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Abstract
Background Multiple system atrophy (MSA), an atypical parkinsonian syndrome, is a rapidly progressive neurodegen-
erative disease with currently no established fluid biomarkers available. MSA is characterized by an oligodendroglial 
α-synucleinopathy, progressive neuronal cell loss and concomitant astrocytosis. Here, we investigate glial fibrillary acidic 
protein (GFAP) and neurofilament light chain (NfL) as fluid biomarkers for differential diagnosis, assessment of clinical 
disease severity and prediction of disease progression in MSA.
Methods GFAP and NfL levels were analyzed in plasma and CSF samples of 47 MSA patients as well as 24 Parkinson’s 
disease (PD) and 25 healthy controls (HC) as reference cohorts. In MSA, biomarker levels were correlated to baseline and 
longitudinal clinical disease severity (UMSARS scores).
Results In MSA, GFAP levels in CSF and plasma predicted baseline clinical disease severity as indicated by UMSARS 
scores, while NfL levels predicted clinical disease progression as indicated by longitudinal changes in UMSARS scores. 
Cross-sectionally, NfL levels in CSF and plasma were significantly elevated in MSA compared to both PD and HC. Receiver 
operating curves (ROC) indicated high diagnostic accuracy of NfL for distinguishing MSA from PD (CSF: AUC = 0.97, 95% 
CI 0.90–1.00; plasma: AUC = 0.90, 95% CI 0.81–1.00).
Discussion In MSA, GFAP shows promise as novel biomarker for assessing current clinical disease severity, while NfL 
might serve as biomarker for prediction of disease progression and differential diagnosis of MSA against PD.

Keywords Multiple system atrophy · Fluid biomarkers · Neurofilament light chain · Glial fibrillary acidic protein · 
Neuroinflammation

Introduction

Multiple system atrophy (MSA) is a rare neurodegenera-
tive disease, characterized histopathologically by oligoden-
droglial α-synucleinopathy with progressive neuronal cell 
loss and concomitant reactive astrogliosis [1–4]. Clinically, 
MSA shows a variable combination of autonomic dysfunc-
tion, parkinsonism and/or cerebellar symptoms [5]. Based 
on the predominant motor phenotype, patients are either 
classified as MSA-parkinsonian type (MSA-P) or MSA-
cerebellar type (MSA-C) [6, 7]. Unlike Parkinson’s disease 
(PD), the second most common neurodegenerative disease 

with an underlying neuronal α-synucleinopathy [8], MSA is 
characterized by a rapid disease course and poor response 
to symptomatic treatment. Mean age of onset commonly is 
in the sixth decade of life with a limited life expectancy 
of 8–9 years after first symptom onset [9, 10]. Due to the 
high symptom overlap between MSA and PD especially in 
early disease stages, clinical differentiation between these 
two α-synucleinopathies often is challenging [11]. In the 
light of upcoming disease-modifying trials [12, 13], in vivo 
biomarkers for MSA-type α-synucleinopathy are urgently 
needed for early differential diagnosis as well as objective 
assessment of disease severity.
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Given the extent of astrocytic involvement in MSA, inves-
tigating astroglial fluid biomarkers, such as Glial fibrillary 
acidic protein (GFAP), holds particular promise in MSA 
[14]. Higher expression levels of GFAP have been shown in 
post-mortem MSA brain tissue compared to PD and healthy 
controls (HC) [15], while first data also show a detectable 

upregulation of GFAP in CSF and plasma in multiple neu-
rodegenerative diseases, including atypical parkinsonian 
syndromes [16]. Neurofilament light chain (NfL) has been 
identified as reliable fluid biomarker for neuroaxonal damage 
in neurodegenerative diseases [17], with first studies show-
ing higher NfL levels in MSA compared to PD [18, 19].

Here, we investigate GFAP and NfL in CSF and blood 
samples in a multicentric cohort of MSA patients compared 
to PD and HC. By including longitudinal clinical data, 
we investigate GFAP and NfL as in vivo biomarkers for 
differential diagnosis, clinical disease severity and prediction 
of disease progression in MSA.

