic neurons (median in- and out degrees of intrinsic 
neurons: GABA, 14 incoming and 16 outgoing partners; glutamate, 11 
incoming and 13 outgoing partners; acetylcholine, 10 incoming and 13 
outgoing partners; Extended Data Fig. 3j). Across all neuron catego-
ries, we found that GABAergic neurons were on average longer than 
glutamatergic and cholinergic neurons (median length of intrinsic 
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neurons: GABA, 0.88 mm; glutamate, 0.85 mm; acetylcholine, 0.63 mm; 
Extended Data Fig. 3k).

As a rule, we assume that cholinergic neurons are excitatory and 
GABAergic and glutamatergic neurons are inhibitory72,73. Lin et al.49 
identified all GABAergic and glutamatergic neurons that are bidi-
rectionally coupled with large numbers of cholinergic neurons. This 
reciprocal inhibitory–excitatory motif is widespread throughout the 
fly brain.

From connectome to projectome
For mammals, tracer injection studies have mapped the axonal projec-
tions between brain regions of mouse74,75 and macaque76. In the fly, large 
numbers of light microscopy reconstructions of single neurons have 
been aggregated to map projections between brain regions77,78. Such 
maps have been called projectomes79 or mesoscale connectomes14. 
In such techniques, the sampling of axons is difficult to control, and 
therefore accurate quantification of projection strength is challenging.

Here we computed a projectome from a synapse-level connectome 
(Fig. 4a and Extended Data Fig. 5). The interior of the fly brain has been 
subdivided into hierarchical neuropil regions80 (Fig. 1 and Extended 
Data Fig. 1). Our fly projectome is defined as a map of projections 
between these neuropil regions. Because cell bodies are spatially 
separated from neuropils, a fly neuron cannot typically be assigned 
to a single brain region. This is unlike the situation for a mammalian 
neuron, which is conventionally assigned to the region containing its 
cell body. A typical fly neuron belongs to multiple neuropils.

The projectome is a neuropil–neuropil matrix, and is computed as 
follows. Each intrinsic neuron contributes to the projections between 
neuropils where it has presynaptic and postsynaptic sites. We weighted 
neuron projections by the product of the respective number of syn-
apses and normalized the result for every neuron such that the neu-
ropil–neuropil matrix sums to the total number of intrinsic neurons. 
Each column corresponds to all the neurons projecting to a neuropil 
and each row corresponds to to all neurons projecting out of it (Fig. 4b). 
Each square then represents the summed fractional weight of all neu-
rons projecting between two neuropils (Fig. 4c,d). We added affer-
ent and efferent neurons to the matrix by calculating the sum of the 
weighted neuron projections per superclass to and from all neuropils, 
respectively.

Whereas each neuropil is connected to many others, most neurons 
have synaptic sites in only a few neuropils (Fig. 4e). The largest weights 
in the projectome tend to be internal to individual neuropils, such 
as within the medulla or within the fan-shaped body49. The largest 
inter-neuropil projections overall are lobula to medulla, whereas within 
the central brain the largest inter-neuropil projections are mushroom 
body, medial lobe to mushroom body, calyx.

We repeated this process to construct projectomes for each fast 
neurotransmitter type (Extended Data Fig.  5). Some neuropil– 
neuropil connections exist strongly for one neurotransmitter but not 
others. For example, the neuropils making up the central complex 
(fan-shaped body, ellipsoid body, protocerebral bridge and noduli) 
and the mushroom body (calyx, pendunculus, vertical lobe and medial 
lobe) are largely linked by excitatory connections.

We observed a strong symmetry between projections in the left and 
right hemisphere as well as with the central neuropils located on the 
midline (Extended Data Fig. 6a,b); this highlights the strong similar-
ity between the two sides of the brain. We observed that contralateral 
projections (projections from one side of the brain to the other) were 
generally weaker than projections to the same or ipsilateral neuropil 
(Extended Data Fig. 6c). The strongest contralateral projections are 
between left and right superior protocerebrum, followed by left and 
right anterior ventrolateral protocerebrum. Of note, projection weights 
were not strongly correlated to inter-neuropil distance. Although the 
strongest projections are often between nearby neuropils, there are 

also many nearby neuropils that do not share strong connections 
(Extended Data Fig. 6d).

The SEZ (Fig. 4f) is the ventral portion of the central brain, and has 
been shown to contribute to a variety of behaviours58. It is almost 
entirely unrepresented in the hemibrain reconstruction1, and is only 
partially reconstructed in the larval brain33. The five neuropils in the 
SEZ (left and right AMMC, GNG, SAD and PRW; Fig. 4f; breakdown by 
neuropil in Supplementary Figs. 4 and 5) amount to 17.8% of central 
brain neuropil volume (0.0018 mm3 out of 0.0103 mm3); they contain 
afferents mostly from non-visual sensory neurons (mechanosensory 
and taste) and ascending neurons, as well as a large number of effer-
ents (motor, endocrine and descending neurons; descending neurons 
receive on average 52% of their inputs in one of the five SEZ neuropils). 
The SEZ is thus important for information flow to and from the brain. 
Judging from the projectome (Fig. 4a), the SEZ neuropils interact with 
almost all parts of the brain. Notable exceptions are the central complex 
(ellipsoid body, fan-shaped body, protocerebral bridge and noduli) 
and the mushroom body, suggesting less crosstalk between those 
circuits and neurons in the SEZ (explored in more detail in Fig. 6; see 
also Pospisil et al.39).

Hemispheric organization
Our reconstruction includes both left and right brain hemispheres. 
This is important for tracing sensorimotor pathways that cross from 
one side to the other, and more generally for understanding interac-
tions between the two hemispheres. The projectome (Fig. 4a) reveals 
that most projections are ipsilateral or between neuropils on the same 
side of the brain.

The low fraction of non-ipsilateral neurons is primarily due to their 
scarceness in the optic lobes. Only 139 neurons (0.2%) in the optic lobes 
cross hemispheres and cross the central brain without making synapses 
there (Supplementary Fig. 6)—these neurons are considered to be ‘fully 
contained’ in the optic lobes because our definition depends only on 
synapse locations. These neurons mediate direct interactions between 
the two optic lobes, and their rarity suggests that these interactions 
represent a smaller fraction of the computations that occur within the 
optic lobes. Integration of information from both eyes may rely more on 
the abundant crossing connections between the central brain targets 
(AOTU, PLP and PVLP) of VPNs.

A higher proportion (40%) of central brain neurons are non-ipsilateral, 
largely owing to central neuropils, similar to those of the central com-
plex and SEZ. To classify non-ipsilateral neurons, we began by examin-
ing the spatial distributions of their postsynapses (inputs). We divided 
the neuropils into three categories. Left and right categories included 
the neuropils that come in mirror-symmetric pairs. Centre included the 
seven remaining neuropils that are located on the midline. For each 
neuron, we computed the proportions of its postsynapses in left, right 
and centre neuropils (Extended Data Fig. 7). Each neuron was assigned 
to the dominant category, and near-ties were rare. The exceptions are 
symmetric neurons with cell bodies at the midline of the brain (Sup-
plementary Fig. 7, n = 89).

