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Abstract
This study aims to review the proposed methodologies and reported performances of automated algorithms for seizure fore-
cast. A systematic review was conducted on studies reported up to May 10, 2024. Four databases and registers were searched, 
and studies were included when they proposed an original algorithm for automatic human epileptic seizure forecast that was 
patient specific, based on intraindividual cyclic distribution of events and/or surrogate measures of the preictal state and 
provided an evaluation of the performance. Two meta-analyses were performed, one evaluating area under the ROC curve 
(AUC) and another Brier Skill Score (BSS). Eighteen studies met the eligibility criteria, totaling 43 included algorithms. A 
total of 419 patients participated in the studies, and 19442 seizures were reported across studies. Of the analyzed algorithms, 
23 were eligible for the meta-analysis with AUC and 12 with BSS. The overall mean AUC was 0.71, which was similar 
between the studies that relied solely on surrogate measures of the preictal state, on cyclic distributions of events, and on a 
combination of these. BSS was also similar for the three types of input data, with an overall mean BSS of 0.13. This study 
provides a characterization of the state of the art in seizure forecast algorithms along with their performances, setting a 
benchmark for future developments. It identified a considerable lack of standardization across study design and evaluation, 
leading to the proposal of guidelines for the design of seizure forecast solutions.
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Introduction

People with epilepsy (PWE), as well as their caregivers, 
live with the uncertainty of when the next seizure might 
happen, severely constraining some patients’ independ-
ence and entitlement to normalcy in day-to-day activities. 
Despite the seeming unpredictability of seizure occurrence, 

better-than-chance patient-based prediction of impending 
seizures has been reported [1, 2], which suggests the exist-
ence of preictal dynamics that may be leveraged by auto-
mated forecasting algorithms. In fact, PWE and caregivers 
have reported several non-physiological factors that, from 
preliminary observation, appear to be linked to seizure 
occurrence [3]. These include potential seizure triggers 
(such as alterations in sleep patterns [4]), the environment 
(such as changes in atmospheric pressure [5]), and cyclicity 
in seizures [6], which could be used as inputs for a forecast 
tool [3]. There have also been reports of physiological mani-
festations that precede seizures [7], including in electroder-
mal activity (EDA) [8] and electroencephalography (EEG) 
[9], as well as cyclic patterns in these (and other) biosignals, 
which appear to be phase locked with seizure occurrence 
[6, 10]. As such, forecasting of seizure likelihood has been 
the focus of a joint effort within the epilepsy community 
since the Epilepsy Foundation recognized its relevance in 
2016 [11].
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Some authors have implied that the forecast of seizures 
should be based on dynamics observed hours or days before 
the seizure occurs [12], including physiological alterations 
in signals like the EEG, EDA, and others, hereinafter called 
surrogate measures of the preictal state (SMPS). Others 
authors have gone further and restricted the basis of the fore-
cast to intraindividual cyclic distribution of events (CDE) 
[7], which comprise cyclicity in the occurrence of seizures 
or even in certain physiological events, such as interictal 
epileptiform activity (IEA). Regardless, there is hardly any 
clear definition of what constitutes seizure forecast, and 
particularly what distinguishes this practice from seizure 
prediction. Instead, the major effort from the community 
toward this distinction has been on shifting the focus from 
a deterministic perspective (i.e., to raise, or not to raise, an 
alarm for an impending seizure) to assessing the body states 
that suggest a higher likelihood of seizure [12, 13].

In the last few years, several automated algorithms that 
attempt to gauge the likelihood of seizure occurrence in a 
highly individualized manner have been proposed in litera-
ture, and the reported performances are promising. However, 
no standardized review of the algorithms proposed has been 
attempted so far.

Moreover, the shift in perspective and problem state-
ment (i.e., from a deterministic problem into a measure of 
likelihood) imposes additional challenges when it comes to 
evaluating and comparing forecast performances. Due to its 
inherent probabilistic nature, we may encounter situations 
in which the brain enters a state of high seizure likelihood 
without this actually translating into the occurrence of a sei-
zure event [14, 15], challenging the traditional approaches 
to performance evaluation. Much like the task of seizure 
prediction lacked performance standards at the start of the 
2000s [16], so does seizure forecast now.

In this paper, we review reported performance of auto-
mated algorithms that attempt to provide an individual’s 
likelihood of having a seizure within a given time window, 
based on intraindividual cyclic distribution of events and/
or surrogate measures of the preictal state. This includes 

methods which aim to forecast seizure likelihood and that 
leverage seizure triggers, the environment, cyclicity in 
seizures, patterns in physiological data, or a combination 
of these. This review will address the following research 
questions:

RQ1: What is the current state of automated seizure fore-
cast?
RQ2: Which data are the most relevant for the forecast of 
seizure likelihood?
RQ3: Which approaches and metrics are most often used 
to assess forecast performance?

