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As part of the advancement in therapeutic decision-making for brain tumor patients at St. Jude
Children’s Research Hospital (SJCRH), we developed three robust classifiers, a deep learning neural
network (NN), k-nearest neighbor (kNN), and random forest (RF), trained on a reference series DNA-
methylation profiles to classify central nervous system (CNS) tumor types. The models’ performance
was rigorously validated against 2054 samples from two independent cohorts. In addition to classic
metrics of model performance, we compared the robustness of the three models to reduced tumor
purity, a critical consideration in the clinical utility of such classifiers. Our findings revealed that the NN
model exhibited the highest accuracy andmaintained a balance between precision and recall. TheNN
model was the most resistant to drops in performance associated with a reduction in tumor purity,
showing good performance until the purity fell below 50%. Through rigorous validation, our study
emphasizes the potential of DNA-methylation-based deep learning methods to improve precision
medicine for brain tumor classification in the clinical setting.

DNA methylation is an epigenetic mechanism in which a methyl group is
added to the 5-carbon position of cytosine, creating a 5-methyl-cytosine
(5meC) base within a cytosine-phosphate-guanine (CpG) dinucleotide. This
modification can regulate gene expression without altering the DNA
sequence, serving as a crucial process in normal development and tissue
specification1,2. Within cells, DNA methylation regulates critical functions
such as transcription factor binding, gene silencing, X-chromosome inac-
tivation, imprinting, and the preservation of chromosome stability1,3,4. The
DNA methylation patterns can be transmitted to the daughter cell upon
replication through the activity of DNAmethyltransferase-1 (DNMT1)5.

Both normal and neoplastic tissues have an inherent epigenetic sig-
nature encoded in their methylome6–9. This DNA methylation signature is
considered a combined representation of the cell of origin and, in the case of
tumors, the genomic driver abnormality. It is retained even after tumor
recurrence or passage of tumors as an orthotopic xenograft10–12. Because
DNAmethylation patterns are reconstituted in the dividing cell, the pattern
of CpGmethylation across the genome has been established as a stable and
reliable biomarker6,13.

A powerful tool for exploring DNAmethylation landscapes across the
genome is a methylation array. Methylation arrays are high-throughput
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techniques that quantify DNA methylation levels across the genome at
specific loci14,15. These arrays rely on bisulfite conversion of DNA, wherein
unmethylated cytosines are converted to uracil, but methylated cytosines
remain unchanged, followed by hybridizing the converted DNA to specific
probes on the array. This technology has enabled large-scale epigenome-
wide association studies, providing comprehensive insights into epigenetic
modifications across different biological conditions and diseases14,15.
Methylation arrays have become invaluable in epigenetics research, offering
a balance between throughput, resolution, and cost, making them particu-
larly suitable for studies aiming to understand the complex relationship
between DNAmethylation, gene expression, and disease phenotypes.

Historically, brain tumor classification relied on morphologic exam-
ination of tumor specimens under a light microscopy16. Refinement of the
process has occurred through the recognition of additional tumor-specific
histologic patterns and by integrating testing modalities such as cytoge-
netics, immunohistochemistry, and nucleic acid sequencing findings into
the classification schemes. Histologically defined tumor types often include
heterogeneous molecular subtypes with distinct biological and clinical
behaviors17,18. The adoption of high-density methylation arrays (Illumina
Infinium 450 K and 850 K EPIC arrays) has allowed for genome-wide
evaluation ofDNAmethylation from large cohorts of human tumors. These
arrays have favorable characteristics, including, streamlined workflows,
comparable performance on fresh or formalin-fixed and paraffin-
embedded (FFPE) tissues, and stability of the methylation mark even in
material stored for multiple decades19. The ability to assay FFPE has facili-
tated the accumulation of large tumor cohorts and allows easy integration
into standard clinical workflows9,13,20. While initial utility of methylation
profiling to refine the classification of brain tumors relied on unsupervised
analyses comparing specific tumor cohorts of interest to reference brain
tumor types9,20–22, the introduction of supervised models to classify tumors
utilizingmethylation data has been a critical advance in clinical diagnostics.

Several supervised classification models utilizing simple and advanced
machine-learning techniques have been proposed and utilized for biome-
dical applications23–26. Models using DNA-methylation profiles for brain
tumor classification, such as random forest (RF) and deep-learning
frameworks27–29, have been widely researched. On the other hand, in the
clinical environment, DNA methylation-based classifiers for central ner-
vous system (CNS) tumors have relied on the RFmodels30. Themost widely
adoptedRF classifier for brain tumorswasdevelopedbyCapper et al. 13. This
model was trained on a reference cohort containing all tumor entities
represented in the 2016 WHO Classification of Tumors of the Central
Nervous System31. An alternative RF clinical classifier for CNS tumors was
developed and validated by Northwestern Medicine32. These models show
good accuracy for tumors in the reference dataset, but a relatively high
proportion of subthreshold classification scores has been observed upon
implementation, creating clinical ambiguity.

In this study, we focused on developing a robust model for clinical use.
Specifically, we evaluated multiple machine learning approaches to find a
modelwith improvedperformance inoutputting clinically confident results.
Because methylation arrays have been prone to changes in probe compo-
sition, we were also interested in the ability of different models to handle
data sparsity and robustness against random probe dropout. As a com-
parison to the more traditional RF model (RFmod)13, we constructed a
neural network model (NNmod) and an exact bootstrap version of kNN
(kNNmod), which efficiently simulates the bootstrap distribution without
the need for actual resampling, thereby saving significant computing
resources and time. Neural networks are well-known to provide both high
accuracy and robustness to noise. An exact bootstrap kNN33 was chosen
because it theoretically allows for more robustness to probe loss, normal
tissue contamination, and improved prediction accuracy in clinical settings
where such data challenges are prevalent.