Next, we explored how many neurons of left and right categories have 
presynapses (outputs) in the other hemisphere. Similar to the analysis 
of the 1st instar larval connectome33, we found that neurons project-
ing to the other hemisphere can be grouped into bilateral neurons, 
those with outputs in both hemispheres, and contralateral neurons, 
which almost exclusively had presynapses in the other hemisphere 
(Fig. 4g–i). Notably, a much larger fraction of VCNs projected to the 
contralateral hemisphere than VPNs, and both VCNs and neurons of the 
central brain contain a large fraction of bilateral neurons (Fig. 4h). As 
stated above, this analysis again revealed the dominance of ipsilateral 
connections in the brain. Whereas mixing between the hemispheres 
is more rare, mixing between sensory modalities within a hemisphere 
is common (Fig. 6).
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Many types of fly neurons are known to exhibit striking stereotypy 
across individuals, as well as across both hemispheres of the same 
individual. Schlegel et al.12 show quantitatively using FlyWire brain and 
hemibrain data that these two types of stereotypy are similar in degree.

Optic lobes, columns and beyond
So far we have mentioned neurons that connect the optic lobes with 
each other, or with the central brain. The intricate circuitry within each 
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optic lobe is also included in the FlyWire brain connectome. Matsliah 
et al.11 analysed and typed all neurons intrinsic to the right optic lobe. 
Photoreceptor axons terminate in the lamina and medulla, neuropils 
of the optic lobes (Fig. 5a,b). Each eye contains approximately 800 
ommatidia that map to columns in the lamina that are arranged in a 
hexagonal lattice (Fig. 5c). This structure repeats in subsequent neu-
ropils from lamina to medulla to lobula to lobula plate. The neuropils 
have been finely subdivided into layers that are perpendicular to the 
columns81. The 2D visual field is mapped onto each layer and any given 
cell type tends to synapse in some subset of the layers. Cell types vary 
greatly in size, with uni-columnar cell types being the smallest; (for 
example, Mi4); at the other extreme are large cells that span almost 
all columns (for example, Dm17); in between the extremes are many 
multi-columnar cell types (for example, Dm12) (Fig. 5c).

Mi4 is a true ‘tiling’ type—that is, its arbors cover the visual field with 
little or no overlap, and have similar size and shape (Fig. 5c). Dm12 
arbors overlap with each other, but the spatial arrangement is still 
regular. These and other distal medullary cell types were previously 
characterized by multicolour light microscopy82. Our electron micros-
copy reconstructions reveal even more detailed information about 
the spatial patterning of these types (for example, co-fasciculation of 
neurites of neighbouring Dm12 cells; Fig. 5c). More importantly, the 
FlyWire reconstruction encompasses all multi-columnar cell types, 
including those outside the medulla. Judging from the many examples 
we have studied throughout the optic lobe, it seems that regular cover-
age of the visual field without gaps is a defining criterion for most cell 
types, similar to mammalian retina83. There are, however, exceptional 
cell types that cover the visual field in an irregular manner. For example, 
there are exactly two LPi14 cells per optic lobe84. The shapes of each 
pair are complementary, as if they were created by cutting the visual 
field into two pieces with a jigsaw (Fig. 5d); this tiling was not evident 
when reconstructing only a portion of an optic lobe84.

Much of the existing research on wide-field visual motion processing 
has relied on the simplifying idea that the computations are mostly in 
columnar circuits, and the columnar outputs are finally integrated by 
large tangential cells in the lobula plate. This research has been aided 
by wiring diagrams containing connections between cells in the same 
column or neighbouring columns2. In previous studies, an absence of 
information across columns has necessitated treating each column 
as identical in simulations of the optic lobe85. The FlyWire brain con-
nectome contains not only the columnar neurons, but also all neurons 
that extend across columns (Fig. 5c). These neurons are both excitatory 
and inhibitory, and can support interactions between even distant 
columns. This opens the possibility of a much richer understanding 
of optic lobe computations and is further explored by Christenson 
et al.41 in investigating hue selectivity.

Analysis of information flow
Although afferent and efferent neurons make up a numerically small 
proportion of the brain (estimated 13.9% and 1.1%, respectively), they 
are important because they connect the brain to the outside world. 
Examining connections of these neurons is useful when attempting 
to predict the functions of intrinsic neurons from the connectome. 
For example, one might try to identify the shortest path in the con-
nectome from an afferent (input) neuron that leads to a given intrinsic 
neuron. The sensory modality of the afferent neuron could provide a 
clue regarding the function of the intrinsic neuron. This approach, 
although intuitive, ignores connection strengths and multiplicities of 
parallel pathways. We therefore use a probabilistic model to estimate 
information flow in the connectome26, starting from a set of seed neu-
rons (Fig. 6a and Methods).

The likelihood of a neuron being traversed increases with the frac-
tion of inputs from already traversed neurons up to an input fraction of 
30%, after which traversal is guaranteed (Fig. 6a). We ran the traversal 

model for every subset of afferent neurons as seeds (n = 12 input modali-
ties to the central brain (Fig. 2e and Supplementary Fig. 8; full list in 
Methods)). We then measured the flow distance from these starting 
neurons to all intrinsic and efferent neurons of the central brain. For 
instance, the neurons reached early from gustatory neurons (Fig. 6b) 
match second-order projection neurons identified by Snell et al.86 using 
trans-Tango.

To visualize information flow for neurons with inputs in the central 
brain in a common space, we treated the traversal distances starting 
from each seed population as a neuron embedding and built a uni-
form manifold approximation and projection (UMAP) from all of these 
embeddings (Fig. 6c). Within the map, we found that neurons of the 
same cell class (for example, two groups of Kenyon cells, all mush-
room body output neurons, all antennal lobe local neurons and all 
central complex neurons) cluster, indicating that cell types can in part 
be defined by their proximity to different input neurons. Next, we dis-
played traversal order on top of the UMAP plot to compare traversal 
orders starting from different modalities (Fig. 6c,d). We find that almost 
every neuron in the central brain can be reached by starting from any 
modality—this ‘small world’ property of the network is covered in more 
detail by Lin et al.49 Comparing orders revealed that almost all neurons 
in the central brain are reached early starting from some modality, 
with the exception of neurons in the central complex (Fig. 6c,d and 
Extended Data Fig. 9), highlighting that the central complex is domi-
nated by internal computations24. Kenyon cells were contained in two 
clusters—one of which is targeted very early from olfactory receptor 
neurons and the other is targeted early by VPNs87.

We then ranked all neurons by their traversal distance from each set of 
starting neurons and normalized the order to percentiles. For instance, 
a neuron at the 20th percentile had a lower rank than 80% of neurons. 
This enabled us to determine how early information from each afferent 
modality reached various targets, including the descending neurons, 
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endocrine neurons, motor neurons and VCNs (Fig. 6e and Extended 
Data Fig. 8a). Endocrine neurons are closest to the gustatory sensory 
neurons, whereas motor and descending neurons were reached early 
for mechanosensory and visual afferents (Extended Data Fig. 8a).

We next tested whether the afferent cell classes target inhibitory neu-
rons early or late. We found that putative inhibitory neurons (neurons 
predicted to express GABA and glutamate) were overrepresented in the 
set of early neurons (Fig. 6f). Surprisingly, we identified a sequence of 

GABAergic and glutamatergic peaks in the sequence of targeted neu-
rons that was replicated for almost all afferent modalities (Extended 
Data Fig. 8b).