Materials and methods

This review was performed in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines [17]. Details of the protocol for this 
systematic review were registered on International Prospec-
tive Register of Systematic Reviews (PROSPERO), under 
PROSPERO ID CRD42023478920.

Concept definition

Forecast horizon

Seizure prediction and forecasting are often (incorrectly) 
used interchangeably. In seizure prediction, the main objec-
tive is to raise an alarm prior to a seizure occurring, pro-
viding the patient (or caregiver) the opportunity to act in 
accordance, either by taking fast-acting anti-seizure medica-
tion (ASM) or adopting protective measures. When develop-
ing seizure prediction algorithms, the concepts of seizure 
prediction horizon (SPH) and seizure occurrence period 
(SOP) arise. The corresponding definitions were initially 
proposed by Maiwald et al. [18] (as illustrated in Fig. 1a) 
and have since been adopted in several papers addressing 
seizure prediction and sometimes extended to forecasting 

Fig. 1   Illustration of the 
concepts of (a) SPH and SOP, 
where a correct prediction cor-
responds to an onset that occurs 
after SPH and within SOP; and 
(b) forecast horizon, where the 
forecasts are equally spaced in 
time in contrast with the task of 
seizure prediction
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[19–21]. SPH is defined as the period of anticipation of a 
seizure event, i.e., the time interval in which a seizure should 
not (yet) occur after an alarm is raised, while SOP is the 
interval of time (after SPH) within which the seizure onset 
is expected to arise.

Seizure forecast, on the other hand, attempts to provide 
the patient (or caregiver) with an indicator of seizure likeli-
hood for a specific time period after the forecast, called the 
forecast horizon (Fig. 1b). This concept denotes the time 
interval in the future for which the forecast is generated [22]. 
As such, the forecast horizon is not a direct counterpart to 
the concepts of SPH and SOP.

Retrospective vs pseudo‑prospective approach

The train–test approach consists of the methodology used 
for model evaluation and can be either retrospective or 
(pseudo-)prospective.

In a retrospective approach, the data is randomly divided 
into training and test sets without considering the temporal 
relationship of the data points.

Conversely, in a prospective approach, the model is 
trained only on past data and evaluated in real time on future 
data. Similarly, in a pseudo-prospective approach, the pro-
spective evaluation is emulated by using retrospective data, 
but dividing it into training and test sets so that the model is 
trained only on past data and evaluated in data posterior to 
that, thus also respecting time dependencies.

Deterministic vs probabilistic forecast

In seizure forecast, we encounter a view that challenges the 
traditional approaches to performance evaluation. Most com-
monly, when assessing the performance of a prediction of 
seizure, the concepts of SPH and SOP are leveraged, where 
a correct prediction corresponds to an onset that occurs 
after SPH and within SOP. However, when working with 
forecasts, instead of having an alarm raised, a likelihood is 
received at equally spaced intervals of time.

To handle this issue, some studies opt for converting the 
forecasts into binary high/low risks (using discriminative 
thresholds), thus allowing the use of traditional (i.e., deter-
ministic) performance measures. A number of papers adopt 
metrics such as sensitivity (Sen), accuracy (Acc), and area 
under the ROC curve (AUC). However, these methodologies 
are highly dependent on the chosen SPH and SOP. In fact, 
by replacing the categorical notion of seizure occurrence 
(i.e., it either occurred when expected, or it did not) with a 
likelihood, we may encounter situations in which the brain 
enters a state of high seizure likelihood without this actually 
translating into the occurrence of a seizure event [15, 23]. 
Therefore, the traditional measures of performance are usu-
ally replaced or complemented with alternatives that allow 

to properly assess the clinical utility of the forecasts, such as 
Brier Score (BS) and Brier Skill Score (BSS).

Systematic review

A systematic literature search was carried out on the data-
bases IEEE Xplore, Scopus, and PubMed, as well as on the 
Web of Science Core Collection. The search was conducted 
using the query ((automated OR automatic OR 
algorithm OR machine learning OR deep 
learning OR artificial intelligence) AND 
(forecast OR risk OR likelihood OR pre-
diction OR cyclic* OR rhythm*) AND (epi-
lepsy OR seizure)) on the title, abstract, and key-
words of the studies. A first search was conducted up to 
November 2, 2023. Another search was conducted on May 
10, 2024.