Methods

Patient collective

MSA patients were consecutively recruited at the 
Department of Neurology, LMU University Hospital, 
LMU Munich and the Department of Neurology, Hannover 
Medical School between 2018 and 2022. PD patients and 
HC were recruited at the LMU Hospital and within the 
DESCRIBE and DANCER study of the German Center for 
Neurodegenerative Diseases (DZNE e.V.).1

All MSA patients were diagnosed according to Gilman 
criteria which were the diagnostic criteria valid during 
the recruitment period [7]. PD patients were diagnosed 
according to the MDS clinical diagnostic criteria for PD 
[7, 20]. Written informed consent was obtained from all 
participants and the study was approved by the local ethics 
committees (Munich #21–0315, #20–0997; Hanover 8666_
BO_K_2019). Clinical disease severity was assessed using 

the UMSARS I + II sum score for MSA (Unified Multiple 
System Atrophy Rating Scale) [21] and the MDS-UPDRS 
motor score (part III) for PD (MDS Unified Parkinson’s 
Disease Rating Scale) [22]. In MSA, clinical disease 
progression over a 1-year follow-up interval was calculated 
as follows:

UMSARSprogression =
UMSARSI + IIscoreatfollowup−UMSARSI + IIscoreatbaseline

Δt(datefollowup − datebaseline)inyears

Biosamples and analysis

Non-fasting EDTA plasma samples and serum samples, 
collected by venipuncture, and CSF samples, collected by 
lumbar puncture into polypropylene tubes, were centrifuged 
at 2000 × g for 10 min at room temperature and stored at 
– 80 °C until further analysis. All biosamples were analyzed 
in duplicates using the Quanterix  Simoa® Neurology 2-Plex 
B or 4-Plex B assay kit (Quanterix, Billerica, MA) according 
to the manufacturer’s instructions. In 13 MSA patients, only 
serum samples were available. Based on matching plasma 
and serum samples from the same study site, a coefficient 
to transform NfL and GFAP serum values into plasma 
values was calculated (see Supplement S1). Hence, in the 
following, “plasma” refers to both the values of analyzed 
plasma samples and the calculated “plasma” values of 
analyzed serum samples.

Statistics

Statistical analyses were performed with SPSS Statistics 
27.0 (IBM, Armonk, NY). Data were tested for normality 
using the Shapiro–Wilk test. For linear regression analysis, 
data were log-transformed if necessary to achieve normal 
distribution. Mann–Whitney U test and Kruskal–Wallis test 
were used for non-parametric group comparisons, while 
Spearman correlation was used for correlation analysis. 
Bonferroni–Correction was used to control for multiple 
testing. For diagnostic accuracy, receiver operating 
characteristic (ROC) curves were plotted and the area under 
the curve (AUC) was calculated. Optimal cutoff values were 
calculated using the Youden index [23]. A value of p < 0.05 
was considered statistically significant.

Results

Detailed clinical data and available biomaterial of both 
cohorts are provided in Table 1. A total of 47 MSA, 24 PD 
and 25 HC were recruited for this study. All groups were 
age matched, with the MSA and PD cohort demonstrating 

1 The DESCRIBE study (DZNE Clinical Register Study of Neuro-
degenerative Disorders) is a German wide prospective multicenter 
observational cohort study, recruiting patients with various neuro-
degenerative diseases, including PD and atypical parkinsonian syn-
dromes such as MSA. Patients are consecutively enrolled at one of 
the 11 participating tertiary care centers with clinical follow-up visits 
every 12 months. DANCER (Degeneration Controls and Relatives) is 
a parallel prospective multicenter observational cohort study recruit-
ing healthy controls within the same DZNE research network.
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similar age of symptom onset and disease duration. Clinical 
follow-up data were available in 18 of 47 MSA patients.

In both CSF and plasma, NfL was significantly elevated 
in MSA compared to PD and HC (p < 0.001), while no sig-
nificant difference was found for NfL between PD and HC. 
In CSF, GFAP was significantly elevated in MSA compared 
to HC (p < 0.01), while no difference was found between 
MSA and PD as well as PD and HC. GFAP levels in plasma 
did not differ between groups (Fig. 1A). In MSA, no sig-
nificant differences between MSA-C and MSA-P subgroups 
were found for either biomarker in CSF and plasma.