Our information flow analysis provides a compressed representation 
of the connectome, but currently ignores signs of connections (neuro-
transmitter identity) and the biophysics of neurons and synapses, and 
therefore terms such as ‘early’ and ‘late’ should not be interpreted as 
true latencies to sensory stimulation. Shiu et al.34 and Pospisil et al.39 
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use the connectome to model Drosophila brain dynamics and include 
connection weights (number of synapses) and putative connection 
signs (excitatory or inhibitory).

Cell types and other annotations
Neurons in Drosophila are considered to be identifiable across 
hemispheres and individuals, enabling cell-type classification of all 
neurons in FlyWire’s brain dataset. Such classification is useful for 
generating testable hypotheses about circuit function from the con-
nectome. FlyWire community members, many of whom are experts 
in diverse regions of the fly brain, have shared 133,700 annotations 
of 114,209 neurons (Supplementary Fig. 9), including comprehen-
sive cell typing in the optic lobe11, the majority of sexually dimorphic 
neurons and sensory neurons35, as well as a diversity of cell types 
throughout the brain, including the SEZ (Fig. 2f). Each neuron in 
FlyWire is also given a unique identifier on the basis of the neuropil 
through which it receives and sends most of its information. Cura-
tion of these annotations continues, and we invite further community 
efforts to identify cell types, which can be contributed through Codex  
(https://codex.flywire.ai).

In addition, matching between cell types identified in the hemibrain1 
and both hemispheres of FlyWire’s brain dataset provides additional 
annotations for neurons contained in both datasets. Our companion 
paper12 provides annotations for more than 8,400 unique cell types via 
such matching. All cell annotations can be queried in Codex. Some of 
these have already been mentioned, such as the ‘flow’ annotations of 
intrinsic versus afferent versus efferent, superclass annotations (Fig. 2), 
connectivity tags (such as rich club, broadcaster or highly reciprocal)42, 
neurotransmitter predictions10 and left–right annotations for cell body 
location88, in addition to lineages or groups of neurons derived from 
a single neuroblast.

Ocellar circuit, from inputs to outputs
The completeness of the FlyWire brain connectome enables tracing 
complete pathways from sensory inputs to motor outputs. We dem-
onstrate this capability by examining circuits that emanate from the 

ocellar ganglion and leveraging cell-type information. In addition to 
the large compound eyes, flying insects have smaller visual sensory 
organs89, including the three ocelli on the dorsal surface of the head 
cuticle (Fig. 7a). The ocelli project a blurry image of light-level changes 
in the UV and blue region of the spectrum90,91 and are thought to be use-
ful for flight control and orientation relative to the horizon92. Notably, 
although the role of the ocelli has been hypothesized (for example, 
light-level differences between the eyes when the fly is shifted off axis 
should quickly drive righting motions of the head, wings and body to 
stabilize gaze and re-orient the body), little is known about the circuitry 
downstream of this sensory organ that would mediate this function.

We find that photoreceptor axons (n = 273) from the three ocelli 
innervate three distinct regions of the ocellar ganglion separated 
by glial sheets (Fig. 7a,b). The ocellar ganglion additionally contains 
63 neurons that we categorized into four broad groups (Fig. 7c and 
Extended Data Fig. 10a): local neurons (n = 16), 2 types of interneurons, 
divided on the basis of their arborizations and caliber (OCG01 (n = 12), 
OCG02 (n = 8)), descending neurons (DNp28, n = 2), and centrifugal or 
feedback neurons (n = 25). Ocellar local neurons are small and connect 
sparsely with photoreceptors from all ocelli.

Twelve OCG01 interneurons and two descending neurons (DNp28, 
one per lateral ocellus) represent the main pathway from the ocellar 
ganglion to the central brain. DNp28 projects to the intermediate, 
haltere, wing and neck tectula of the ventral nerve cord55,93. In each 
ocellus, half of the OCG01s were inferred to express glutamate (likely 
inhibitory), and the other half were inferred to express acetylcholine 
(likely excitatory). There are four OCG01s per ocellus (Fig. 7d). OCG01s 
tile the ocellar ganglion, indicating that their receptive fields tile the 
visual fields of the ocelli (Extended Data Fig. 10b,c). OCG02 axons are 
much thinner than OCG01 axons, and likely transmit signals more 
slowly. Two OCG02 subgroups (a and b) innervate similar neuropils 
to the OCG01s (inferior posterior slope (IPS) and superior posterior 
slope (SPS)), and OCG02c neurons target the PLP, a brain region that 
also receives input from VPNs from the compound eyes60.

Neurons downstream from OCG01s in the IPS, SPS and GNG receive 
inhibitory input from the ipsilateral ocellus and excitatory input 
from the contralateral ocellus (Fig. 7d, left), and the amount of syn-
aptic input from each ocellus is tightly correlated (Fig. 7e, R = 0.78, 
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P < 10−26)—this balance is likely to be a key ingredient in how signals are 
integrated (the descending circuits are activated by a signal difference 
between the eyes). We found that 15 different descending neurons 
each receive more than 200 synapses from the OCG01 neurons. For 
example, 2 descending neurons in each hemisphere received more 
than 30% of their synaptic inputs in the brain from ocellar projection 
neurons: DNp20/DNOVS1 (left: 57%, right: 44%) and DNp22/DNOVS2 
(left: 36%, right: 33%). DNOVS1 and other descending neurons with 
strong input from OCG01s generally also receive strong input from 
ipsilateral VPNs (neurons that connect the optic lobe to the central 
brain) (Extended Data Fig. 10d). For example, DNOVS1 is known to be 
activated by rotational optic flow fields across the compound eye, 
and projects to the neck motor system94,95. A handful of glutamatergic 
(putative inhibitory) VPNs also sparsely innervate descending neurons 
in both hemispheres. As the ocelli transmit mainly information about 
light levels, the dense integration with motion direction signals from 
the compound eyes was not previously appreciated, but should aid in 
precision adjustments of head and body movements for gaze stabiliza-
tion and flight control96.

There is also extensive feedback from the brain directly to the ocellar 
ganglion via 25 ocellar centrifugal neurons (OCC). We found striking 
targeting specificity of two OCC subgroups (OCC01a and OCC01b, 
predicted to be cholinergic) which synapse onto all OCG01 and DNp28 
neurons with strong connections compared with their overall synaptic 
budget (Extended Data Fig. 10e). The OCC01s receive input in a wide 
range of neuropils, notably the SEZ, as well as IPS and SPS, the same neu-
ropils that receive inputs from the OCG projection neurons (Extended 
Data Fig. 10f). The role of the OCCs in gating visual information and 
potentially driving the OCGs in the absence of photoreceptor activity 
remains to be determined.

On the basis of our analysis of connectivity, we hypothesize how the 
pathways from the ocelli to descending neurons function (Fig. 7f). As 
in a Braitenberg vehicle for phototaxis97, excitation and inhibition are 
organized so that the head and body of the fly should roll around the 
anteroposterior axis to orient the ocelli towards light. In this com-
pact example, the whole-brain connectome, which extends from brain 
inputs to outputs, uncovers new pathways and facilitates the genera-
tion of testable hypotheses for circuit mechanisms of sensorimotor 
behaviour.