We validated the performance of these two models and the RFmod
with two independent brain tumor cohorts consisting of 1104 samples from
GSE109379and950 samples fromtheSt. JudeChildren’sResearchHospital.
Our results showed that although all models performed robustly to missing

data, the deep NN model had the highest CNS classification accuracy and
themost favorable performance characteristics, especially inminimizing the
proportion of subthreshold scores during testing and validation. Average
precision and recall of the NNmod started reducing to similar levels of
kNNmod and RFmod when tumor purity was less than 50%. This suggests
that a deep NN model can be implemented in clinical laboratories as a
reliable and essential diagnostic tool to assist in precision therapy for brain
tumors.

Results
Model performance on train and test set
Wedeveloped threemodels, i.e., a k-nearest neighborsmodel (kNNmod), a
random forestmodel (RFmod), and amultilayer perceptronneural network
model (NNmod) (Supplementary Fig. 1), to classify human CNS tumors
based on methylation signatures of the comprehensive reference set
(GSE90496, n = 2801). This set comprises 91 methylation classes grouped
into 75 methylation class families based on their histological and biological
closeness13. The RF model represented a recapitulation of the previous
random forest produced byCapper et al. representing the best in the current
model. Here, we compared the performance of kNNmod and NNmod to
the RFmod. The three models were evaluated with 1000 leave-out-25%
cross-validations in predicting methylation classes and families (Supple-
mentary Fig. 2). All models produced accuracies above 0.95 for class and
family prediction (Table 1).Among the threemodels, classification accuracy
and its Kappa statistic were highest in NNmod (above 0.98) and lowest in
kNNmod (0.90 and 0.95 for class and family prediction) (Table 1). These
accuracies were statistically significantly different from the null accuracy,
i.e., the accuracy could be achieved by predicting the most frequent class
(McNeMar’s p-values < 10−16). These results suggested that all models
produced useful predictions with high accuracy. F1-scores were also cal-
culated to evaluate the balance between precision and recall, especially in the
presence of class imbalances. Similarly, NNmod achieved the highest F1-
score both in class and family prediction (0.99 for family prediction)
compared to kNNmod (0.90 for family prediction) and RF mod (0.98 for
family prediction) (Table 1). Achieving the highest F1-score suggested that
the NNmod not only balanced the rates of false positives and negatives but
also managed the trade-off between capturing true cases and avoiding false
detections.

Cross-validationmisclassifications by RFmod andNNmod focused on
a fewmethylation classeswhilemiss-classifications by kNNmod spread into
many classes. Cross-validation of RFmod, kNNmod, and NNmod resulted
in an average accuracy of 98%, 95%, and 99% for class prediction, respec-
tively (Table 1). Notably, NNmod produced the best accuracy in predicting
methylation class in all 1000 cross-validation rounds (Supplementary Table
1). kNNmod, compared to RFmod and NNmod, had the lowest precision
(90% vs. 96% and 98%, respectively) and recall (86% vs. 97% and 98%). All
models had comparable specificity (around 99%). Most miss-classifications
among the three models occurred within the six histologically and biolo-
gically closely related tumor classes (ie. subclasses of pituitary adenomas)
(Fig. 1a). However, kNNmod misclassification expanded to other

Table 1 | Overall performance of leave-out-25% train-test
process for each classifier on the GSE90496

RF kNN NN

Class Family Class Family Class Family

Accuracy 0.98 0.99 0.95 0.96 0.99 0.99

Accuracy null 0.05 0.11 0.06 0.11 0.06 0.12

Kappa 0.96 0.99 0.90 0.95 0.98 0.99

F1-score 0.97 0.98 0.88 0.90 0.98 0.99

Recall 0.97 0.98 0.86 0.88 0.98 0.99

Precision 0.96 0.985 0.90 0.92 0.98 0.995

Specificity 0.99 0.99 0.99 0.99 0.99 0.99
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methylation subclasses such as the subclasses of ependymomas (EPN), low-
grade gliomas (LGG), melanocytic neoplasms (MELAN and MELCYT),
and plexus tumors (PLEX). Some misclassifications of the KNNmod had
important clinical implications such as confusing glioblastoma classes with
low-grade glioma classes. (Fig. 1aii). On the other hand, NNmod had the
narrowest ranges in accuracy, precision, and recall of predicting 91 sub-
classes with a median value around 0.98 for each metric (Fig. 1b, c and
Supplementary Table 1). Minimal F1 scores for RFmod, kNNmod, and
NNmod were 0.729, 0.359, and 0.761, respectively (Fig. 1d and Supple-
mentaryData 1), suggestingNNmodhad thebest balance betweenprecision
and recall.

All models, in general, performed better at predicting methylation
families. The classification metrics of these 75 methylation families are
shown in Table 1 and Supplementary Figure 3. The cross-validation
accuracies for the clinically relevant groupings were improved in all models.
Compared to kNNmod, NNmod showed higher accuracy (99% vs 96%),
precision (99% vs 88%), and recall (99.5% vs 93%). Compared to RFmod,
the NNmod showed higher recall (99% vs. 98%) and comparable accuracy
(~99%), precision (~98%), and specificity (~99.9%) (Table 1). Among the
1000 cross-validation rounds in predicting methylation family, NNmod
produced the best accuracy 604 times, while RFmod produced the best
accuracy 280 times. The rest of the cross-validation rounds, NNmod and
RFmod had the same accuracy that was higher than kNNmod (Supple-
mentary Data 2). The misclassification of RFmod and NNmod among the
CNS tumor classes shown in Fig. 1a appeared to be dissolved but retained in
kNNmod (Supplementary Fig. 3a). Although accuracy was improved for all
models, the gap between precision (88%) and recall (93%) for kNNmod
(SupplementaryFig. 3b–dandSupplementaryData1) remained the same in
predictingmethylation families.Minimal F1 scores forRFmod andNNmod
were increased to 0.878 and 0.883, while this score was reduced to 0.318 by
kNNmod (Supplementary Data 2). In conclusion, these results indicated

that although RFmod and NNmod had very comparable performance,
NNmod still had the highest accuracy and the best balance between pre-
cision and recall among the threemodels, suggesting that it had the highest
discriminating power for both methylation class and family.