From the identified records, built-in automation tools of 
the search engines were used to filter the results accord-
ing to language (resulting in the exclusion of all records 
that were not written in English, Portuguese, Spanish, or 
French), as well as according to document type (resulting 
in the exclusion of all reviews). Then, the corresponding 
references were uploaded into the Rayyan software,1 in 
which duplicates were automatically identified. Duplicates 
were resolved by the Rayyan built-in automation tool for the 
cases where similarity was equal to or larger than 90%; the 
remaining duplicates were resolved manually by one of the 
reviewers (A.S.C.). The titles and abstracts were screened by 
three independent reviewers (A.S.C., M.F.B. and M.O.C.), 
resulting in the exclusion of the records that were not consid-
ered relevant. Conflicts were resolved in an open discussion 
between all reviewers. The inclusion criteria were: 

(1)	 Proposal of an original real-time forecast algorithm for 
automatic human epileptic seizure likelihood assess-
ment, that is patient-specific, based on intraindividual 
cyclic distribution of events and/or cyclic distribution 
of events.

(2)	 Any cohort dimension.
(3)	 Records written in English, Portuguese, Spanish, or 

French.
(4)	 Published as an article, proceeding paper, or abstract.

After screening, the full-text documents were retrieved and 
assessed for eligibility by two independent reviewers (A.S.C 
and M.A.). Non-trivial cases were decided in an open dis-
cussion between the two reviewers. Studies were excluded if: 

1  Rayyan software is available at https://​www.​rayyan.​ai/.

https://www.rayyan.ai/


6576	 Journal of Neurology (2024) 271:6573–6587

(1)	 Separate sets of data were not used for training and 
testing of the forecast algorithm.

(2)	 The proposed algorithm did not provide a measure of 
seizure likelihood/risk.

(3)	 Failed to report at least one of the following data: meth-
odology proposed for forecast of seizure likelihood; 
data considered for the algorithm; forecasting horizon; 
methodology and results on the evaluation of seizure 
forecast performance.

Finally, A.S.C extracted the data, which included: 

(1)	 Input data: source, type, description.
(2)	 Cohort: dimension, median/total duration of recording, 

median/total number of seizures.
(3)	 Methodology: type of algorithmic approach, forecast 

horizon, train–test approach.
(4)	 Results: metrics used to evaluate performance, reported 

performance.

Meta‑analysis

A meta-analysis was performed to quantify the current state 
of seizure forecast. Studies were stratified according to the 
type of input data given to the algorithms, which can be 
categorized as SMPS, CDE, or a combination of these, fol-
lowing the distinction provided in [7].

The two most highly reported deterministic and proba-
bilistic metrics were chosen for the meta-analysis. As such, 
random-effects meta-analysis with the restricted maximum 
likelihood (REML) method was used to obtain pooled esti-
mates of AUC and BSS. The AUC, which ranges from 0 
to 1 (perfect score), can measure the forecast performance 
based either on true positive rate versus false positive rate or 
sensitivity versus portion of time in false warning. It is often 
used in seizure prediction literature as the main performance 
outcome, including in previous seizure prediction/forecast 
challenges [24, 25]. BSS, on the other hand, is a probability 
score that provides a measure of improvement over a naive 
forecast, ranging from - inf to 1, where 0 corresponds to a 
performance equivalent to the naive forecast.

A weighting scheme was also employed, where the vari-
ance of each study was weighted by its sample size. This 
approach ensured that studies with larger sample sizes con-
tributed more to the overall analysis.

Finally, sources of heterogeneity were also explored 
through subgroup analysis for each potential moderator 
variable. For the eligible cases2 the moderator effect of 

the variables on heterogeneity was quantified by including 
them as covariates in the meta-analysis model, and evaluated 
according to changes in I2 . Five sources of heterogeneity 
were considered apart from the type of input data: source 
of data (i.e., dataset used), input data (EEG vs heart rate 
vs seizure times vs other inputs), forecast horizon (<1 h, 
1 h, 24 h), train/test approach (retrospective vs prospective/
pseudo-prospective), and study (i.e., algorithms proposed 
by the same study).

Statistical analysis was performed using the metafor 
R library and, when applicable, statistical significance was 
set to 0.05.

Results

A total of 8249 records were identified, from which 945 
were removed according to publication type and language 
(see Fig. 2 for the PRISMA flow diagram). Additionally, 
3160 duplicates were removed. Of the remaining, 4144 
records were screened for relevance to the review topic and 
549 of these were sought for retrieval of the full records. Out 
of the 549 records, 32 could not be retrieved and a further 
502 studies were excluded for not meeting at least one of 
the eligibility criteria. Finally, three additional reports were 
included, one as a result of the second search and the other 
two were manually added. In total, 18 studies were included 
in the systematic review.