To further assess the diagnostic accuracy of NfL for 
discrimination of MSA from PD, ROC analyses were 
performed (Fig. 1B). AUC values indicated high diagnostic 
accuracy for NfL in CSF (AUC = 0.97, p < 0.0001, 95% CI 
0.90–1.00) with only slightly lower diagnostic accuracy 
in plasma (AUC = 0.90, p < 0.0001, 95% CI 0.81–1.00). 
For NfL, in CSF, an optimal cutoff value of 1835.0 pg/ml 
and in plasma, an optimal cutoff value of 14.07 pg/ml was 
determined using the Youden index.

To investigate NfL and GFAP as biomarkers for disease 
severity in MSA, multiple linear regression analysis was per-
formed to predict UMSARS scores using either GFAP or 
NfL as biomarker in CSF or plasma, respectively, adjusting 

for age as confounder. The overall regression model using 
GFAP as biomarker was statistically significant for both CSF 
and plasma levels (CSF GFAP: F(2, 11) = 4.012, p < 0.05; 
plasma GFAP: F(2, 44) = 5.246, p < 0.01) with an R squared 
of 0.424 and 0.193, respectively. In each model, GFAP lev-
els were significant predictors of baseline UMSARS scores 
assessed at the time point of biomaterial sampling (CSF: 
β = 0.678, p =  < 0.05; plasma: β = 0.354, p < 0.05), while 
age did not significantly predict UMSARS scores within 
the model. Regression analysis did not support NfL in 
either CSF or plasma as significant predictor for baseline 
UMSARS scores assessed at the time point of sampling in 
MSA (Fig. 2).

To investigate NfL and GFAP as biomarkers for predic-
tion of clinical disease progression, baseline levels of both 
biomarkers in CSF and plasma were correlated to longitu-
dinal change in UMSARS scores calculated over a 1-year 
follow-up period. For NfL, significant positive correlation 
with  UMSARSprogression values was found for CSF (r = 0.64, 
p < 0.05) and plasma (r = 0.54, p < 0.05), while no correla-
tion was found for GFAP in either CSF or plasma (Fig. 3).

Table 1  Demographical and biomarker data of all three cohorts included in this study

Mean values ± SD. 1According to Gilman criteria. 2For serum samples, corresponding plasma levels were calculated using a transformation 
equation based on matched serum and plasma samples (see Supplement S1)
†MSA vs. PD
#MSA vs. HC

MSA PD HC p value

Total number (n) 47 24 25
Sex (female vs. male) 16 vs. 31 12 vs. 12 11 vs. 14 p = 0.41
Age (y) 59.9 ± 7.8 59.7 ± 8.7 62.4 ± 9.2 p = 0.14
Disease duration (y) 4.0 ± 1.9 4.4 ± 3.3 – p = 0.70
Age at first symptom onset 56.1 ± 9.1 55.3 ± 8.0 – p = 0.91
MSA-C vs. MSA-P 25 vs. 22 – –
Probable vs. possible  MSA1 32 vs. 15 – –
UMSARS I + II (baseline) 43.8 ± 13.9 – –
MDS-UPDRS III (baseline) 43.1 ± 17.8 25.1 ± 12.2 – p < 0.001
Patients with available follow-up data (n) 18 – –
Change in UMSARS I + II over 12-month follow-up 11.3 ± 12.2 – –
Biomarkers
Blood samples (n) 47 23 21
Plasma/serum samples (n) 34/132 23/0 21/0
GFAP [pg/ml] 111.8 ± 61.6 93.9 ± 50.1 102.1 ± 78.2 p = 0.45
NfL [pg/ml] 24.3 ± 8.8 10.9 ± 9.0 11.4 ± 4.8 p < 0.0001#.†

CSF samples (n) 15 14 14
GFAP [pg/ml] 17,904.7 ± 6704.3 13,885.0 ± 5074.4 9495.0 ± 5676.1 p < 0.01#

NfL [pg/ml] 4580.1 ± 2254.2 748.1 ± 350.8 703.4 ± 262.2 p < 0.0001#.†

CSF samples with matched plasma samples (n) 15 13 10
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Fig. 1  NfL and GFAP as biomarkers in MSA, PD and HC. A 
Biomarkers for differential diagnosis. NfL levels are significantly 
increased in both CSF and plasma of MSA compared to PD and HC. 
GFAP levels in CSF are significantly higher in MSA compared to 
HC. ****p < 0.0001. No significant changes in GFAP plasma levels 

were observed between the three groups. B Receiver operating char-
acteristic (ROC) curve analysis for NfL in CSF and plasma show 
high AUC values for discrimination of MSA from PD patients (CSF: 
AUC = 0.97; plasma: AUC = 0.90)