Model performance on two independent validation sets
The classification performance of the three models was additionally tested
on two independent data sets (GSE 109379) and the SJCRH data sets. To
objectively assign each independent test sample to the referencemethylation
class group, we performed a semi-supervised learning approach34 to assign
labels to the two validation data sets. The 1,104 samples were assigned to 65
methylation classes and 50 families (Supplementary Data 3), while the 950
SJCRH samples were grouped into 49 methylation classes (Supplementary
Data 4). This result was then used as the ground truth to measure the
accuracy of the prediction results from our classifiers. We evaluated the
performance of each classifier at multiple probabilistic prediction cutoffs
ranging from 0 to 0.9 with a 0.1 increment. Figure 2 shows the overall
average precision and recall at each cutoff for each classifier when validating
on GSE109379 and SJCRH data sets. Although all models had their pre-
diction precision increase as the threshold increased for both class (red line)
and family (blue line) prediction, the recalls that met the cutoff dropped
quickly to around 65% in RFmod and kNNmod, but it stayed above 0.75 in
NNmod (Fig. 2 and SupplementaryData 5–8). For application to diagnostic
tumor samples, an optimal calibrated score threshold of ≥ 0.9was selected13.
For subclasses within methylation class families, a threshold value of ≥ 0.5
was defined as sufficient for a valid prediction if all family member scores
add up to a total score of ≥ 0.9. Single-class specificity and sensitivity are
provided in Supplemental Table 5–8. At the 0.9 thresholds, all threemodels
achieved a balanced accuracy of 99% with at least 95% precision when
predicting methylation class and family in both GSE109379 and SJCRH
(Table 2). However, recall produced by RFmod and kNNmod dropped
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Fig. 1 | Leave-out-25% testing results for each methylation class. a Heat map
showing results of methylation class prediction after 1000 stratified random sam-
plings of i RF, ii kNN, and iii NN classifier incorporating information of n = 2801
reference tumor samples allocated to 91methylation classes (GSE90496). Deviations

from the bisecting line represent misclassification errors (using the maximum
calibrated score for class prediction). Boxplots showing (b) the accuracy, (c) pre-
cision and recall, and (d) F1-score for each classifier with outliers.

https://doi.org/10.1038/s41698-024-00718-3 Article

npj Precision Oncology |           (2024) 8:218 3

www.nature.com/npjprecisiononcology


below 65% while NNmod still maintained good recalls (>84% for class
and > 87% for family) inGSE109379 (Fig. 2a andTable 2).Whenpredicting
SJCRH at the 0.9 thresholds, NNmod achieved a 92% and 95% recall for
methylation class and family, respectively,with a 95%precision.Meanwhile,
recalls in RFmod reduced to 55% and 60% for predicting methylation class
and family, respectively (Fig. 2b). Similarly, kNNmod only achieved a recall
of 62% for predictingmethylation class and 66% for predictingmethylation
family (Fig. 2b and Table 2). These results suggested that NNmod could
identify the most positive calls with higher accuracy and precision.

Model robustness
CNS tumor classification of our classifiers is based on features that measure
DNAmethylation at differentCpG sites in the human genome using probes
on Illumina BeadChip arrays. This microarray technology is easy to use,
time-efficient, and cost-effective. However, it keeps evolving, and in each
newrelease,moreprobes are printed to covermorediverse genomic regions,
and some probes are purposely removed for efficiency. Other potential
applications, such as detection of tumors by cell-freeDNA testing, may also
have uneven or missing values. Because the missing probes could differ-
entially affectmodel performance,we investigatedwhether the performance

of the three classifiers was robust in producing consistent outputs in class
labels and their corresponding prediction scores even when a proportion of
input probes were not present. We performed an experiment in which we
randomly dropped 10% of the probes in the independent test data sets
GSE109379 and SJCRH. We repeated this process 10 times to create 10
different missing probes scenarios. The robustness of each classifier was
assessed based on the Theil’sUuncertainty coefficients between the two sets
of predicted labels and Spearman’s correlation coefficients between pre-
diction scores with and without missing probes. Table 3 shows that RFmod
and NNmod have Theil’s U uncertainty coefficients greater than 0.94,
suggesting that the predicted labels by RFmod and NNmod before probe
drop-out were as similar as those produced after probe drop-out. In con-
trast, kNNmod has the lowest uncertainty coefficient among the three
classifiers withTheil’s U ranging from 0.889 to 0.908 formethylation family
and class prediction. These results indicate that the two sets of predicted
labels are strongly associated. All models have Pearson correlation coeffi-
cients > 0.928 with p-values < 2.2e−16, suggesting a strong and statistically
significant linear correlation between prediction scores producedwhen10%
of probes were missing and when there were no missing probes (Table 4).
Figure 3 shows the regression analysis of the two sets of classification scores.
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Fig. 2 | Precision and recall above a classification probabilistic threshold for
methylation class and family of each classifier. a Precision and recall when pre-
dicting samples in GSE109379. b Precision and recall when predicting SJCRH

samples. Validation results for subclass calls are in red. Validation results for family
calls are in blue. Each point shows the precision and proportion of calls at each
classification probabilistic threshold ranging from 0 to 0.9 with 0.1 increments.

Table 2 | Performance of each classifier when predicting methylation class in the independent test sets at 0.9 threshold

Data set RF kNN NN

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

GSE109379 0.97 0.72 0.99 0.73 0.64 0.99 0.91 0.82 0.97

SJCRH 0.92 0.87 0.93 0.8 0.7 0.84 0.96 0.89 0.94
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Scores produced by NNmod and kNNmod with drop-out data set were
generally higher than those that were output using all probes as indicated
with positive y-intercepts (Fig. 3). RFmod, when using data with missing
probes, produced lower classification scores (negative y-intercepts). All
models had the goodness-of-fit R-squared of at least 86%, indicating a
strong correlation between the two sets of prediction scores (Fig. 3). These
results suggest that missing probes do not affect the prediction outcomes of
any classifiers.