Discussion
Connectome analysis
We use the term ‘connectome’ to mean a neuronal wiring diagram of 
an entire nervous system, or at least an entire brain98. This is in keeping 
with the intent of the original definition14, which emphasized com-
prehensiveness. Similarly, the term ‘genome’ refers to the entire DNA 
sequence of an organism, or at least the entirety of genes. Our neuronal 
wiring diagram of a whole fly brain arguably crosses the threshold for 
being called a connectome, although it would be reasonable to insist 
that a connectome should include the ventral nerve cord as well as the 
brain. Either way, the comprehensiveness of our wiring diagram has 
significant benefits for brain research and enables many kinds of studies 
that were not previously possible using wiring diagrams of portions of 
the fly brain. The optic lobes and the SEZ are two prominent regions 
that are mostly absent from the hemibrain. Both sides of the brain are 
now included, which enables the tracing of pathways that cross the 
midline. Owing to the presence of afferent and efferent neurons, path-
ways can be traced from sensory inputs to intrinsic neurons and brain 
outputs (motor, endocrine and descending neurons). This was done 
in a global manner to analyse the neuropil projectome, by using the 
information flow model, and more specifically to uncover the structure 
and hypothesize a circuit mechanism for behaviours supported by the 
ocelli. A set of companion studies provides additional global analyses of 
the connectome and studies of specific families of pathways11,12,34,36–45.

For the first time, one can now compare entire connectomes of dif-
ferent species, starting with D. melanogaster and C. elegans, as touched 
on here and explored in more depth by Lin et al.49. It also enables com-
parison of connectomes of the same species at different developmental 
stages33. Although FlyWire is currently the only adult fly connectome, it 
can be compared with the hemibrain reconstruction in regions where 
they overlap to detect wiring differences between adults of the same 
species and to validate and extend cell-type definitions12.

Finally, the connectome now enables brain simulations—partial con-
nectomes of the early visual system of the fly3 had already inspired 
simulations of visual processing85. This effort has now been extended 
to leverage the full connectome34,39 and to—for example—predict taste 
responses of neurons34. These simulations assume that that physiologi-
cal connection strength is proportional to anatomical synapse count, 
either globally34, or for synapses sharing the same presynaptic and 
postsynaptic cell types85, and have inferred connection signs (excita-
tory versus inhibitory) from neurotransmitter identity as predicted 
from electron microscopy images10 or from transcriptomics99. Ongoing 
discoveries regarding the biophysics of fly neurons will guide efforts 
to make simulations more realistic. For example, inhibition can be 
shunting rather than subtractive in some fly neurons100, and the con-
ductance of an inhibitory synapse can be ten times higher than that of 
an excitatory synapse101. Whereas the simulations mentioned above 
were based on point neuron models, future simulations could utilize 
multicompartmental neuron models constructed using the synapse 
locations and reconstructed neuronal morphologies provided by Fly-
Wire, as well as emerging data about ion channels and receptors from 
transcriptomics and proteomics.

Electron microscopy data acquisition and reconstruction
The hemibrain1 was reconstructed from 8 × 8 × 8 nm3 images acquired 
by focused ion beam scanning electron microscopy102–104 (FIB-SEM), 
a form of block face electron microscopy105,106. By contrast, FlyWire’s 
reconstruction is based on a full adult fly brain (FAFB) dataset9 of 
4 × 4 × 40 nm3 images acquired by serial section transmission elec-
tron microscopy (ssTEM). Initially, the lower z resolution and higher 
prevalence of artefacts made alignment and reconstruction of ssTEM 
datasets challenging. These were cited by the hemibrain effort to justify 
the use of FIB-SEM despite its higher cost, slower speed and complex 
operation requiring many 20-μm slabs to be imaged individually and 
then stitched together1. Computational advances have now closed this 
gap107 and FAFB images were accurately aligned with a new approach 
that leverages convolutional nets108. The hemibrain images were auto-
matically segmented using flood-filling convolutional nets109, whereas 
FlyWire used the older, less computationally expensive approach of 
boundary-detecting convolutional nets110,111. Overall, from acquisition 
to reconstruction to analysis to dissemination, the technology stack 
used by FlyWire is distinct from that used for the hemibrain. A notable 
overlap is the use of neuroglancer112 for browser-based 3D visualization.

FlyWire’s whole-brain automated segmentation was proofread with 
an estimated 33 person-years of effort (Methods), whereas hemibrain 
proofreading required 50 person-years for a part of the brain1. Notably, 
the accuracy of our proofread wiring diagram is similar to that of the 
hemibrain (Extended Data Fig. 2 and Supplementary Fig. 3). For both 
FIB-SEM and ssTEM, incomplete attachment of twigs to backbones is 
currently the main factor that limits the accuracy of reconstructing 
synaptic connectivity, and in both cases synaptic connectivity is lim-
ited to chemical synapses. Higher resolution might enable the recon-
struction of electrical synapses, which are included in the C. elegans 
connectome31,32.

Limitations of our reconstruction
We showed that the attachment rates of twigs is sufficient to facilitate 
detection of nearly all large connections8 (those with more than nine 
synapses). Nonetheless, the observed synapse counts underrepresent 
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the actual number of synapses and some connections with few synapses 
remain undetected. Substantial improvements in twig attachment are 
unobtainable with further proofreading, as increasing the postsynaptic 
attachment rate from 44.7% to 50% would require further proofreading 
of more than 700,000 fragments. Therefore, increases in twig attach-
ments will rely on improvements in image acquisition, image alignment 
and automated reconstruction. Although proofreading was largely 
carried out in a neuropil-agnostic manner, attachment rates differ 
between neuropils (Supplementary Fig. 2) owing to differences in the 
number of synapses on twigs and backbones and how challenging a 
neuropil was to reconstruct. Although these effects are largely sym-
metric, the optic lobe was affected by a one-sided artefact. The left 
lamina was partially severed from the medulla in the left hemisphere 
(Fig. 1a), reducing the reconstruction accuracy for some of the lamina 
neurons on one side (Supplementary Fig. 2).

The automated synapse detection currently used by FlyWire was 
performed by Buhmann et al.7 in an independent effort. By combin-
ing the FlyWire brain reconstruction with these synapses, the result-
ing connectome inherits the limitations from both. In the case of the 
synapse detection, users should be aware that the ground truth was 
limited to a few neuropils. As a result, synapse detection performance 
is lower for some cell types, and we are aware that sensory neurons are 
particularly affected. FlyWire’s reconstruction is compatible with any 
synapse prediction method and improved synapse prediction will be 
made available in the future.

Imaging larger
Imaging a larger volume would open up other interesting opportunities. 
Reconstructing and proofreading a full CNS would enable the mapping 
of all pathways linking the brain and VNC. In the meantime, it is already 
possible to establish correspondences between FlyWire and FANC36, a 
reconstruction of a VNC from another female fly54,59. The first C. elegans 
connectome was obtained similarly as a mosaic drawn from multiple 
worms31. Imaging an entire fly, both CNS and body, would enable the 
addition of sensory organs and muscles to the reconstruction. This 
also has precedent in the C. elegans connectome32, which includes 
neuromuscular junctions, the Platynereis dumerilii larva113, and the 1st 
instar Drosophila larva for which a whole-animal electron microscopy 
dataset was recently published114.

Technologies developed for FlyWire have already been applied to 
millimetre-scale chunks of mammalian brain4,5, which are more than 
50 times larger in volume than a fly brain. The US National Institutes 
of Health has begun a transformative project to reconstruct a whole 
mouse brain from an exabyte of electron microscopy images115 and a 
report from the Wellcome trust recently examined the road to a whole 
mouse brain connectome116.

