Table 3. Prediction Accuracies (R2) for the Random Datasets of the SMC Reactiona.
| training:test | 70:30 | 50:50 | 30:70 | 20:80 | 10:90 | 5:95 | 2.5:97.5 | 1:99 |
|---|---|---|---|---|---|---|---|---|
| one-hot-RF | 0.84 (0.01) | 0.82 (0.00) | 0.78 (0.01) | 0.75 (0.01) | 0.68 (0.01) | 0.61 (0.03) | 0.51 (0.04) | 0.24 (0.08) |
| random-RF | 0.84 (0.01) | 0.82 (0.01) | 0.78 (0.00) | 0.75 (0.01) | 0.68 (0.01) | 0.60 (0.01) | 0.46 (0.06) | 0.27 (0.05) |
| yield-BERT | 0.80 (0.01) | 0.78 (0.06) | 0.73 (0.01) | 0.68 (0.01) | 0.58 (0.02) | 0.49 (0.02) | 0.36 (0.06) | 0.25 (0.04) |
| T5Chem | 0.88 (0.01) | 0.87 (0.01) | 0.82 (0.01) | 0.79 (0.01) | 0.69 (0.01) | 0.58 (0.03) | 0.41 (0.05) | 0.20 (0.11) |
| XGBoost | 0.86 (0.01) | 0.85 (0.00) | 0.81 (0.00) | 0.77 (0.01) | 0.70 (0.01) | 0.63 (0.01) | 0.51 (0.04) | 0.32 (0.07) |
| MPNN-transformer | 0.89 (0.01) | 0.86 (0.01) | 0.82 (0.01) | 0.78 (0.01) | 0.67 (0.02) | 0.56 (0.02) | 0.41 (0.02) | 0.09 (0.14) |
| MPNN-transformer(3.0m) | 0.88 (0.01) | 0.85 (0.01) | 0.79 (0.01) | 0.75 (0.01) | 0.69 (0.02) | 0.59 (0.01) | 0.44 (0.03) | 0.09 (0.14) |
For each model and dataset, the average (standard deviation) of the R2 value for the Random datasets of the SMC reaction using the five ensemble models is reported. For each test dataset, the highest R2 value is highlighted in bold.