Model assessment based on sample purity
Infiltrating of normal cells such as epithelial, stromal, and immune cells in
tumor tissue can perturb the tumor signal in molecular studies. In our
application, this contamination canaffect themethylation levelmeasuredby
microarray chips, leading to possible degradation in the performance of a
classifier. Therefore, we developed an in-silico experiment inwhich different
fractions of the normal control cells were mixed with the tumor tissue to
answer these questions: (1) whether a classifier produces unexpected
methylation class/family prediction (2) if yes, would the prediction have a
suprathreshold score, and (3) approximately at what percentage of control
contamination, the classification accuracy starts to degrade. We first
observed the overall performance of the three classifiers based on their
average recall and precision for methylation class and family prediction at
different thresholds andpurity fractions (Fig. 4). NNmod started to perform
the best, as seen in previous sections. RFmod degraded at a comparable rate
with kNNmod after the sample purity was less than 65%. As the purity of
tumor samples was less than 40%, NNmod started to yield lower precision
and recall compared to the other two classifiers (Fig. 4, threshold = 0).At the
0.9 clinical threshold and 0.95 purity, NNmod had twice the average recalls
and a much higher average precision than RFmod and kNNmod. The
performance of NNmod did not start to degrade at a similar rate to RFmod
and kNNmod until the purity of tumor samples was less than 50%. As the
contamination increased, RFmod had the lowest performance among the
three classifiers (Fig. 4, threshold = 0.9). NNmod maintained the highest
average precision and recall among the three classifiers. Its performance
reduced to a comparable level with RFmod and kNNmod only when the
tumor purity was less than 50%.

Next, we observed the prediction results of each classifier for each
methylation class and family. Figures 5 and 6 show the performance of
RFmod, kNNmod, and NNmod at different control fractions in the tumor
sample for methylation class diffuse midline glioma H3 K-27 mutant
(DMG, K27) and glioblastoma, IDH wildtype, H3.3 G34 mutant (GBM,
G34), respectively. When the high-grade DMG, K27 tumors got con-
taminated with control, RFmod and NNmod did not produce unexpected
methylation classes besidesDMG,K27 and its correspondingmixed control
cerebellar hemisphere (CONTR, CEBM) class (Fig. 5a, b, g, and h) or family
(Supplementary Fig. 4a, c, d, and f). On the other hand, kNNmod unex-
pectedly predicted selected high-grade glioma samples to be low-grade

pilocytic astrocytoma (LGG, PAPF)with scores above the clinical threshold
(0.9) (Fig. 5d, e and Supplementary Fig. 4b, e). kNNmod and RFmod could
not accurately predict the methylation class of the DMG, K27 tumors if the
purity of these samples was less than 70% (Fig. 5c, f and Supplementary Fig.
4g, h). Meanwhile, NNmodwas able tomaintain its prediction accuracy for
DMG, K27 samples until the sample purity dropped below 40% (Fig. 6i).
Figure 6 shows that when predicting the GBM, G34 methylation class,
RFmod did not provide any suprathreshold results if greater than 30% of
control tissue were present in the mixture (Fig. 6a–c). On the contrary,
kNNmod accurately predicted these samples until the contamination was
up to 60%. At this fraction, kNNmod unexpectedly classified these grade 4
tumors as grade I dysembryoplastic neuroepithelial tumors (LGG, DNT)
(Fig. 6d–f).NNmoddidnot provide any suprathreshold classification scores
for alternative classes to GBM, G34 except for the corresponding normal
hemispheric cortex (CONTR, HEMI) starting at 70% contamination (Fig.
6g–i). Similar results were shown in Supplementary Fig. 5 for GBM,
G34 samples at the methylation family.

The results of our in silico mixing were validated using a small inde-
pendent validation cohort of samples with known variant allele frequency
for IDH1 mutations or H3F3A p.K27M mutations. Similar to the in silico
findings, the NNmod maintained correct suprathreshold classification
within the range of estimated tumor fraction of 38–76% for IDH1 mutant
tumors (19–38% variant allele fraction) and 46–98% for H3F3A p.K28M
mutant tumors (23–48%variant allele fraction). In contrast, theRFmod and
kNNmod failed to classify these samples reliably across the range of variant
allele fractions, yielding either subthreshold scores or misclassing scores in
some instances (Supplementary Table 2).

Discussion
We developed a deep neural network model to predict CNS tumor classi-
fication based on a largeDNA-methylationdata set from2801patients of 82
distinct CNS tumors and 9 controls. Our multilayer perceptron neural
network classifier achieved high performance, as demonstrated in 3 dif-
ferent evaluation settings. Compared with RFmod, a current-state-of-the-
art CNS tumor classifier based on DNA-methylation, our NNmod showed
higher overall accuracy (99% vs. 98%), precision (98% vs. 97%) and recall
(98% vs. 96%) and comparable specificity (~99%) in methylation class
prediction (Table 1). Among the three developed models, the kNN model
produced the lowest accuracy (95%), precision (86%), and sensitivity (90%)
(Table 1). In addition, we showed that our DNNmodel is highly robust and
generalizable as evaluated in an independent testing dataset of 1104
GSE109379 samples (65 tumor classes) and 700 classifiable SJCRH samples
(45 tumor classes), with an overall accuracy of 91% and 94%. Among these
results, NNmod showed the highest accuracy and the best balance between
precision and recall compared toRFmod and kNNmod (Table 1, Figs. 1–2).
All classifierswere trainedon the referencedata (GSE90496) generated from
the IlluminaHumanMethylation 450 K chips. These chips featured 485,577
CpG sites throughout the human genome, but they became obsolete and
have been replaced by the Illumina HumanMehtylationEPIC BeadChip
(EPIC). EPIC measures methylation at > 850,000 CpG sites and covers
approximately 90% of the same sites represented on the 450 K chip. EPIC
eliminates sites reported to be poorly performed35 and features more CpGs
that covermore regulatory elements.When using classifiers trained on data
produced by 450 K chips to predict samples ran on EPIC chips, it is possible
that some probes used for prediction are no longer present on EPIC chips
and could hinder the classifier performance. As such, we performed a