Study characteristics

The results for the 18 studies are summarized in Tab. 1. 
A total of 419 patients participated in the studies (median 
of 12, interquartile range (IQR) of 8.25−17.25), and a total 
number of 19442 seizures were reported across studies3. The 
duration of the total/recorded data varied greatly across stud-
ies, and even within the same sample, with some studies 
encompassing less than 1 week [28] and others up to 9 years 
[22].

There was little consistency regarding the source of data 
used across the body of studies, with 5 studies relying on 
self-collected data when evaluating their proposed algo-
rithms and the remaining 12 using previously documented 
datasets. The NeuroVista trial [29] was the most commonly 
reported (6, one of them in combination with self-collected 
data), consisting of 15 patients with focal seizures submitted 
to ambulatory intracranial EEG monitoring for more than 80 
days. Two studies reported using data from the NeuroPace 

2  Following the recommendation of Fu et al. [26], only the cases in 
which all subgroups had at least four entries were considered eligible 
for quantification of moderator effect on heterogeneity.

3  The number of reported seizures does not account for the seizures 
reported in [27], since they only reported the median number of sei-
zures (143, IQR of 13-1233).
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trial [30], where an implanted brain-responsive neurostimu-
lator was validated in patients with disabling partial or gen-
eralized tonic–clonic seizures, for a mean follow-up period 
of 5.4 years. Data from the 24/7 EEG SubQ trial [31] was 
used in three studies (one of them in combination with data 
from the NeuroPace trial), consisting of subcutaneous EEG 
recordings of nine participants with temporal lobe epilepsy, 
for up to 3 months. Two studies relied on data from the EPI-
LEPSIAE database [32], which was created under a joint 
European project and is the largest collection of hospital 
EEG recordings, with data from more than 250 patients. 
Finally, a single study used data from the Minder sub-scalp 
system trial (ACTRN 12619001587190), where six patients 
were implanted with a sub-scalp EEG monitoring system. 
Moreover, the majority (14/18) used data collected with 
mobile technology, which included subcutaneous and intrac-
ranial EEG implants, smartwatches and other wrist-based 
devices, as well as mobile applications.

Regarding input data, seven studies used only SMPS, 
six reported using solely CDE, four proposed algorithms 
that use both types of input data, and one study proposed 
algorithms using both types separately. Figure 3 depicts 

the use of the different data used as input in the 18 papers, 
as well as how the data was given to the algorithmic 
approaches, when applicable. EEG was the most widely 
used physiological signal (13/18), either as a raw input 
(5/13), through features derived from it (4/13), or through 
cyclic patterns extracted from those features (3/13). Pho-
toplethysmography (PPG) and electrocardiography (ECG) 
followed as sources of heart rate (HR) (5/18). Similarly to 
EEG, HR was not only explored as a surrogate measure of 
the preictal state, but also as a source of CDE (2/5). Apart 
from the EEG, seizure times were the most commonly 
used input data, being used in 12 out of the 18 studies, and 
equally explored as a raw input or through cyclic profiles 
derived from them. Other, less commonly reported data 
inputs included other peripheral physiological signals, the 
time of day (ToD), and behavioral/external conditions.

Finally, despite the probabilistic framework of the 
task of seizure forecast, less than half the studies (8/18) 
reported probabilistic evaluation metrics, while all studies 
reported deterministic ones. AUC was the most reported 
metric (15/18), followed by Sen and time in warning 

Fig. 2   PRISMA flow dia-
gram depicting the number of 
records identified, included and 
excluded, as well as the reasons 
for exclusion. Four databases 
and registers were searched, 
resulting in 15 included reports, 
with 3 additional reports being 
included at a later stage. A total 
of 18 reports were included in 
the review
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Table 1   Summary of characteristics of the studies included in the systematic review

Duration and seizure number are given as median, unless stated otherwise. SMPS: surrogate measures of the preictal state; CDE: cyclic distribu-
tion of events. CNN: convolutional neural network; GLM: generalized linear model; k-NN: k-nearest neighbors; LR: logistic regression; LSTM: 
long short-term memory network; SNN: shallow neural network; RF: random forest; SVM: support vector machine. AUC: area under the ROC 
curve; BS: Brier Score; BSS: Brier Skill Score; FPR: false positive rate; GSS: geometric mean of sensitivity and specificity; Sen: sensitivity; 
Spe: specificity % Sig: percentage of patients with significant forecasts; TiW: time in warning

First author, year Data source Sample size Duration 
in days 
(median)

