Skip to main content
. 2024 Sep 17;9(39):40907–40919. doi: 10.1021/acsomega.4c06113

Table 3. Prediction Accuracies (R2) for the Random Datasets of the SMC Reactiona.

training:test 70:30 50:50 30:70 20:80 10:90 5:95 2.5:97.5 1:99
one-hot-RF 0.84 (0.01) 0.82 (0.00) 0.78 (0.01) 0.75 (0.01) 0.68 (0.01) 0.61 (0.03) 0.51 (0.04) 0.24 (0.08)
random-RF 0.84 (0.01) 0.82 (0.01) 0.78 (0.00) 0.75 (0.01) 0.68 (0.01) 0.60 (0.01) 0.46 (0.06) 0.27 (0.05)
yield-BERT 0.80 (0.01) 0.78 (0.06) 0.73 (0.01) 0.68 (0.01) 0.58 (0.02) 0.49 (0.02) 0.36 (0.06) 0.25 (0.04)
T5Chem 0.88 (0.01) 0.87 (0.01) 0.82 (0.01) 0.79 (0.01) 0.69 (0.01) 0.58 (0.03) 0.41 (0.05) 0.20 (0.11)
XGBoost 0.86 (0.01) 0.85 (0.00) 0.81 (0.00) 0.77 (0.01) 0.70 (0.01) 0.63 (0.01) 0.51 (0.04) 0.32 (0.07)
MPNN-transformer 0.89 (0.01) 0.86 (0.01) 0.82 (0.01) 0.78 (0.01) 0.67 (0.02) 0.56 (0.02) 0.41 (0.02) 0.09 (0.14)
MPNN-transformer(3.0m) 0.88 (0.01) 0.85 (0.01) 0.79 (0.01) 0.75 (0.01) 0.69 (0.02) 0.59 (0.01) 0.44 (0.03) 0.09 (0.14)
a

For each model and dataset, the average (standard deviation) of the R2 value for the Random datasets of the SMC reaction using the five ensemble models is reported. For each test dataset, the highest R2 value is highlighted in bold.