Table 3 | Theil’s U uncertainty coefficient with a 95% confidence interval of each classifier with and without dropping 10% of
probes in the GSE109379 and SJCRH independent test sets

Data set RFmod kNNmod NNmod

Class Family Class Family Class Family

GSE109379 0.969 (0.967, 0.972) 0.974 (0.970, 0.978) 0.892 (0.887, 0.898) 0.908 (0.902, 0.914) 0.973 (0.970, 0.9796) 0.980 (0.976, 0.983)

SJCRH 0.945 (0.940, 0.949) 0.964 (0.960, 0.968) 0.889 (0.883, 0.894) 0.899 (0.894, 0.905) 0.970 (0.966, 0.974) 0.979 (0.975, 0.982)

Table 4 | Pearson’s correlation coefficients of prediction
scores with and without 10% missing probes

Data set RFmod kNNmod NNmod

Class Family Class Family Class Family

GSE109379 0.98 0.99 0.93 0.94 0.94 0.94

SJCRH 0.99 0.99 0.95 0.96 0.99 0.99
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random probes drop-out experiment to evaluate the classification perfor-
mance of RFmod, kNNmod, and NNmod (Tables 3 and 4). Although
having the probes dropped out randomly may be adequate, it would be
additionally useful to know in the future whether dropping all the poorly
performed probes in the 450 K training data set would enhance the per-
formance and increase the robustness of all classifiers.

Neural networks (NNs), k-nearest neighbors (kNN), and random
forests (RF) serve as fundamental machine learning models with distinct
operational principles. The NNs’ architecture is inspired from the human
brain, featuring layers of interconnected nodes that simulate neurons. This
architecture enables NNs to capture complex, non-linear relationships
through weighted inputs and outputs optimized during training, making
them particularly suited for tasks like image and speech recognition36. On
the simpler end, kNN operates on the premise that similar data points are
found in proximity, as such classification of a new point is based on its
nearest neighbors. Thismodel is intuitive and straightforwardbutmay falter
in high-dimensional spaces37.Meanwhile,RFs enhance decision treemodels
by creating an ensemble of trees from randomsubsets of the dataset, thereby
reducing overfitting and improving prediction accuracy38. This method

balances the simplicity of decision trees and the robustness required for
complex data analysis.

The performance comparison among the DNN, RF, and kNNmodels
in classifying CNS tumors based on DNA methylation data highlights
several key insights. The NNmodel outperforms the other two, particularly
in handling the complex and high-dimensional DNAmethylation data sets,
achieving the best combination of precision, recall, and robustness to probe
dropout. Improved precision in the random forest and k-nearest neighbor
classifiers comes at the expense of drastically reduced recall. In the clinical
settings, increased recall, i.e., rate of positive samples correctly classified
above clinical reporting threshold, is extremely desirable because correctly
diagnosing all actual positive cases can effectively improve patient safety,
treatment efficacy, and overall health outcomes. Additionally, the general-
izability of the NN is demonstrated through its consistent performance
across independent testing data sets, indicating its practical applicability in
clinical settings. Comparatively, the RF model, while efficient and generally
accurate, may not capture as complex interactions among features as
effectively as neural networks. On the other hand, the lower performance in
kNNmod was likely due to the lack of explicit data structure making it
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Fig. 3 | RFmod, kNNmod, and NNmod classification scores when predicting
independent testing samples having all the probes versus samples having 10% of
probes randomly dropped. Line plots showing prediction scores for (a)methylation
family and (b) methylation class of GSE109379 data set. Line plots showing (c)

methylation family prediction scores and (d) methylation class prediction scores of
SJCRH data set. Linear regression lines and the R-squared goodness-of-fit measures
were estimated using the scores produced from kNNmod (red), NNmod (green),
and RFmod (blue).
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inefficient in dealing with high-dimensional DNA methylation data. The
DNN’s adaptive learning capabilities and its potential for feature learning
and architectural flexibility enable it to outperform RF and kNN, making
DNN a promising candidate for clinical applications. Another advantage of
NNmodel was its high recall compared to kNNmod andRFmod, especially
whendealingwith imbalancedclasseswithin thedata set. Thedistributionof
classes in the datasets can significantly impact recall. The SJCRH data set
contained mostly pediatric tumor types, while the GSE109379 had more
representation of adult tumors. Some of these adult tumor types, including
specific molecular classes of glioblastoma, are closely related and difficult to
classify above the threshold. As such, NNmod and RFmod had equivalent
recalls when dealing with SJCRH. However, the sensitivity of NNmod was
more robust and remained high compared to that of RFmod when dealing
with closely related adult tumors in GSE109379.

Theprimary aimof our studywas to optimize a classificationmodel for
clinical use, addressing challenges such as the occasional changes in probe
representation on Illumina arrays. These changes can necessitate time-
consuming retraining and revalidation of models, although our findings
suggest that some models are robust enough to withstand a significant
reduction of probes without requiring retraining. This resilience is parti-
cularly relevant as methylation profiling, especially in cell-free DNA
(cfDNA) testing like cell-free cerebral spinal fluid, where probe dropout is
likely due to lowDNA content. Additionally, while imputationmethods are
commonly used in research settings39–41, theymay not be suitable for clinical
scenarios where patient data is unique and not necessarily reflective of
broader cohort characteristics.However, in serial clinicalmonitoring,where
the primary tumor’s DNA characteristics are known, imputation from the
primary tumor might be feasible and safe. Our approach leverages a neural
network and an exact bootstrap version of kNN, which efficiently simulates
the bootstrap distribution without the need for actual resampling, thereby
saving significant computing resources and time.