# Seizures 
(median)

Type of input 
data

Algorithmic 
approach

Reported metrics

Attia, 2021 [33] 24/7 EEG SubQ 
trial

1 230 22 SMPS LSTM AUC, Sen, % Sig., 
FPR

Chen, 2022 [34] NeuroVista trial 15 557 151 CDE Phase modeling AUC, Sen, TiW, % 
Sig., GSS

Cook, 2013 [29] NeuroVista trial 11 265 31 SMPS k-NN/decision 
tree type clas-
sifier

Sen, TiW, Likeli-
hood ratio

Costa, 2024 [35] EPILEPSIAE 
database

40 5 5 SMPS SVM, LR, SNN BSS, Sen, TiW, 
FPR, BS

Cousyn, 2022 
[36]

Self-collected 10 Mean: 10.7 2 SMPS SVM AUC, Acc, 
F1-score, BSS, 
BS

Cousyn, 2023 
[28]

Self-collected 15 11 Mean: 25 SMPS SVM AUC, Acc, Sen, 
Spe, F1-score, 
BS

Karoly, 2017 
[37]

NeuroVista trial 9 459 102 SMPS; CDE;
both

LR; phase mod-
eling; ensemble 
through LR 
weight updat-
ing

AUC, BSS, Sen, 
TiW

Karoly, 2020 
[38]

Self-collected 
and NeuroVista 
trial

50 Mean: 336 Mean: 109 CDE Phase modeling AUC, Acc, TiW, 
% Sig.

Leguia, 2022 
[27]

NeuroPace trial 
and 24/7 EEG 
SubQ trial

161 1722; 85 143 SMPS; CDE GLM AUC, BSS, % Sig.

Maturana, 2020 
[39]

NeuroVista trial 14 512 151 CDE Phase modeling Sen, TiW

Nasseri, 2021 
[40]

Self-collected 6 242 16 SMPS LSTM AUC, Sen, TiW, 
% Sig

Payne, 2020 [20] NeuroVista trial 8 Mean: 548 157 CDE Phase modeling; 
ensemble 
through naive 
Bayes

AUC, % Sig.

Proix, 2021 [22] NeuroPace trial 18 Mean: 1484 Mean: 43 SMPS; CDE; 
both

GLM AUC, BSS, % Sig.

Stirling, 2021 
[41]

self-collected 11 435 94 both LSTM + RF 
(ensemble 
through LR)

AUC, TiW, % Sig., 
BS

Stirling, 2021 
[42]

Minder sub-scalp 
system trial

1 183 134 CDE RF + LR 
(ensemble 
through 
sequential 
input)

AUC, Sen, TiW

Truong, 2021 
[21]

EPILEPSIAE 
database

30 4 Mean: 9 SMPS; both Bayesian CNN AUC​

Viana, 2022 [43] 24/7 EEG SubQ 
trial

6 80 17 SMPS LSTM AUC, Sen, TiW, % 
Sig., FPR

Xiong, 2023 [44] self-collected 13 495 71 CDE Phase modeling AUC, BSS, Sen, 
TiW, % Sig
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(TiW) (11/18), and % of patients with significant fore-
casts (10/18). BS and BSS were reported in eight and six 
studies, respectively4. Moreover, when using both types 
of train–test approaches, i.e., retrospective vs (pseudo-)
prospective, most studies (5/7) reported a different set of 
metrics for each.

Descriptive analysis

Table 2 summarizes the characteristics of all considered 
algorithms. Some studies comprise multiple table entries, 
corresponding to algorithms whose characteristics differ 
significantly with regard to the following attributes: input 
data, forecast horizon, and train–test approach. For each of 
these unique characteristics’ configurations, only the best 
performance is reported. AUC and BSS scores are presented, 

whenever reported in the studies. An extension of this table, 
including all reported performance metrics, is available in 
Supplementary file 1.

The 18 studies proposed a total of 43 algorithms with 
unique configurations. The most common type of input 
data was SMPS (19/43), which included the time series 
of the physiological signals, features extracted from them, 
times when seizures occurred, and ToD. Seventeen algo-
rithms relied on CDE, which were either based on times 
of seizure occurrence, IEA, HR, sleep, or weather features. 
The remaining algorithms (7/43) used a combination of the 
previous inputs, as well as features extracted from patient’s 
activity. Figure 4 provides a summary of the types of input 
data reported across the 43 algorithms, along with the cat-
egory of algorithmic approach used.