Openness
The 1996 Bermuda Principles mandated daily release of Human Genome 
Project sequences into the public domain117. We believe that openness 
is also important for large-scale connectomics projects, particularly 
because these projects are expensive, require coordinated effort and 
take several years to complete—sharing connectomes only after proof-
reading and annotation are completed prevents scientific discovery 
that can occur while the connectome is being completed. Shortly 
after its inception in 2019, FlyWire has been open to any Drosophila 
researcher, and set forth clear principles for coordination of scientific 
effort that prioritized attribution through keeping track of edits to and 
annotations of the dataset. Hundreds of scientists and proofreaders 
from more than 50 laboratories joined FlyWire with more than 200 of 
them contributing more than 100 edits (Supplementary Table 1) and 
86 contributing ten or more annotations (Supplementary Table 2). As 
a result of openness, there are multiple studies that used completed 
portions of FlyWire’s brain connectome as proofreading proceeded 
(Supplementary Table 3). Openness has also enabled FlyWire to move 

faster by incorporating data sources from the community. The electron 
microscopy data on which FlyWire’s brain connectome is built was 
shared in 2018 by Bock and colleagues9. The synapse data was published 
by Buhmann et al.7, neurotransmitter labels were published by Eckstein 
et al.10, numerous annotations were contributed by Schlegel et al.12, 
neck connective neuron annotations were contributed by Stürner 
et al.36, optic lobe annotations were contributed by Matsliah et al.11 
and so far, more than 90,000 cell annotations have been shared by 
the community. Many cells have received multiple annotations from 
these sources, and discrepancies will continue to be adjudicated by 
the community, a process that has improved accuracy in cell-type clas-
sification. Overall, we anticipate that similar approaches based on an 
open ecosystem will enable connectomics to scale more efficiently, 
economically and equitably.
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Specimen, alignment and segmentation
Multiple brains of 7-day-old (iso) w1118 × (iso) Canton-S G1 adult female 
flies were screened by Zheng et al.9 and one was picked for electron 
microscopy imaging. Zheng et al.9 published the original electron micros-
copy stack (FAFB14) which we previously realigned8 (FAFB14.1) using a 
neural network trained to predict pairwise displacement fields108,120. We 
produced transformations between the FAFB14 and FAFB14.1 which are 
accessible via natverse, navis and flybrains. We automatically segmented 
all cells in the dataset8 using a neuronal boundary-detecting neural 
network121 and mean affinity agglomeration107,122.

Neuropils
Meshes for individual neuropils were based on work by Ito et al.80. More 
specifically, we took meshes previously generated from a full brain 
segmentation of the JFRC2 template brain which are also used by the 
Virtual Fly Brain project (see also https://natverse.org/nat.flybrains/
reference/JFRC2NP.surf.html). These meshes were moved from JFRC2 
into FlyWire (FAFB14.1) space through a series of non-rigid transforms. 
In addition, we also generated two neuropil meshes for the laminae and 
for the ocellar ganglion. For these, the FlyWire synapse cloud was vox-
elized with 2 μm isotropic resolution, meshed using the marching cube 
algorithm using Python and manually post-processed in Blender 3d.

We calculated a volume for each neuropil using its mesh. In the 
aggregated volumes presented in the paper we assigned the lamina, 
medulla, accessory medulla, lobula and lobula plate to the optic lobe. 
The remaining neuropils but the ocellar ganglion were assigned to the 
central brain.

Neuropil synapse assignments
We assigned synapses to neuropils based on their presynaptic location. 
We used ncollpyde (https://pypi.org/project/ncollpyde/) to calculate 
whether the location was within a neuropil mesh and assigned the syn-
apse accordingly. Some synapses remained unassigned after this step 
because the neuropils only resemble rough outlines of the underlying 
data. We then assigned all remaining synapses to the closest neuropil 
if the synapse was within 10 μm from it. The remaining synapses were 
left unassigned.

Correction of left–right inversion
Our reconstruction used the FAFB electron microscopy dataset9. A 
number of consortium members (A. Bates, P. Kandimalla and S. Noselli) 
alerted us that the FAFB imagery seemed to be left–right inverted based 
on the cell types innervating the asymmetric body123. Eventually a left–
right inversion during FAFB imaging was confirmed. All side annota-
tions in figures, in Codex and elsewhere are based on the true biological 
side. For technical reasons, we were unable to invert the underlying 
FAFB image data and therefore continue to show images and recon-
structions in the same orientation as in Zheng et al.9, although we now 
know that in such frontal views the fly’s left is on the viewer’s left. For 
full details of this issue including approaches to display FAFB and other 
brain data with the correct chirality, please see the companion paper12.

Proofreading system
FlyWire uses CAVE50 for hosting the proofreadable segmentation and all 
of its annotations. CAVE’s proofreading system is the PyChunkedGraph 
which has been described in detail elsewhere8,124.

Proofreading annotations
Any user in FlyWire was able to mark a cell as complete, indicating that 
a cell was good for analysis. However, such annotations did not pre-
vent future proofreading of a cell as commonly smaller branches were 
added later on. We created an annotation table for these completion 
markings. Each completion marking was defined by a point in space 

and the cell segment that overlapped with this point at any given time 
during proofreading was associated with the annotation. We created 
a webservice allowing users to submit completion markings for any 
cell. For convenience, we added an interface to this surface directly 
into Neuroglancer such that users can submit completion information 
for cells right after proofreading (Supplementary Fig. 10). When users 
submitted completion annotations we also recorded the current state 
of the cell. We encouraged users to submit new completion markings for 
a cell that they edited to indicate that edits were intentional. Recording 
the status of a cell at submission enabled us to calculate volumetric 
changes to a cell through further proofreading and flag cells for review 
if they received substantial changes without new completion markings.

Onboarding proofreaders
Proofreaders came from several distinct labour pools: community 
members, citizen scientists from Eyewire (Flyers), and professional 
proofreading teams at Princeton and Cambridge. Proofreaders at 
Princeton consisted of staff at Princeton University and at SixEleven. 
Similarly, proofreading at Cambridge was performed by staff at Cam-
bridge University and Ariadne. All proofreaders completed the built-in 
interactive tutorial and were directed to self-guided proofreading 
training. For practice and learning purposes, the Sandbox, a complete 
replica of the FlyWire data, allowed new users to freely make edits and 
explore without affecting the actual ‘Production’ dataset. When ready, 
an onboarding coordinator tested the new proofreader before giving 
access to the Production dataset8. Later onboarding called for users to 
send demonstration Sandbox edits that were reviewed by the onboard-
ing coordinator. A new class of view-only users was introduced in early 
2023, allowing researchers early data access for analysis purposes. All 
early access users attended a live onboarding session in Zoom prior to 
being granted edit or view access.

Training the professional proofreading team
The professional proofreading team received additional proofreading 
training. Correct proofreading relies on a diverse array of 2D and 3D 
visual cues. Proofreaders learned about 3D morphology, resulting 
from false merger or false split without knowing what types of cells 
they are. Proofreaders studied various types of ultrastructures as the 
ultrastructures provide valuable 2D cues and serve as reliable guides for 
accurate tracing. Before professional proofreaders were admitted into 
Production, each of them practiced on average >200 cells in a testing 
dataset where additional feedback was given. In this dataset, we deter-
mined the accuracy of test cells by comparing them to ground-truth 
reconstructions. To improve proofreading quality, peer learning was 
highly encouraged.