Fig. 2  Biomarkers for clinical 
disease severity in MSA. CSF 
and plasma levels of GFAP 
and NfL in MSA compared to 
UMSARS I + II scores. Multiple 
regression analysis adjusting for 
age-identified GFAP levels in 
CSF and plasma as significant 
predictor of baseline UMSARS 
I + II scores in MSA patients, 
but not NfL
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Discussion

Our results indicate that reactive astrogliosis measured 
by GFAP is associated with clinical disease severity in 
MSA, while neuronal cell loss assessed by NfL predicts 
progression of clinical symptoms. On a biomarker level, 
GFAP might be a suitable biomarker in MSA for assessment 
of current clinical disease severity, while NfL might serve 
as biomarker for prediction of clinical disease progression.

The temporal relationship between reactive astrogliosis 
and MSA-type α-synuclein pathology throughout the disease 
course still remains elusive with limited in vivo biomarker 
studies available in MSA [24]. In neuropathological 
investigations, reactive astrogliosis has been reported to 
parallel distribution of α-synucleinopathy in MSA [25]. 
In vitro studies suggest direct activation of astrocytes by 
α-synuclein itself [26, 27].

To the best of our knowledge, this is the first study to 
investigate the relationship between reactive astrogliosis and 
clinical disease severity in a cohort of MSA patients in vivo 
using GFAP as surrogate biomarker in a longitudinal clinical 
dataset. Our findings indicate that reactive astrogliosis 
reflects clinical disease severity in MSA patients and thereby 
potentially severity of disease pathology itself. Reactive 
astrogliosis is most likely a dynamic process in other 
neurodegenerative diseases such as Alzheimer’s disease 
(AD) or PD, indicating its broader role in neurodegeneration. 
Interestingly, an increase in plasma GFAP levels despite 
decreasing PET-signals for astrogliosis over time was seen 
in AD [28], while an in vivo PET-imaging study in PD 
showed an initial upregulation followed by a downregulation 
of reactive astrogliosis over the disease course [29]. Further 
investigations of GFAP and other biomarkers targeting 
astrogliosis will be needed to better understand the dynamic 

of reactive astrogliosis throughout the disease course of 
MSA and its implication for biomarkers of disease severity.

Regarding cross-sectional differences in GFAP in levels 
between disease groups, we found overall higher CSF GFAP 
levels in MSA compared to HC, but not PD. This is in line 
with another recent in vivo cross-sectional study also using 
an ultra-sensitive immunoassay for detection of GFAP in 
CSF [16], while earlier in vivo studies were not able to 
detect differences in CSF GFAP levels between MSA and 
HC [30, 31], possibly due to limited assay sensitivity.

NfL has long been established as biomarker for neu-
roaxonal damage. Corroborating earlier findings [18, 19], 
our study found significantly elevated NfL levels in MSA 
compared to PD and HC. This is well in line with the more 
aggressive disease course and pronounced cell loss in MSA 
pathology compared to PD. Reflecting this difference in 
disease severity, NfL shows potential to facilitate differen-
tial diagnosis between patients with MSA pathology and 
PD pathology (“diagnostic biomarker”) [32]. In addition, 
with NfL indicating neuronal cell loss, it is well matching, 
that higher NfL levels predict higher increases in UMSARS 
scores over time, i.e., progression of neurological symp-
toms. However, it is important to acknowledge that NfL is 
not specific to the underlying pathology. Other studies have 
reported elevated NfL levels in patients with more aggres-
sive neurodegenerative disease entities such as progressive 
supranuclear palsy (a four-repeat-(4R)-tauopathy), corti-
cobasal syndrome (distinct underlying histopathologies, 
including 4R-tauopathies and mixed 3/4R tauopathy of AD 
pathology among others) or amyotrophic lateral sclerosis 
[16, 33]. In the spectrum of synucleinopathies, besides in 
MSA, elevated Nfl levels have also been observed in PD 
patients with rapid disease progression when compared to 
slowly progressing PD patients [16, 33, 34]. Elevated NfL 

Fig. 3  Biomarkers for predic-
tion of disease progression 
in MSA. While no correlation 
was found for baseline levels 
of GFAP with longitudinal 
change in UMSARS scores over 
12 months, CSF and plasma 
levels of NfL show significant 
positive correlation with lon-
gitudinal change in UMSARS 
scores over 12 months in MSA 
patients, indicating prediction of 
disease progression
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levels were also reported in PD patients in the months fol-
lowing DBS surgery [35], showing the limited specificity of 
NfL regarding the cause of neuroaxonal damage.