Some limitations of our study included probe selection and the NN
architecture. Firstly, the probe selection was constrained to a smaller subset
overlapping between the 450 K and EPIC methylation arrays. This restric-
tion potentially impacts the coverage breadth of our genomic data, which

could limit the generalizability of our findings. To overcome this limitation,
future work could explore the use of the covariance structure of the probes
for imputation purposes replication of the reference series with more
comprehensive arrays39–41, or DNAmethylation sequencing. An additional
limitation is that theneural network’s architecture inour study, consistingof
11 layers, may be overly complex, raising concerns about overfitting. This
complexity could hinder the model’s ability to generalize to new, unseen
data. Future improvements could focus on simplifying the neural network
by reducing the number of layers. Employing methods such as pruning or
parameter optimization through cross-validation could help in creating a
more efficient and robust model.

Despite these potential limitations, our results from two independent
cohorts from different institutions have shownminimal signs of overfitting.
This observation was supported by results from dropout tests (Fig. 3 and
Table 4) and analysis of tumor purity levels (Fig. 4), which indicated that the
models was robust across different data sets and probe missing scenarios.
Further optimizationof themodel architecture could enhance theutility and
reliability of the model in the clinical setting. Diagnosis of CNS tumors is a
complex multiclass classification problem as the number of diagnostic
classes in which patients are stratified is not limited to a few selected classes
but rather to a very high list of entities represented in the 5th edition of the
WHO Classification of CNS Tumors13. It has been shown that diagnostic
accuracy can be improved by utilizing a robust machine-learning classifi-
cation algorithm based on DNA-methylation profiles obtained from for-
malin-fixed, paraffin-embedded (FFPE), or frozen tissue samples13. The
preparation of FFPE samples is one of the most widely used procedures to
preserve and archive specimens in clinical oncology. Thisworkflow requires
an invasive tissue biopsy to be performed on patients. Recently, liquid
biopsies, a less invasive method for cancer detection, have rapidly gained
prominence42. Particularly, plasma cell-freeDNAmethylation profiles have
been shown tobehighly sensitive, cost-effective, and accurate in early tumor
detection for cancer interception, and for multi-cancer classification43,44.
Our study demonstrated that NNmod was the top stand-alone classifier
among the three developed classifiers using DNA-methylation signatures
from FFPE samples. The 11-layer perceptron NNmod maintained high

Fig. 4 | Average precision and recall of each clas-
sifier at different purity fractions per 0 and 0.9
threshold. Tumor samples from GSE109379 were
mixed with control samples (as indicated in Sup-
plemental Table 2) to create different fractions of
normal vs tumormixture. The average precision and
recall for predictingmethylation classes and families
by RFmod (green), kNNmod (purple), and NNmod
(orange) were computed for different mixed frac-
tions of GSE109379 (0 to 0.95 purity—points on the
lines) at 0 and 0.9 threshold.
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recalls (>82% for GSE109379 and > 90% for SJCRH) above a 0.9 clinical
threshold with > 0.92 precision when validated with two independent data
sets (Fig. 2 and Supplementary Data 5–8). With these improvements over
RFmod, NNmod represents a viable method that could be used in con-
junction with clinical, histopathologic, and molecular data to aid in the
diagnosis and classificationofCNStumors. Future studieswouldbe to apply
this machine learning modeling with the DNA-methylation profiles from
plasma cell-free DNA obtained through the less invasive liquid biopsy
procedure.

Methods
Patient material
FFPE or frozen tumor samples representing pediatric patient samples
encountered on the typical pathology service were evaluated. The samples
represented 650 samples expected to be present in the reference series and
300, true negative samples representative of non-brain solid tumors known
to be absent from the reference series (Supplementary Data 9). All experi-
mental protocols were approved by the St. Jude Children’s Research Hos-
pital Institutional Review Board (#XPD17-163) and performed in

accordance with the Declaration of Helsinki. Informed consent was not
required under the Office for Human Research Protections (OHRP)
guidelines regarding the disposition of deidentified human tissues for
human subjects research andwaswaived by the St. JudeChildren’sResearch
Hospital Institutional Review Board.

Training and independent testing data sets
All supervisedmodels were trained on the genome-wide DNAmethylation
profiles from the CNS tumor reference cohort (GSE90496), consisting of
2801 samples from 91 methylation classes13. All classifiers were indepen-
dently validated with two methylation data sets, including the 950 CNS
tumor samples from the St. JudeChildren’s ResearchHospital (SJCRH) and
1104 CNS tumor samples from GSE10937913.

Data generation and methylation array processing
We analyzed the 950 independent test samples using IlluminaMethylation
BeadChip (EPIC) arrays according to the manufacturer’s instructions. In
summary, DNA was isolated from formalin-fixed paraffin-embedded
(FFPE) tumor tissue using the Maxwell® Clinical Sample Concentrator
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Fig. 5 | Classification results of RF, kNN, and NNmodel for high-grade diffused
midline glioblastoma with K-27 mutant (DMG, K27) methylation class at dif-
ferent contamination levels. a, d, g Density plots of all calls (blue curve) and calls
over the 0.9 clinical threshold (orange curve) at each possible methylation family

predicted by RF, kNN, and NN when the ground truth is DMG, K27 at different
fractions of control tissue contamination. b, e, h Box plots show the score dis-
tribution for each methylation family predicted by RF, kNN, and NN models.
c, f, i Prediction accuracy of each classifier at each purity level.
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system(Promega,Madison,WI). Followingextraction,DNAwasquantified
using a Qubit fluorometer and quantitation reagents (Thermo Fisher Sci-
entific, Waltham, MA), and bisulfite converted using the Zymo EZ DNA
methylation kit (Zymo Research, Irvine, CA). The overall DNA input
amount was approximately 250 ng. DNAmethylation profiling was carried
out with the Infinium HumanMethylationEPIC BeadChip (850 K) array
(Illumina Inc., San Diego, CA) on the Illumina iScan platform.