Recruitment of citizen scientists
The top 100 players from Eyewire, a gamified electron microscopy 
reconstruction platform that crowdsources reconstructions in mouse 
retina and zebrafish hindbrain125, received an invitation to beta test 
proofreading in FlyWire. A new set of user onboarding and training 
materials were created for citizen scientists, including: a blog, forum 
and public Google docs. We created bite-sized introduction videos, a 
comprehensive FlyWire 101 resource, as well as an Optic Lobe Cell Guide 
to aid users in understanding the unique morphology of flies. A virtual 
Citizen Science Symposium introduced players to the project, after 
which the self-dubbed ‘Flyers’ began creating their own resources, such 
as a new comprehensive visual guide to cell types, conducting literature 
reviews, and even developing helpful FlyWire plugins. As of publica-
tion, FlyWire has 12 add-on apps ranging from a batch processor to cell 
naming helper (https://blog.flywire.ai/2022/08/11/flywire-addons/).

Proofreading strategy to complete the connectome
As previously described8, proofreading of the connectome was focused 
on the microtubule-rich ‘backbones’ of neurons. Microtubule-free 
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‘twigs’ were only added if discovered incidentally or sought out specifi-
cally by members of the community. After proofreading, users marked 
neuronal segments as ‘complete’ indicating that neurons were ready 
for analysis but further changes remained possible. While Drosophila 
neuroscientist members of the FlyWire community generally con-
tributed proofreading for their neurons of interest, the bulk of the 
segments was proofread by professional proofreaders in the following 
way. First, we proofread all segments with an automatically detected 
nucleus in the central brain88 by extending it as much as possible and 
removing all false mergers (pieces of other neurons or glia attached). 
Second, we proofread the remaining segments in descending order 
of their synapse count (pre+post) up to a predefined size threshold of 
100 synapses. Third, we proofread remaining segments if they had at 
least one connection containing at least 15 synapses.

Quality assurance
To assess quality, a group of expert centralized proofreaders conducted 
a review of 3,106 segments in the central brain. These specific neurons 
were chosen based on certain criteria such as significant change since 
being marked complete and small overall volume. An additional 826 
random neurons were included in the review pool as well. Proofreaders 
were unaware which neurons were added for quality measurement and 
which ones because they were flagged by a metric. We compared the 
826 neurons before and after the review and found that the initial recon-
struction scored an average F1-Score of 99.2% by volume (Extended 
Data Fig. 2a,b). F1-Score is defined as the harmonic mean of recall (R) 
and precision (P) with precision defined as the ratio of true positives 
(TP) among positively classified elements (TP + FP (false positives)) 
and recall defined as the ratio of TPs among all true elements (TP + FN 
(false negatives)).
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Quantification of proofreading effort
Any quantification of the total proofreading time that was required to 
create the FlyWire resource is a rough estimate because of the distributed 
nature of the community, the interlacing of analysis and proofreading 
and the variability in how proofreading was performed. The second pub-
lic release, version 783, required 3,013,513 edits. We measured proofread-
ing times during early proofreading rounds that included proofreading 
of whole cells in the central brain. We collected timings and number of 
edits for 29,135 independent proofreading tasks after removing outliers 
with more than 500 edits. From these data, we were able to calculate an 
average time per edit. However, we observed that proofreading times 
per edit were much higher for proofreading tasks that required few edits 
(<5). That meant that our measurements were not representative for 
the second round of proofreading which went over all segments with 
>100 synapses. These usually required 1–5 edits. We adjusted for that by 
computing estimates for proofreading speeds of both rounds by limiting 
the calculations to a subset of the timed tasks: (round 1) The average time 
per edit in our proofreading time dataset, (round 2) the average time of 
tasks with 1–5 edits. We averaged these times for an overall proofreading 
time because the number of tasks in each category were similar. The 
result was an average time of 79 s per edit which adds up to an estimate 
of 33.1 person-years assuming a 2,000 h work year.

Attachment rates
We adopted the attachment rate (also referred to as ‘completion rate’) 
calculations from the hemibrain1. Every presynaptic and postsynaptic 
location was assigned to a segment. Using the neuropil assignments, 

we then calculated the fraction of presynapses that were assigned to 
segments marked as proofread for each neuropil and analogous for 
postsynaptic locations.

Comparison with the hemibrain
We retrieved the latest completion rates and synapse numbers for the 
hemibrain from neuprint (v1.2.1). In some cases, neuropil comparisons 
were not directly possible because of redefined regions in the hemibrain 
dataset. We excluded these regions from the comparison.

Crowdsourced annotation
The large FlyWire community and diversity of expertise enabled us 
to crowdsource the identification of neurons. There is no limit to the 
number of annotations a neuron can receive. A standardized format is 
encouraged but not required. One user might first report that a neuron 
is a descending interneuron, whereas another might add that it is the 
giant fibre descending neuron, and yet another might add all its syno-
nyms and citations from the literature. Contributors’ names are visible 
so they can be consulted if there is disagreement. The disadvantage to 
this approach is that there is no single precise name for every neuron, 
but the advantage is a richness of information and dialogue. The annota-
tions are not meant to be a finished, static list, but rather a continually 
growing, living data source. These annotations were solicited from the 
FlyWire community through town halls, email announcements, interest 
groups in the FlyWire forum, online instructions, and by personal con-
tact from the community manager. Citizen scientists also contributed 
annotations, after receiving training on particular cell types by experts.

Neuron categorizations
Neuron categorization, sensory modality annotations and nerve assign-
ments are described in detail in our companion paper12. In brief, neurons 
were assigned to one of three ‘flow’ classes: afferent (to the brain), 
intrinsic (within the brain) and efferent (out of the brain). Intrinsic 
neurons had their entire arbor within the FlyWire brain dataset. This 
included cells that projected to and from the SEZ. Next, each flow class 
was divided into superclasses in the following way. afferent: sensory, 
ascending. intrinsic: central, optic, visual projection (from the optic 
lobes to the central brain), visual centrifugal (from the central brain to 
the optic lobes). efferent: endocrine, descending, motor.

Quantification of intrinsic neurons
We define whether a neuron is ‘intrinsic’ to a region on the basis of its 
synapse locations, rather than its arbor. In other words, the neurites of 
an intrinsic neuron are allowed to exit the region, provided that they do 
not make synapses after leaving. Information about C. elegans synapse 
locations was obtained from the diagrams in White et al.31.

The ‘brain’ of C. elegans can be defined as the neuropil extending 
from the ring-shaped structure around the pharynx to the excretory 
pore. (We follow the authors who call this region the nerve ring plus 
the anterior portion of the ventral nerve cord, though some authors 
refer to the combined structure as the nerve ring.) Nine neurons (RIR, 
RIV, RMDD, RMD and RMDV) are intrinsic to the nerve ring itself. An 
additional 26 neurons (AIA, AIB, AIM, AIN, AIY, AIZ, RIA, RIB, RIC, RIH, 
RIM, RIS, RMF and RMH) are intrinsic to the combined structure, for a 
total of 35 intrinsic neurons in the brain.