Nevertheless, when carefully evaluating and excluding 
potential confounders of elevated NfL levels, i.e., brain 
surgery, trauma or stroke, our study supports NfL as 
biomarker to identify patients with an underlying rapidly 
progressive neuropathology, such as MSA. Other potential 
biomarkers for the differential diagnosis of MSA from 
PD and other atypical parkinsonian syndromes include 
MIBG scintigraphy for assessment of cardiac sympathetic 
denervation, MRI imaging for atrophy patterns and with 
more recent advancements the investigation of skin biopsies 
to detect alpha-synuclein deposits and novel seeding 
aggregation assays for α-synuclein in CSF [6, 36, 37]. 
Until biomarkers that provide definitive in vivo proof of 
MSA pathology, such as seeding assays and skin biopsies, 
become reliable and widely accessible, biomarkers like NfL 
in combination with other biomarkers such as MRI imaging 
and MIBG scintigraphy may be utilized to facilitate the 
differential diagnosis of MSA from PD.

It must be noted that in our cohort, only a trend towards 
a positive association of CSF and plasma NfL levels with 
baseline UMSARS scores was observed, whereas previous 
studies reported such associations to be significant [38, 39]. 
One reason might be the smaller cohort size in this study 
when compared to these other studies. Nonetheless, this did 
not hinder the identification of GFAP as potential biomarker 
for clinical disease severity in our cohort. Considering MSA 
being a rare disease, clinically relevant biomarkers must not 
only be detectable in large cohorts but should also be valid 
in smaller sample sizes.

One general limitation of this study shared with 
most in  vivo biomarker studies in MSA is the lack of 
neuropathological confirmation of diagnosis. To minimize 
the risk of clinical misdiagnosis, all patients included in 
this study have been seen in specialized departments for 
movement disorders and two-thirds of MSA patients fulfilled 
diagnostic criteria for “probable MSA” according to Gilman 
criteria. It must be noted, however, that in 2022, the new 
Movement Disorder Society criteria for the diagnosis of 
MSA have been published [6]. These new criteria were 
published to increase sensitivity and specificity regarding 
the clinical diagnosis of MSA patients especially in early 
disease stages. In multiple recent retrospective post-mortem 
validation studies, these new diagnostic criteria have 
shown excellent specificity, however with low to moderate 
sensitivity for the diagnosis of MSA across different disease 
stages [40–42]. Mixed results have been reported regarding 
their performance against the Gilman criteria, with most 
studies agreeing on higher, yet still limited sensitivity of 
the new MDS MSA criteria with similar or slightly overall 
increased specificity. Since these new criteria were released 

after the recruitment period of this study, and considering 
that the latest validation study suggests the best sensitivity 
combined with high specificity for trial selection using the 
Gilman criteria categories (possible and probable MSA) or 
the MDS MSA criteria (clinically probable and clinically 
established MSA) [40], we opted to continue using the 
Gilman criteria for this study.

In summary, our study is the first to show to the potential 
of GFAP as objectively measurable fluid in vivo biomarker 
for clinical disease severity in MSA. Such biomarkers are 
currently urgently needed for clinical trials. In addition, it 
supports previous studies on NfL as fluid in vivo biomarker 
in MSA for prediction of disease progression as well as 
facilitation of differential diagnosis against PD, which 
currently often still poses a clinical challenge. Our findings 
warrant follow-up investigations in a larger, longitudinal 
MSA cohort to address the dynamics of reactive astrogliosis 
and neuronal cell loss during MSA and PD pathology and 
to further establish GFAP and NfL as in vivo biomarkers 
for MSA.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00415- 024- 12647-z.
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