All methylation data analyses, including those from GSE90496 and
GSE109379, were performed in R (http://www.r-project.org, version 3.5.3),
using several packages from Bioconductor and other repositories. Specifi-
cally, array data were preprocessed using the minfi package (v.1.28.4)45.
Background correction with dye-bias normalization was performed for all
samples usingnoob (normal-exponential out-of-band)with the “single”dye
method46. Batch effects such as hybridization time and other technical
variables were removed using removeBatchEffect from the limma package
(v.3.38.3)47. Probe filtering was performed after normalization. Specifically,
we removed probes located on sex chromosomes, probes containing

nucleotide polymorphism (dbSNP132 Common) within five base pairs,
including the targeted CpG-site, or mapping to multiple sites on hg19
(allowing for one mismatch), as well as cross-reactive probes.

Semi-supervised analysis
We developed a combination approach including a self-training with
editing using a support vectormachine (SETRED-SVM) as the base learner
model with an L2-penalized, multinomial logistic regression model to
obtain high confidence labels from a few reference instances34. We applied
this approach on GSE109379 and the SJ samples to get labels for the
independent validationpurpose of the supervisedmodels. The sscRpackage
(v2.1-0) was used to build and train the SETRED-SMV semi-supervised
model. First, the standard deviation for each probe across all 2801 samples
fromGSE90496was calculated. Input features for SSLmodelswere the 5072
probes with a standard deviation greater than 0.3 across all 2801 samples.
We used the best SETRED-SVMmodel to predict the methylation class for
1104GSE109379and950SJ samples.The SSL scoreswere calibratedwith an
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Fig. 6 | Classification results of RF, kNN, andNNmodel for grade 4 glioblastoma,
IDH wildtype, H3.3 G34 mutant (GBM, G34) methylation class at different
contamination levels. a, d, gDensity plots of all calls (blue curve) and calls over the
0.9 clinical threshold (orange curve) at each possiblemethylation family predicted by

RF, kNN, and NN when the ground truth is GBM, G34 at different fractions of
control tissue contamination. b, e, h Box plots show the score distribution for each
methylation family predicted by RF, kNN, andNNmodels. c, f, iPrediction accuracy
of each classifier at each purity level.
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L2-penalized, multinomial logistic regression. Scores above the 0.8 thresh-
old were considered correctly classifiable34.

The random forest algorithm and development
The random forest algorithm was reconstructed from Capper’s algorithm13

using the randomForest R package (v.4.6-14)48–50. This model was trained
based on the 408,862 overlapping probes of the 450 K and 850 K array
probes. First, the 10,000 features (or probes) with the highest importance
scores were selected by splitting the 408,862 intersecting probes into 43 sets
of ~9500 probes. Next, one hundred trees were fitted for each set using 639
randomly sampled candidate features at each split (mtry = square root of
408,862). The subclass labels, stratified subsampling methods, and the
number of trees in the forest were followed as in ref. 13. This framework can
produce a model that either predicts the methylation class or the methy-
lation “family” scores13 that represent clinically equivalent families onwhich
Capper et al. witnessed their best error rates. Next, a multinomial logistic
regression was used to calibrate the prediction scores from all cross-
validation splits as previously described13. The family scores were then
generated as the sumof allmethylation class scores fromthe trained random
forest.

The k-nearest neighbor algorithm and development (kNNmod)
An exact bootstrap k-nearest neighbor model (kNNmod) was built as
described in ref. 33. The model was trained on score vectors constructed
based on the difference in median beta values of the top 100 hyper- and
hypo-methylated probes. Each set of 100 top probes was selected based on
the mean ß values in a methylation group and the absolute z-scores com-
puted by taking the differences between mean beta values of two CNS
methylation groups divided by the square root of the sum of the variance in
each group. Hence, each methylation group had a list of 200 probes that
were either most hypo- or hypermethylated based on the absolute z-scores.
Each sample had a vector of scores, i.e., one score per methylation group.
Each score was computed by taking the median ß values of the top 100
hypermethylated probes and subtracting that from the top 100 hypo-
methylated probes. Euclideandistance on these vectorswas used tomeasure
the distance between each pair of samples. The entire Euclidean distance
matrix on the methylation group score vectors was computed for all pair-
wise samples.

To classify a new sample, kNNMod ordered all other samples by their
distance from the new observation and derived the probability that those
neighborswould be included among the knearest neighbors in the binomial
distribution. We used k = 5 neighbors for classification because some sub-
groups were very rare. For each new sample, the exact bootstrap probability
of assignment to eachmethylation group can be conditionally computed on
the training data set and the resulting probe selection and group score
definition.

The multilayer sparse perceptron architecture and develop-
ment (NNmod)
The overarching design principle of the NNmod was to generate a simple
neural network using brute-force hyperparameter optimization. Themodel
and the training data were chosen to be as large as possible, subject to the
memory constraints of the available computing machinery (NVIDIA P100
GPUs with 16G of on-chip memory). Internally, buffer and array sizes for
model parameters were determined to be powers of 2 to use computer
memory as efficiently as possible. The design of the multilayer sparse per-
ceptron is shown in Supplemental Fig. 1. This design is based on two
primary assumptions: (i) the methylation data from central nervous system
tumors and normal brain is embedded in low dimensional space, and (ii)
random combinations of important probes can predict methylation class.
The first assumption is typical of high dimensional data and is supported by
examining the singular value decomposition of previously published
reference data13 (data not shown). In addition, the ability of combined
methylation probes to predict methylation class is supported by previous
implementations of random forest classifiers13.