It should be understood that this estimate has ‘error bars’ because 
of definitional ambiguities. Ten motor neurons (RMH, RMF and RMD) 
could arguably be removed from the list, as it is unclear whether motor 
neurons qualify as intrinsic neurons. Or the brain could be enlarged by 
moving the posterior border further behind the excretory pore, which 
would add 10 neurons (RIF, RIG, RMG, ADE and ADA). To make these 
ambiguities explicit, we estimate 35 ± 10 intrinsic neurons. Of the 302 
CNS neurons, 180 make synapses in the brain126. Therefore, neurons 
intrinsic to the brain make up about 15 to 25% of brain neurons, and 8 
to 15% of CNS neurons.



Skeletonization and path length calculation
We generated skeletons for all neurons marked as proofread using 
skeletor (https://github.com/navis-org/skeletor), which implements 
multiple skeletonization algorithms such as TEASAR127. In brief, neuron 
meshes from the exported segmentation (LOD 1) were downloaded 
and skeletonized using the wavefront method in skeletor. These raw 
skeletons were then further processed (for example, to remove false 
twigs and heal breaks) and produce downsampled versions using 
navis128 (https://github.com/navis-org/navis). A modified version of 
this skeletonization pipeline is implemented in fafbseg (https://github.
com/navis-org/fafbseg-py).

Quantifying cell volume and surface area
We calculated cell volumes and surface areas using CAVE’s L2Cache50. 
Volumes were computed by counting all voxels within a cell segment 
and multiplying the count by the voxel resolution. Area calculations 
were more complicated and were performed by overlap through shifts 
in voxel space. We shifted the binarized segment in each dimension 
individually and extracted the overlap of false and true voxels. For each 
dimension, we counted the extracted voxels and multiplied the count 
by the voxel resolution of the given dimensions. Finally, we added up 
per dimension area estimates. This measurement will overestimate 
area slightly but smoothed measurements are ill-defined and were 
too compute intensive.

Synaptic connections
We imported the automatically predicted synapses from Buhmann 
et al.7, which we combined with the synapse segmentations by Heinrich 
et al.118 to assign scores to all synapses to improve precision. Buhmann 
et al. introduced a machine learning model to predict for each voxel 
whether it is part of a postsynaptic site. For voxels classified as post-
synaptic a vector to the presynaptic site is predicted which is then used 
to created synaptic connections. Hence, synaptic partners predicted 
by Buhmann et al. are represented by a connector between a postsyn-
aptic and a presynaptic location without further annotation about the 
size of the synapse. Heinrich et al. on the other hand segmented the 
synaptic clefts. Buhmann et al. suggested using the probability maps 
from Heinrich et al. to improve performance by locating the highest 
probability score along their predicted connectors (called score in 
the next paragraph).

The synapse classifier by Buhmann et al. was trained on ground 
truth from the CREMI challenge (https://cremi.org). The three CREMI 
datasets contain three 5 × 5 × 5 μm cubes from the calyx in FAFB14 
with 1,965 synapses. While the classifier from Buhmann et al. was 
trained and validated on only this dataset, they evaluated its perfor-
mance on multiple regions (calyx, lateral horn, ellipsoid body and 
protocerebral bridge). It should be noted that performance varies  
by region.

The dataset published by Buhmann et al. contained ~244 million 
synapses. We removed synapses from the imported list if they fulfilled 
any of the following criteria: (1) either the pre- or postsynaptic location 
remained unassigned to a segment (proofread or unproofread); (2) It 
had a score ≤50. Additionally, we removed duplicate synapse annota-
tions between the same pre- and postsynaptic partners, defined as 
those within a distance of 100 nm from another synapse annotation 
according to their presynaptic coordinate. After filtering, we were left 
with ~130 million synapses.

Eckstein et al.10 created a machine learning model to predict neuro-
transmitter identities for all synapses from Buhmann et al. based on 
the electron microscopy imagery alone. Each synapse was assigned a 
probability for one of six neurotransmitters: acetylcholine, glutamate, 
GABA, serotonin, dopamine and octopamine. They used neurotrans-
mitter identities published for individual neuronal cell types and built 
a dataset with 3,025 neurons with known transmitter type assuming 

Dale’s law applies. Eckstein et al. reported a per-synapse accuracy of 
87% and a per neuron (majority vote) accuracy of 94%.

The methods described in this section used the FAFB14 version of the 
electron microscopy stack. We applied a transformation to all synapses 
to map them into the FlyWire FAFB14.1 space. The vector field for the 
transformation had a resolution of 64 × 64 × 40 nm.

Connection threshold
For all the analyses presented in this paper, save for synapse distribu-
tions, we employed a consistent threshold of >4. Our decision to use 
a synapse threshold on connections was due partly to the fact that 
synapses in the FlyWire’s brain dataset were not manually proofread. 
For these analyses, many of which demonstrate the high interconnec-
tivity of the fly brain, we chose a conservative threshold to ensure that 
considered connections are real. Use of a threshold is also in keeping 
with previous work analysing wiring diagrams in Drosophila1. Thus, 
we are probably undercounting the number of true connections. The 
distribution of synapse counts (Fig. 3f) does not display any bimodal-
ity that could be used to set the threshold. Therefore, the choice of 5 
synapses per connection is a reasonable but arbitrary one. By analysing 
the network properties of the FlyWire brain connectome, Lin et al. found 
that statistical properties of the whole-brain network, such as reciproc-
ity and clustering coefficient, are robust to our choice of threshold49. 
The FlyWire data are available without an imposed threshold, so users 
can choose their own appropriate threshold for their specific use case.

Neuropil projectome construction
Under the simplifying assumptions that information flow through the 
neuron can be approximated by the fraction of synapses in a given region, 
and that inputs and outputs can be treated independently, we can con-
struct a matrix representing the projections of a single neuron between 
neuropils. The fractional inputs of a given neuron are a 1 × N vector con-
taining the fraction of incoming synapses the neuron has in each of the 
N neuropils, and the fractional outputs are a similar vector containing 
the fraction of outgoing synapses in each of the N neuropils. We multi-
ply these vectors against each other to generate the N × N matrix of the 
neuron’s fractional weights. Summing these matrices across all intrinsic 
neurons produces a matrix of neuropil-to-neuropil connectivity (Fig. 4a). 
In this projectome, all neurons contribute an equal total weight of one.

Dominant input side
We assigned neuropils to the left and right hemispheres or the centre 
if the neuropil has no homologue. We then counted how many post-
synapses each neuron had in each of these three regions and assigned 
it to the one with the largest count.

Contralateral and bilateral neuron analysis
For each neuron, we calculated the fraction of presynapses in the left 
and right hemisphere. The hemisphere opposite its dominant input 
side was named the contralateral hemisphere. We excluded neurons 
that had either most of their presynapses or most of their postsynapses 
in the centre region.

Rank analysis and information flow
We used the information flow algorithm implemented by Schlegel 
et al.26,128 (https://github.com/navis-org/navis) to calculate a rank for 
each neuron starting with a set of seed neurons. The algorithm traverses 
the synapse graph of neurons probabilistically. The likelihood of a neu-
ron being added to the traversed set increased linearly with the fraction 
of synapses it receives from already traversed neurons up to 30% and 
was guaranteed above this threshold. We repeated the rank calculation 
for all sets of afferent neurons as seed as well as the whole set of sensory 
neurons. The groups we used are: olfactory receptor neurons, gustatory 
receptor neurons, mechanosensory Johnston’s organ neurons, head 
and neck bristle mechanosensory neurons, mechanosensory taste 
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peg neurons, thermosensory neurons, hygrosensory neurons, VPNs, 
visual photoreceptors, ocellar photoreceptors and ascending neurons.