Remarkably, most algorithms relied on methodologies 
for phase modeling when leveraging CDE (13/17 and 1/7), 
which implies the identification of significant cycles or 
the use of histograms of the times of previous events. The 
remaining opted for the use of generalized linear models 
(GLMs) (3/17 and 1/7), deep learning (DL) models such as 
convolutional neural networks (CNNs) (1/7), or more clas-
sic machine Learning (ML) models such as random forest 
(RF) and logistic regression (LR) (1/17 and 4/7). On the 
other hand, algorithms using SMPS relied most commonly 
on classic ML algorithms (9/19 and 5/7), including support 
vector machines (SVMs) and LR, while the remaining opted 
for GLMs (4/19 and 1/7), or long short-term memory net-
works (LSTMs) and CNNs (6/19 and 5/7).

It was not uncommon for studies to evaluate their 
algorithms through a dual approach of retrospective and 
(pseudo-)prospective train–test schemes (7/18). In such 
cases, the retrospective period was used for development of 
the algorithm, often in a cross-validation scheme, providing 
an estimate of algorithm performance. Then, the (pseudo-)
prospective period was used to simulate a real-world sce-
nario, often being iteratively updated with the “new” data, 
in which the algorithm was validated in a setting analogous 
to the one it was designed to function.

Meta‑analysis

Out of the 43 entries, 23 were eligible for the meta-analy-
sis with AUC and 12 with BSS.5 The results of the meta-
analysis are summarized in Fig. 5 and Fig. 6 for AUC and 
BSS, respectively. The overall mean AUC was 0.71 (95% 
confidence interval (CI)=0.68−0.75, I2=97.29%), which was 
further stratified according to the type of input data given 

Fig. 3   Summary of reported input data across the 18 papers included 
in the review, along with how the data were given to the algorithms, 
when applicable (i.e., raw vs features vs cyclic profile). ACC​ acceler-
ometry, BVP blood volume pulse, EDA electrodermal activity, EEG 
electroencephalography, HR heart rate, TEMP temperature, ToD time 
of day, Other sleep, activity, weather

4  Although BS was reported in more studies than BSS, the latter 
was used as a performance metric in a larger number of proposed 
approaches.

5  Algorithms were considered eligible for the meta-analysis if both 
the mean and standard deviation (SD) across patients was reported, 
and if the sample size comprised more than one patient.
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to the algorithms. The subtotal AUC for algorithms using 
only SMPS was 0.71 (CI=0.65−0.77, I2=96.82%), for algo-
rithms relying solely on CDE was 0.73 (CI=0.67−0.78, I2

=96.97%), and for algorithms that used both types of input 
data was 0.67 (CI=0.61−0.73, I2=55.70%).

The overall mean BSS was 0.13 (CI=0.03−0.23, I2

=99.50%). The subtotal BSS for algorithms using only 
SMPS was 0.18 (CI=−0.07−0.43, I2=99.82%) and for algo-
rithms relying solely on CDE was 0.07 (CI=0.04−0.11, I2

=87.37%). A single algorithm using both types of input data 
reported the BSS score at 0.11 (CI=0.07−0.15).

When considering the five potential sources of hetero-
geneity (source of data, input data, forecast horizon, train/
test approach, and study), only forecast horizon for AUC 
and train/test approach for AUC and BSS were eligible for 
quantification of moderator effect. However, none provided 
a significant explanation on heterogeneity, accounting for 
less than 1% change in I2.

Regarding subgroup analysis of the remaining variables, 
some insights may be ascertained (all forest plots illustrat-
ing the subgroup analysis are provided as Supplementary 
file 2). While decreases in heterogeneity were observed in 
a set of subgroups in the case of BSS for source of data 
and forecast horizon, these subgroups were for the most 
part composed of results from the same studies. In fact, 
subgrouping by study also revealed equivalent decreases 
in heterogeneity for those same studies. As such, in the 
case of BSS, it was not possible to infer which of the two 
variables was the moderator.

In the case of AUC, subgrouping by study also revealed 
significant decreases in heterogeneity, with several sub-
groups presenting small to moderate I2 values. Surpris-
ingly, decreases in heterogeneity were also observed in one 
subgroup of input data and another subgroup in forecast 
horizon, which were not explained by the study variable. 

The former corresponds to the algorithms that used seizure 
times in combination with other input data, and the latter to 
the approaches that output forecasts with a horizon of 1 h.

Discussion

This systematic review and the meta-analyses provide a char-
acterization of the state-of-the-art of seizure forecast algo-
rithms along with their performances, setting a benchmark 
for future developments. It addresses the relevance of classic 
prediction performance, while also reiterating the need for 
human-interpretable measures of likelihood and accompa-
nying performance metrics. Hence, two meta-analyses are 
provided, one on AUC (a deterministic performance metric) 
and another on BSS (a probabilistic performance metric).