We constructed an 11-layer perceptron neural net. The input dimen-
sion was 51,108, composed of roughly 1/8th of probes, selected with feature
extraction described in the network training section (below). The neural
network architecture began with a large sparse layer that maximized output
dimensions while remaining within 16GB GPU memory constraints. This
ensured the subsequent dense layers had adequate memory space during
training. Specifically, a sparse matrix of dimensions (51,108, 139,264) with
256nonzero entries per columnwas chosen. Thenumber of nonzero entries
was optimized by searching powers of two from 64 through 512 for each
nonzero entry size with a dense layer with 91 outputs followed by a softmax
appended, and themodelwas trainedand evaluated for bulk precision at full
recall.

The 7 dense layers that follow the sparse layer were determined by a
process that iteratively added dense layers between the sparse layer and the
final output layer. The iteration ceasedwhen the performance improvement
due to an added layer diminished below a threshold of 1e-3. The final dense
layer serves as the output layer, linked to a softmax function.

For optimizing the Stochastic GradientDescent (SGD) parameters, we
began by setting momentum to 0 and weight decay to 0. The learning rate
was then optimized by searching through an exponential space of values,
starting from 1e-2 down to 1e-5, to select the rate that yields the highest
precision. Once the optimal learning rate was established, momentum was
optimized by exploring values from 1e-1 to 1e-4, selecting the value that
maximizes precision. Finally, with both the learning rate and momentum
fixed, theweight decaywasfine-tuned by testing values ranging from1e-9 to
1e-1, selecting the decay that further enhanced precision.

Stochastic gradient descent was performed with a batch size of 32 and
minimizing negative log-likelihood loss of output scores from the network
using a learning rate of 0.001. The batch size parameter was obtained by
searching the parameter space from 128 to 8 in powers of 2. Using the
evaluation partitions from the cross-validation splits, model calibration was
performed with a multinomial logistic regressor. The final model was
trained on the complete 2801 samples using identical parameters following
cross-validation.

Classifier cross-validation
To reduce the overfitting problem when training classifiers on high-
dimensional data, all classifiers were cross-validated based on 1000 leave-
out-25% cross-validations. We randomly selected 75% of the data used to
train the classifiers (GSE90496), while the remaining 25% of the data were
used for predictions. Stratified random sampling was performed for each
methylation class or family to ensure the number of categories remained the
same in each iteration. This validation process was repeated 1000 times
(Supplemental Fig. 2).

Model calibration
Calibration of machine learning methods may be necessary because the
scores output by the classifier may have different scales when broken down
by class, even when the scores are normalized so that they sum to 1. This
poses problems for comparing the uncertainty in class or family calls
between cases or even in the same case. Thus, the scoresmust be rescaled to
form a well-calibrated multinomial distribution with minimal differences
between expected values and variances between the class call groups.

Both RF and NN models were calibrated with the same multinomial
logistic regression approach described by Capper et al.13. The glmnet
package (v-4.1-3)51 was used with R bindings for the random forest and
python bindings for the neural net.

Model robustness
To test whether missing methylation probes (features) affect our machine
learning models, we randomly dropped 10% of the probes from the testing
data (GSE109379 and SJCRH) and calculated the accuracy. The same
probes at each roundwere used for allmodels. This processwas repeated ten
times to create 10 differentmissing sets of probes. Pearson’s correlation and
Theil’s U uncertainty coefficients were computed using the ggpubr R
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package (v.0.4.0) and the DescTools R package (v.99.44), respectively.
Pearson’s correlation coefficients with p-values were calculated to examine
the linear relationship between the two sets of prediction scores (with and
without missing probes). Theil’s U uncertainty coefficients were calculated
tomeasure the nominal association between the two sets of labels predicted
by the three classifiers on samples of GSE109379 and SJCRH data with and
without missing probes.

Purity analysis
We performed an in silico simulated impurity experiment using different
fractions of control and positive samples inGSE109379 and SJCRH test sets.
The experiment was performed based onm-values. The in silico mixedm-
values (mmixed) for each positive sample were computed as follows

mmixed ¼ ð1� pÞmtest þ pmcontrol ð1Þ

wheremtest is the inputm-value from the positive samples, andmcontrol is the
average m-values of up to 19 appropriate control (i.e., normal) tissue
samples in the test sets, p is the proportion of normal control tissues
contaminated in a tumor sample (ranging from 0 to 1 with 0.05 increment).
The control samples were selected based on their control methylation class
corresponding to the methylation class tumor as described in Supplemen-
tary Table 1. The final measurement of the mixed sample was then
converted back to beta values for classifier inputs.

Model performance metrics
All models were evaluated based on accuracy, precision, specificity, recall,
and F1 score. Classification accuracy is the number of correct predictions
(true positives and true negatives) divided by the total number of predic-
tions. Precision is the ratio of true positives to all the total positives predicted
by a classifier. Specificitymeasures the proportion of true negatives correctly
identified by a classification model. Recall or sensitivity is the ratio of true
positives to all the ground truth positives. The F1-score is the harmonic
mean of precision and recall and a good metric to measure the results in
imbalanced classification problems. The higher the F1 score, the better the
performanceof amodel.Allmeasurementswere computedusing the caretR
package (v.6.0-90).

Data availability
In this study, we used the following datasets: (i) GSE90496, GSE10937913,
and GSE276299 available from the National Center for Biotechnology
Information (NCBI https://www.ncbi.nlm.nih.gov). The SJCRH samples
were collected de-identified based on tumors that were evaluated at our
center. Theywere collected to be representative of broad tumor types seen in
the general clinical practice. They were not selected by any demographic
features, only on diagnosis and availability of material.

Code availability
The generated code is available from the corresponding authors upon
reasonable request for non-commercial use.
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