Additionally, we created input seeds by combining all listed modali-
ties, all sensory modalities, and all listed modalities with visual sensory 
groups excluded.

For each modality we performed 10,000 runs, which were aver-
aged. We then ordered the neurons according to their rank and assigned 
them a percentile based on their location in the order. To compute a 
reduced dimensionality, we treated the vector of all ranks (one for 
each modality) as neuron embedding and calculated two dimensional 
embeddings using UMAP129 with the following parameters: n_com-
ponents=2, min_dist=0.35, metric = “cosine”, n_neighbors=50, learn-
ing_rate = .1, n_epochs=1000.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data have been made publicly available. Codex (https://codex.fly-
wire.ai/), braincircuits.io and Catmaid spaces (https://fafb-flywire.cat-
maid.org/) facilitate non-programmatic access. Most of the data can be 
directly download from codex (https://codex.flywire.ai/api/download). 
All data, including the volumetric data and meshes, can be programmat-
ically accessed through CAVE and cloudvolume. We provide tutorials 
for programmatic access at https://github.com/seung-lab/FlyConnec-
tome. Data dumps of the connectivity data (https://doi.org/10.5281/
zenodo.10676866) and flow calculations (https://doi.org/10.5281/
zenodo.12588557) are made available on zenodo for download.

Code availability
FlyWire uses CAVE for hosting of its proofreading and analysis plat-
form for which all code is publicly available at https://github.com/
CAVEconnectome. The code for Codex is available at https://github.
com/murthylab/codex.
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Extended Data Fig. 1 | Neuropils of the fly brain .
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Extended Data Fig. 2 | Completeness and accuracy of FlyWire’s reconstruction. 
(a) shows the result of our evaluation of proofread segments in the central brain. 
Experts attempted further proofreading of 826 neurons. We computed 
volumetric overlaps between the original and the final segment to calculate 
precision, recall, and F1 Scores. (b) Examples (top: before, bottom: after) of the 
changes made during further proofreading for a neuron scoring an F1-Score of 
0.936. Arrows highlight locations that changed. (c,d) For each neuropil, we 
quantified what fraction of the synapses within it are pre- and postsynaptically 

attached to a proofread segment. (c) displays the distribution for presynaptic 
attachment and (d) the distribution for postsynaptic attachment.  
(e, f, g) Comparisons between FlyWire’s reconstruction and the hemibrain  
were made for overlapping neuropils. Dots represent neuropils and are colored 
according to Extended Data Fig. 1. (e) Comparison of the number of automatically 
detected synapses. The axes are log-transformed. (f) Comparison of post-synaptic 
completion rates and (g) pre-synaptic completion rate. The axes are truncated.



Extended Data Fig. 3 | Measurements of neuron size. Colored markers refer 
to neurons in Fig. 3b. Vertical dashed lines are medians. (a) Neuron path lengths 
of intrinsic neurons, (b) afferent neurons, and (c) efferent neurons by super-class. 
(d) Volumes of intrinsic neurons, (e) afferent neurons, and (f) efferent neurons 
by super-class. (g) Comparisons of path lengths and number of incoming and 
outgoing synapses. (h) For intrinsic neurons, comparisons of the in- and out- 

degrees with the number of incoming and outgoing synapses. Every dot is a 
neuron. (i) Comparison of average connection strengths (synapses per 
connection) with the number of synapses. Every dot is a neuron. ( j) In- and 
out-degree distributions by neurotransmitter type. (k) Neuron path lengths  
by neurotransmitter type.
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Extended Data Fig. 4 | Measurements of neuron size. Colored markers refer to neurons in Fig. 3b. Vertical dashed lines are medians. (a) Nucleus volume of 
intrinsic neurons, (b) Comparisons of nucleus volume and path length for intrinsic neurons and (c) nucleus volume and total synapse count.



Extended Data Fig. 5 | Neuropil-neuropil projection maps. (a) Projection maps produced as in Fig. 4a limited to connections from cholinergic, (b) GABAergic, 
and (c) glutamatergic neurons. (d) The difference between the putative excitatory (acetylcholine) and the putative inhibitory (GABA, glutamate) projection maps.
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Extended Data Fig. 6 | Neuropil-neuropil projections compared  
between hemispheres. Each dot is a neuropil-neuropil projection in one 
hemisphere and the axes show the fractional weights as calculated in Fig. 4a,b. 
Red dots are comparisons between the same neuropils in different hemispheres 
(e.g. AMMC(L) -> VLP(L) vs AMMC(R) -> VLP(R). (a) Comparison of projections 
between neuropils in both hemispheres and between hemispheres.  

(b) Comparisons of projections with the center neuropils. (c) Comparisons  
of projections between ipsilateral and contralateral neuropil projections.  
(d) Comparisons of the distances between neuropil centroids with the 
fractional neuron weights. Connections within neuropils were excluded and 
neuropil pairs connected with <1 fractional neuron weight are not shown.



Extended Data Fig. 7 | Input side analysis. We assigned postsynaptic locations 
to either the center region or the left or right hemisphere. (a-g) For each super- 
class, (top plot). The lower plot shows the fraction of synapses in the center vs 

the lateral regions for all neurons. (h) Each neuron was assigned to the side 
where it received most of its inputs.
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Extended Data Fig. 8 | Percentile ranks for every modality. (a) For each 
sensory modality (rows) we used the traversal distances to establish a neuron 
ranking. Each panel shows the distributions of neurons of each super-class 
within the sensory modality specific rankings. (b) Same as in (a) for the fast 

neurotransmitters. (c) Neurons in the central brain shown in the UMAP plot are 
colored by the rank order in which they are reached from a given seed neuron 
set. Red neurons are reached earlier than blue neurons.



Extended Data Fig. 9 | Rank-based UMAP projection and neuropils. (a) Every 
neuron in the central brain was assigned to the neuropil where it received the 
most synapses. Every dot is then colored by the assigned neuropil (see Extended 

Data Fig. 1 for neuropil colormap). (b) Same as in a but limited to the central 
complex neurons. Neurons in the central complex with an assigned neuropil 
other than the ones shown are colored black.
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Extended Data Fig. 10 | Ocellar circuit. (a) Renderings of all neurons (excluding 
the photoreceptors) with arbors in the ocellar ganglion. “Information flow” 
from pre- and postsynapses is indicated by arrows along the arbors. (b) Overview 
of the three ocelli (left, medial, right) which are positioned on the top of the 
head. Photoreceptors from each ocellus project to a specific subregion of the 
ocellar ganglion which are separated by glia (marked with black lines on the EM). 
(c) Top view of the dendritic arbors within the ocellar ganglion of each DNp28 

(brown) and OCG01 (blue: cholinergic, green: glutamatergic). The render on 
the lower shows all 12 OCG01s and 2 DNp28s. Each other render shows one 
neuron in color and all others in the background in gray for reference.  
(d) Comparison of number of synapses from OCG01 neurons and visual projection 
neurons onto descending neurons. (e) Connectivity matrix for connections 
between ocellar centrifugal neurons and ocellar projection neurons. (f) Inputs 
to ocellar centrifugal neurons by neuropil. Scale bars: 100 μm (a), 20 μm (c).
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