Overview of the proposed approaches 
and performance

This systematic review allowed for the characterization of 
the current state of automated seizure forecast, effectively 
addressing RQ1. Firstly, it revealed a considerable diver-
sity of the proposed approaches in regard to study design, 
including factors such as type of input data, algorithmic 
approaches, methodology for training and testing, and fore-
cast horizons. While most proposed approaches relied on 
SMPS, an almost equal amount opted for exploring CDE. 
Moreover, ML and DL remain the most common type of 
algorithmic approach when SMPS is used as an input, how-
ever, phase modelling was highly favored for CDE.

The meta-analysis with the studies reporting AUC 
revealed an overall mean score of 0.71 (CI=0.68−0.75, I2

=97.29%), with a large heterogeneity across studies. The 
subgroup analysis showed small to moderate heterogeneity 

Fig. 4   Summary of types of 
input data reported across 
the 43 algorithms, along with 
the category of algorithmic 
approach used. SMPS Surrogate 
leasures of the preictal state, 
CDE cyclic distribution of 
events, ML machine learning, 
DL deep learning, GLM Gen-
eralized linear lodel, PM phase 
modeling
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values for algorithms that used seizure times in combi-
nation with other input data and for the approaches that 
proposed forecasts with a horizon of 1 h. This insight 
potentially indicates a more reliable effect estimate for 
these two subgroups, with AUC of 0.70 (CI=0.67−0.73, 
I
2=0.00%) and 0.73 (CI=0.70−0.76, I2=35.52%), respec-

tively. Given that forecasts are often considered excel-
lent when the AUC is above 0.9, these results indicate a 

reasonable performance while also showing opportunity 
for improvement in regard to this evaluation metric.

Furthermore, the near-zero BSS (0.13, CI=0.03−0.23) 
demonstrates only a slight improvement in performance 
over a naive forecast. This result underscores the need for 
a larger focus on the development of algorithms that are 
optimized for accurate portrayals of the true likelihood of 

Fig. 5   Forest plot of AUC of 
seizure forecast algorithms, 
overall and stratified by the 
type of input data given to 
the algorithms. The dashed 
line illustrates the estimated 
overall AUC and the diamonds 
represent either the overall or 
subgroup summary. Additional 
information provided includes 
the horizon of the forecast, 
the sample size, total number 
of seizures, and the train–test 
approach (which was either 
(pseudo-)prospective, P, or ret-
rospective, R). AUC​ area under 
the ROC curve. (*) Identifies 
the algorithm proposed by 
[27], since they only reported 
the median number of seizures 
(143, IQR of 13-1233)
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a seizure occurring, instead of relying on machine-trained, 
threshold-based interpretations of those likelihoods.

Addressing RQ3, despite the efforts of the epilepsy 
community towards shifting the focus from a determinis-
tic perspective to assessing the body states that suggest a 
higher likelihood of seizure, a majority of studies still relied 
entirely on deterministic performance metrics to evaluate 
their algorithms, with less than half the studies report-
ing probabilistic metrics, namely BS and BSS. The most 
common deterministic metrics were AUC, Sen, and TiW, 
requiring the conversion of the measures of seizure likeli-
hood (either numerical or categorical, i.e., risk levels) into a 
classification of preictal/interictal segments. This reversion 
back to the classic notion of seizure prediction hinders the 
use case of seizure forecast.

Interestingly, there was not a considerable difference in 
AUC or BSS performance across subgroups. While these 
results should be interpreted with caution, due to the sub-
stantial unexplained heterogeneity and the small number 
of studies in each subgroup, they suggest comparable per-
formances from both types of input data. While EEG pat-
terns have historically been the most explored source of 
data due to its inherent relation to seizure onset, the pooled 
AUC and BSS performances along with the heterogeneity 

analysis obtained in this meta-analysis would suggest that 
other sources of data, including the timings of seizure occur-
rence, peripheral physiological data, or even sleep patterns 
may hold relevant insights into the non-deterministic nature 
of seizure occurrence. However, given the observed hetero-
geneity, at this stage it is not possible to address RQ2 and 
provide a directional statement in regard to which data are 
the most relevant for the forecast of seizure likelihood.

Guidelines for seizure forecast

This systematic review revealed a severe lack of stand-
ardization across sources of data (i.e., datasets), train–test 
approaches (i.e., retrospective vs pseudo-prospective), fore-
cast horizons (i.e., daily, hourly, or on the order of min-
utes), evaluation methodologies (i.e., segment based vs 
event based, as described in [45]), and the metrics of per-
formance (i.e., deterministic vs probabilistic). In fact, the 
lack of standardization in the literature is one of the major 
bottlenecks identified by this review. While the objective of 
this work is not to establish which are the best practices or 
methods, future developments may propose new approaches 
that are comparable to the studies included in this review 
with respect to three domains: 

Fig. 6   Forest plot of BSS of 
seizure forecast algorithms, 
overall and stratified by the 
type of input data given to 
the algorithms. The dashed 
line illustrates the estimated 
overall BSS, and the diamonds 
represent either the overall or 
subgroup summary. Additional 
information provided includes 
the horizon of the forecast, 
the sample size, total number 
of seizures, and the train–test 
approach (which was either 
(pseudo-)prospective, P, or ret-
rospective, R). BSS Brier Skill 
Score. (*) Identifies the algo-
rithm proposed by [27], since 
they only reported the median 
number of seizures (143, IQR of 
13–1233)
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1.	 Data source: It is evidently desirable to benchmark any 
new approach in publicly available datasets, since it 
allows for direct comparison of results. However, given 
the novelty of this area of research, publicly available 
datasets may not include all input data that the readers 
intend to explore. For this reason, self-collected datasets 
may offer significant added value and should, whenever 
possible, be made publicly available.

2.	 Analysis: While there is no directional insight regarding 
the preferred value for horizon of the forecasts, several 
studies have reported community preferences regard-
ing this design factor [46–48] which can guide future 
developments. Moreover, novel approaches towards 
seizure forecast should explicitly state this variable, as 
it is crucial to not only make them comparable to the 
literature, but also to inform the epilepsy community 
how that approach would be applied as a real-world 
tool. Furthermore, as distinct train/test methodologies 
preclude quantitative comparison between two proposed 
approaches, we advise future developments to evaluate 
algorithms in a (pseudo-)prospective manner, as it pro-
vides a more comprehensive estimate on the algorithms’ 
capacity to generalize [45] in comparison to retrospec-
tive evaluation. However, purely prospective studies may 
not be feasible due to resource constraints. In such cases, 
pseudo-prospective approaches, while not accounting for 
implementation constraints (such as power consumption 
or communication of the output to the user), aim at a 
more reasonable and fair estimate of performance.

3.	 Reporting: Both deterministic and probabilistic meas-
ures of performance should be reported, ideally favoring 
those most commonly observed in this review.

As such, beyond setting a performance benchmark for future 
developments in automated forecasting algorithms, we hope 
that the considerations found in this work drive future efforts 
into a convergent approach regarding study design and eval-
uation methodologies, in a way that reflects how the clinical 
application of forecasting of seizure likelihood is currently 
envisioned.

Limitations

This work identified some limitations in the studies included 
in the review. The retrospective approach during training and 
evaluation implies that temporal integrity is not respected, 
which introduces biases not only when computing profiles 
with cyclic nature but also when accounting for the natural 
evolution of patients’ surrogate patterns of the preictal state 
across time. In this context, prospective evaluation is a valu-
able step towards the integration of these algorithms into 
the clinical setting, as it provides a more comprehensive 
estimate on their capacity to generalize [45]. While only one 

study [29] provided a prospective period of algorithm evalu-
ation, several have opted for a pseudo-prospective approach.

It is also important to highlight some limitations of this 
work. Firstly, determining the forecast horizon proved to 
be somewhat of a challenge. Despite efforts made by Proix 
et al. [22] to elucidate this concept, the forecast horizon is 
not consistently defined across studies (only 8 out of the 18 
studies explicitly stated it): some studies propose algorithms 
that generate forecasts at specific clock times, naturally 
defining the horizon as the time between forecasts; while 
others solely provide the SPH and/or SOP used during event-
based evaluation, without offering a clear conversion into a 
horizon interpretable by the user. Secondly, only a fraction 
of the proposed algorithms was included in each meta-anal-
ysis, despite the considerable number of algorithms found 
in the literature. Thirdly, there was significant unexplained 
heterogeneity in both meta-analyses, which may suggest 
the discrepancy within study designs as a potential culprit. 
Moreover, the significant decrease in heterogeneity when 
subgrouping by study may also suggest the relevance of con-
sistency in study design for the homogeneity and robustness 
of future meta-analysis. The analysis on moderator effect 
provided very little explanation on the observed heterogene-
ity and the multiple subgroup analyses revealed significant 
imbalance in the number of approaches proposed across the 
different design variables.

While the results of this work provide a well-defined 
starting point for future developments and performance 
benchmarks according to study design, it is important to 
acknowledge that the heterogeneity here characterized may 
compromise pooled results and direct comparison between 
performances. For this reason, readers are advised to inter-
pret the results of the meta-analyses with caution. Instead, 
readers are encouraged to leverage the insights from this 
work to identify the gaps in study design that remain under-
explored and, once addressed, will enable a more reliable, 
quantitative summary of the state-of-the-art.
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